blob: c0d08a567f05830392b972e2ec3f15dc4518f6f9 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
|
% https://tex.stackexchange.com/q/13635/
\documentclass{article}
\usepackage{xsim}
\DeclareExerciseEnvironmentTemplate{theorem:remark}
{
\par\addvspace{\baselineskip}
\noindent
\textit{%
\IfInsideSolutionF{\XSIMmixedcase{\GetExerciseName}~}%
\GetExerciseProperty{counter}}%
\GetExercisePropertyT{subtitle}{ \textup{(#1)}}%
. %
}
{\par\addvspace{\baselineskip}}
\DeclareExerciseHeadingTemplate{exercises}{\subsection*{Exercises}}
\xsimsetup{
exercise/template = theorem:remark ,
exercise/within = section ,
exercise/the-counter = \thesection.\arabic{exercise} ,
print-collection/headings = true ,
print-collection/headings-template = exercises
}
\DeclareExerciseCollection{prime numbers}
\DeclareExerciseCollection{Zeta function}
\xsimsetup{collect}
\begin{document}
\collectexercises{prime numbers}
\section{Prime Numbers}
A \emph{prime number} is a positive integer other than $1$ that is only
divisible by $1$ and itself.
\begin{exercise}[subtitle=Euclid's Theorem]
\label{ex:euclid}
Show that there are infinitely many prime numbers.
\end{exercise}
As you will show in Exercise \ref{ex:euclid}, there are infinitely many
primes. The number of primes that are smaller than a given natural number $n$
is denoted $\pi(n)$.
\begin{exercise}
Find an asymptotic formula for $\pi(n)$. \emph{Hint:} You might find
Exercise \ref{ex:zeta} helpful.
\end{exercise}
\collectexercisesstop{prime numbers}
\printcollection{prime numbers}
\collectexercises{Zeta function}
\section{Zeta function}
The zeta function is given by $\zeta(s) = \sum_{n=1}^\infty n^{-s}$, where $s$
is a complex number with real part bigger than $1$.
\begin{exercise}\label{ex:zeta}
Extend $\zeta$ as far as possible and find all zeros
of the function.
\end{exercise}
For example $\zeta(2) = \frac{\pi^2}{6}$.
\collectexercisesstop{Zeta function}
\printcollection{Zeta function}
\end{document}
|