summaryrefslogtreecommitdiff
path: root/macros/latex/contrib/withesis/math.tex
blob: ac00cfea4297520dd1dd0ff411b9318b0ae3c4d0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
\chapter{Mathematics Examples}
This appendix provides an example of \LaTeX's typesetting
capabilities.  Most of text was obtained from the University of
Wisconsin-Madison Math Department's example thesis file.

\section{Matrices}
The equations for the {\em dq}-model of an induction machine in the
synchronous reference frame are
\begin{eqnarray}
 \left[\begin{array}{c} v_{qs}^e\\v_{ds}^e\\v_{qr}^e\\v_{dr}^e  \end{array}\right]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              
 &=& \left[ \begin{array}{cccc}
 r_s + x_s\frac{\rho}{\omega_b} & \frac{\omega_e}{\omega_b}x_s & x_m\frac{\rho}{\omega_b} & \frac{\omega_e}{\omega_b}x_m \\
 -\frac{\omega_e}{\omega_b}x_s & r_s + x_s\frac{\rho}{\omega_b} & -\frac{\omega_e}{\omega_b}x_m & x_m\frac{\rho}{\omega_b} \\
 x_m\frac{\rho}{\omega_b} & \frac{\omega_e -\omega_r}{\omega_b}x_m & r_r'+x_r'\frac{\rho}{\omega_b} & \frac{\omega_e - \omega_r}{\omega_b}x_r' \\
 -\frac{\omega_e -\omega_r}{\omega_b}x_m & x_m\frac{\rho}{\omega_b} & -\frac{\omega_e - \omega_r}{\omega_b}x_r' & r_r' + x_r'\frac{\rho}{\omega_b}
 \end{array} \right]
 \left[\begin{array}{c} i_{qs}^e\\i_{ds}^e\\i_{qr}^e\\i_{dr}^e\end{array} \right] \label{volteq}\\
 T_e&=&\frac{3}{2}\frac{P}{2}\frac{x_m}{\omega_b}\left(i_{qs}^ei_{dr}^e - i_{ds}^ei_{qr}^e\right) \label{torqueeq}\\
 T_e-T_l&=&\frac{2J\omega_b}{P}\frac{d}{dt}\left(\frac{\omega_r}{\omega_b}\right) \label{mecheq}.
\end{eqnarray}

\section{Multi-line Equations}

\LaTeX{} has a built-in equation array feature, however the
equation numbers must be on the same line as an equation.  For example:
\begin{eqnarray}
\Delta u + \lambda e^u &= 0&u\in \Omega,  \nonumber \\
u&=0&u\in\partial\Omega.
\end{eqnarray}

Alternatively, the number can be centered in the equation using the
following method.
%
% The equation-array feature in LaTeX is a bad idea.  For centered
% numbers you should set your own equations and arrays as follows:
%
\def\dd{\displaystyle}
\begin{equation}\label{gelfand}
\begin{array}{rl}
\dd \Delta u + \lambda e^u = 0, &
\dd u\in \Omega,\\[8pt] % add 8pt extra vertical space. 1 line=23pt
\dd u=0, & \dd u\in\partial\Omega.
\end{array}
\end{equation}
The previous equation had a label.  It may be referenced as
equation~(\ref{gelfand}).


\section{More Complicated Equations}
\section*{Rellich's identity}\label{rellich.section}
\setcounter{theorem}{0}
%
%

Standard developments of Pohozaev's identity used an identity by
Rellich~\cite{rellich:der40}, reproduced here.

\begin{lemma}[Rellich]
Given $L$ in divergence form and $a,d$ defined above, $u\in C^2
(\Omega )$, we have
\begin{equation}\label{rellich}
\int_{\Omega}(-Lu)\nabla u\cdot (x-\overline{x})\, dx
= (1-\frac{n}{2}) \int_{\Omega} a(\nabla u,\nabla u) \, dx
-
\frac{1}{2} \int_{\Omega}
d(\nabla u, \nabla u) \, dx
\end{equation}
$$
+
\frac{1}{2} \int_{\partial\Omega} a(\nabla u,\nabla u)(x-\overline{x})
\cdot \nu  \, dS
-
\int_{\partial\Omega}
a(\nabla u,\nu )\nabla u\cdot (x-\overline{x}) \, dS.
$$
\end{lemma}
{\bf Proof:}\\
There is no loss in generality to take $\overline{x} = 0$. First
rewrite $L$:
$$Lu = \frac{1}{2}\left[ \sum_{i}\sum_{j}
\frac{\partial}{\partial x_i}
\left( a_{ij} \frac{\partial u}{\partial x_j} \right) +
\sum_{i}\sum_{j}
\frac{\partial}{\partial x_i}
\left( a_{ij} \frac{\partial u}{\partial x_j} \right)
\right]$$
Switching the order of summation on the second term and relabeling
subscripts, $j \rightarrow i$ and $i \rightarrow j$, then using the fact
that $a_{ij}(x)$ is a symmetric matrix,
gives the symmetric form needed to derive Rellich's identity.
\begin{equation}
Lu = \frac{1}{2} \sum_{i,j}\left[
\frac{\partial}{\partial x_i}
\left( a_{ij} \frac{\partial u}{\partial x_j} \right) +
\frac{\partial}{\partial x_j}
\left( a_{ij} \frac{\partial u}{\partial x_i} \right)
\right].
\end{equation}

Multiplying $-Lu$ by $\frac{\partial u}{\partial x_k} x_k$ and integrating
over $\Omega$, yields
$$\int_{\Omega}(-Lu)\frac{\partial u}{\partial x_k} x_k \, dx=
-\frac{1}{2} \int_{\Omega}
\sum_{i,j}\left[
\frac{\partial}{\partial x_i}
\left( a_{ij} \frac{\partial u}{\partial x_j} \right) +
\frac{\partial}{\partial x_j}
\left( a_{ij} \frac{\partial u}{\partial x_i} \right)
\right]
\frac{\partial u}{\partial x_k} x_k \, dx$$
Integrating by parts (for integral theorems see~\cite[p. 20]
{zeidler:nfa88IIa})
gives
$$= \frac{1}{2} \int_{\Omega}
\sum_{i,j} a_{ij} \left[
\frac{\partial u}{\partial x_j}
\frac{\partial^2 u}{\partial x_k\partial x_i} +
\frac{\partial u}{\partial x_i}
\frac{\partial^2 u}{\partial x_k\partial x_j}
\right] x_k \, dx
$$
$$
+
\frac{1}{2} \int_{\Omega}
\sum_{i,j} a_{ij} \left[
\frac{\partial u}{\partial x_j} \delta_{ik} +
\frac{\partial u}{\partial x_i} \delta_{jk}
\right] \frac{\partial u}{\partial x_k} \, dx
$$
$$- \frac{1}{2} \int_{\partial\Omega}
\sum_{i,j} a_{ij} \left[
\frac{\partial u}{\partial x_j} \nu_{i} +
\frac{\partial u}{\partial x_i} \nu_{j}
\right] \frac{\partial u}{\partial x_k} x_k \, dx
$$
= $I_1 + I_2 + I_3$, where the unit normal vector is $\nu$.
One may rewrite $I_1$ as
$$I_1 = \frac{1}{2} \int_{\Omega}
\sum_{i,j} a_{ij} \frac{\partial}{\partial x_k}\left(
\frac{\partial u}{\partial x_i}
\frac{\partial u}{\partial x_j}
\right) x_k \, dx
$$
Integrating the first term by parts again yields
$$I_1 = -\frac{1}{2} \int_{\Omega}
\sum_{i,j} a_{ij} \left(
\frac{\partial u}{\partial x_i}
\frac{\partial u}{\partial x_j}
\right) \, dx
+
\frac{1}{2} \int_{\partial\Omega}
\sum_{i,j} a_{ij} \left(
\frac{\partial u}{\partial x_i}
\frac{\partial u}{\partial x_j}
\right) x_k \nu_k \, dS
$$
$$
-
\frac{1}{2} \int_{\Omega}
\sum_{i,j} \left(
\frac{\partial u}{\partial x_i}
\frac{\partial u}{\partial x_j}
\right) x_k \frac{\partial a_{ij}}{\partial x_k}\, dx.
$$
Summing over $k$ gives
$$\int_{\Omega}(-Lu)(\nabla u\cdot x)\, dx =
-\frac{n}{2} \int_{\Omega}
\sum_{i,j} a_{ij} \left(
\frac{\partial u}{\partial x_i}
\frac{\partial u}{\partial x_j}
\right) \, dx
$$
$$
+
\frac{1}{2} \int_{\partial\Omega}
\sum_{i,j} a_{ij} \left(
\frac{\partial u}{\partial x_i}
\frac{\partial u}{\partial x_j}
\right) (x\cdot \nu ) \, dS
-
\frac{1}{2} \int_{\Omega}
\sum_{i,j} \left(
\frac{\partial u}{\partial x_i}
\frac{\partial u}{\partial x_j}
\right) (x\cdot  \nabla a_{ij}) \, dx
$$
$$
+
\frac{1}{2} \int_{\Omega}
\sum_{i,j,k} a_{ij} \left[
\frac{\partial u}{\partial x_j}
\frac{\partial u}{\partial x_k} \delta_{ik} +
\frac{\partial u}{\partial x_i}
\frac{\partial u}{\partial x_k} \delta_{jk}
\right] \, dx
$$
$$- \frac{1}{2} \int_{\partial\Omega}
\sum_{i,j} a_{ij} \left[
\frac{\partial u}{\partial x_j} \nu_{i} +
\frac{\partial u}{\partial x_i} \nu_{j}
\right] (\nabla u\cdot x) \, dS.
$$
Combining the first and fourth term on the right-hand side
simplifies the expression
$$\int_{\Omega}(-Lu)(\nabla u\cdot x)\, dx
=
(1-\frac{n}{2}) \int_{\Omega}
\sum_{i,j} a_{ij} \left(
\frac{\partial u}{\partial x_i}
\frac{\partial u}{\partial x_j}
\right) \, dx
$$
$$
+
\frac{1}{2} \int_{\partial\Omega}
\sum_{i,j} a_{ij} \left(
\frac{\partial u}{\partial x_i}
\frac{\partial u}{\partial x_j}
\right) (x\cdot \nu ) \, dS
-
\frac{1}{2} \int_{\Omega}
\sum_{i,j} \left(
\frac{\partial u}{\partial x_i}
\frac{\partial u}{\partial x_j}
\right) (x\cdot  \nabla a_{ij}) \, dx
$$
$$
-
\frac{1}{2} \int_{\partial\Omega}
\sum_{i,j} a_{ij} \left[
\frac{\partial u}{\partial x_j} \nu_{i} +
\frac{\partial u}{\partial x_i} \nu_{j}
\right] (\nabla u\cdot x) \, dS.
$$
Using the notation defined above, the result follows.