blob: 615c1ca6acfc3a3f2f975dabe9fa476d45a0870a (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
|
% Sample University of Calgary Thesis
% This file contains CHAPTER TWO
\chapter{Important Results}
\section{The first result}
\begin{thm}[Residue Theorem]
Let $f$ be analytic in the region $G$ except for the isolated
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed
rectifiable curve in $G$ which does not pass through any of the
points $a_k$ and if $\gamma\approx 0$ in $G$, then
\[
\frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m
n(\gamma;a_k)\mathop{\mathrm{Res}}(f;a_k)\,.
\]
\end{thm}
\blindtext\footnote{\blindtext}
\begin{figure}
\[ \circ \to \circ \]
\caption{Circles and arrows}
\end{figure}
\section{The second result}
\subsection{The first half}
\blindtext\pagenote{\blindtext}
\subsection{The second half}
\blindtext
|