summaryrefslogtreecommitdiff
path: root/macros/latex/contrib/tkz/tkz-euclide/doc/latex/TKZdoc-euclide-points.tex
blob: cce1c9066f72952a59c9f9adaaecc98644b1d4ba (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
\section{Definition of a point}

 Points can be specified in any of the following ways:
\begin{itemize}
\item Cartesian coordinates;
\item Polar coordinates;
\item Named points;
\item Relative points.
\end{itemize}

Even if it's possible, I think it's a bad idea to work directly with coordinates. Preferable is to use named points.
A point is defined if it has a name linked to a unique pair of decimal numbers. 
 Let $(x,y)$ or $(a:d)$  i.e. ($x$ abscissa, $y$ ordinate) or  ($a$ angle: $d$ distance).
 This is possible because the plan has been provided with an orthonormed Cartesian coordinate system.   The working axes are supposed to be (ortho)normed with unity equal to $1$~cm or something equivalent like $0.39370$~in.
 Now by default if you use a grid or axes, the rectangle used is defined by the coordinate points: $(0,0)$ and $(10,10)$. It's the macro \tkzcname{tkzInit} of the package \tkzNamePack{tkz-base} that creates this rectangle. Look at the following two codes and the result of their compilation:
 
\begin{tkzexample}[latex=10cm,small]
\begin{tikzpicture}
\tkzGrid
\tkzDefPoint(0,0){O}
\tkzDrawPoint[red](O)
\tkzShowBB[line width=2pt,teal]
\end{tikzpicture}
\end{tkzexample}


\begin{tkzexample}[latex=7cm,small]
\begin{tikzpicture}
 \tkzDefPoint(0,0){O}
 \tkzDefPoint(5,5){A}
 \tkzDrawSegment[blue](O,A)
 \tkzDrawPoints[red](O,A)
 \tkzShowBB[line width=2pt,teal]
\end{tikzpicture}
\end{tkzexample}
 
 The Cartesian coordinate $(a,b)$ refers to the
 point $a$ centimeters in the $x$-direction and $b$ centimeters in the
 $y$-direction.

 A point in polar coordinates requires an angle $\alpha$, in degrees,
 and a distance  $d$ from the origin with a dimensional
 unit by default it's the \texttt{cm}.
 

\begin{minipage}[b]{0.5\textwidth}
 Cartesian coordinates 
\begin{tkzexample}[vbox,small]
\begin{tikzpicture}[scale=1] 
  \tkzInit[xmax=5,ymax=5] 
  \tkzDefPoints{0/0/O,1/0/I,0/1/J}
  \tkzDrawXY[noticks,>=latex]
  \tkzDefPoint(3,4){A} 
  \tkzDrawPoints(O,A) 
  \tkzLabelPoint(A){$A_1 (x_1,y_1)$} 
  \tkzShowPointCoord[xlabel=$x_1$,
                     ylabel=$y_1$](A) 
  \tkzLabelPoints(O,I)
  \tkzLabelPoints[left](J)
  \tkzDrawPoints[shape=cross](I,J) 
\end{tikzpicture}
\end{tkzexample}%
\end{minipage}
\begin{minipage}[b]{0.5\textwidth}
 Polar coordinates
\begin{tkzexample}[vbox,small]
\begin{tikzpicture}[,scale=1]
  \tkzInit[xmax=5,ymax=5]
  \tkzDefPoints{0/0/O,1/0/I,0/1/J}
  \tkzDefPoint(40:4){P}
  \tkzDrawXY[noticks,>=triangle 45]    
  \tkzDrawSegment[dim={$d$,
                 16pt,above=6pt}](O,P)
  \tkzDrawPoints(O,P) 
  \tkzMarkAngle[mark=none,->](I,O,P) 
  \tkzFillAngle[fill=blue!20,
                opacity=.5](I,O,P) 
  \tkzLabelAngle[pos=1.25](I,O,P){$\alpha$}  
  \tkzLabelPoint(P){$P  (\alpha : d )$} 
  \tkzDrawPoints[shape=cross](I,J) 
  \tkzLabelPoints(O,I)
  \tkzLabelPoints[left](J) 
\end{tikzpicture}
\end{tkzexample}
\end{minipage}%

The \tkzNameMacro{tkzDefPoint} macro is used to define a point by assigning coordinates to it. This macro is based on \tkzNameMacro{coordinate}, a macro of \TIKZ. It can use \TIKZ-specific options such as \tkzname{shift}. If calculations are required then the \tkzNamePack{xfp} package is chosen. We can use Cartesian or polar coordinates.

\subsection{Defining a named point  \tkzcname{tkzDefPoint}}

\begin{NewMacroBox}{tkzDefPoint}{\oarg{local options}\parg{$x,y$}\marg{name} or \parg{$\alpha$:$d$}\marg{name}}%
\begin{tabular}{lll}%
arguments &  default & definition  \\ 
\midrule
\TAline{($x,y$)}{no default}{$x$ and $y$ are two dimensions, by default in cm.}
\TAline{($\alpha$:$d$)}{no default}{$\alpha$ is an angle in degrees, $d$ is a dimension}
\TAline{\{name\}}{no default}{Name assigned to the point: $A$, $T_a$ ,$P1$ etc ...}
\bottomrule
\end{tabular}

\medskip
The obligatory arguments of this macro are two dimensions expressed with decimals, in the first case they are two measures of length, in the second case they are a measure of length and the measure of an angle in degrees.

\medskip
\begin{tabular}{lll}%
\toprule
options             & default & definition  \\ 
\midrule
\TOline{label} {no default} {allows you to place a label at a predefined distance}
\TOline{shift} {no default} {adds $(x,y)$ or $(\alpha:d)$ to all coordinates}
\end{tabular}
\end{NewMacroBox}

\subsubsection{Cartesian coordinates }
 
\begin{tkzexample}[latex=7cm,small]
  \begin{tikzpicture}
  \tkzInit[xmax=5,ymax=5]
  \tkzDefPoint(0,0){A}
  \tkzDefPoint(4,0){B}
  \tkzDefPoint(0,3){C} 
  \tkzDrawPolygon(A,B,C)
  \tkzDrawPoints(A,B,C)
  \end{tikzpicture}
\end{tkzexample}

\subsubsection{Calculations with \tkzNamePack{xfp}}

 \begin{tkzexample}[latex=7cm,small]
\begin{tikzpicture}[scale=1]
  \tkzInit[xmax=4,ymax=4]
  \tkzGrid
  \tkzDefPoint(-1+2,sqrt(4)){O}
  \tkzDefPoint({3*ln(exp(1))},{exp(1)}){A}
  \tkzDefPoint({4*sin(pi/6)},{4*cos(pi/6)}){B}
  \tkzDrawPoints[color=blue](O,B,A)
\end{tikzpicture}
\end{tkzexample}


\subsubsection{Polar coordinates }

\begin{tkzexample}[latex=7cm,small]
  \begin{tikzpicture}
  \foreach \an [count=\i] in {0,60,...,300}
   { \tkzDefPoint(\an:3){A_\i}}
  \tkzDrawPolygon(A_1,A_...,A_6)
  \tkzDrawPoints(A_1,A_...,A_6)
  \end{tikzpicture}
\end{tkzexample}

\subsubsection{Calculations and coordinates}
You must follow the syntax of \tkzNamePack{xfp} here. It is always possible to go through \tkzNamePack{pgfmath} but in this case, the coordinates must be calculated before using the macro \tkzcname{tkzDefPoint}.

\begin{tkzexample}[latex=6cm,small]
  \begin{tikzpicture}[scale=.5]
  \foreach \an [count=\i] in {0,2,...,358}
   { \tkzDefPoint(\an:sqrt(sqrt(\an mm))){A_\i}}
   \tkzDrawPoints(A_1,A_...,A_180)
  \end{tikzpicture}
\end{tkzexample}


\subsubsection{Relative points}
First, we can use the \tkzNameEnv{scope} environment from \TIKZ.
In the following example, we have a way to define an equilateral triangle.

\begin{tkzexample}[latex=7cm,small]
\begin{tikzpicture}[scale=1]
  \tkzSetUpLine[color=blue!60]
 \begin{scope}[rotate=30]
  \tkzDefPoint(2,3){A}
  \begin{scope}[shift=(A)]
     \tkzDefPoint(90:5){B}
     \tkzDefPoint(30:5){C}
  \end{scope}
 \end{scope}
 \tkzDrawPolygon(A,B,C)
\tkzLabelPoints[above](B,C)
\tkzLabelPoints[below](A)
\tkzDrawPoints(A,B,C)
\end{tikzpicture}
\end{tkzexample}

%<--------------------------------------------------------------------------->
\subsection{Point relative to another: \tkzcname{tkzDefShiftPoint}}
\begin{NewMacroBox}{tkzDefShiftPoint}{\oarg{Point}\parg{$x,y$}\marg{name} or \parg{$\alpha$:$d$}\marg{name}}%
\begin{tabular}{lll}%
arguments &  default & definition \\
\midrule
\TAline{($x,y$)}{no default}{$x$ and $y$ are two dimensions, by default in cm.}
\TAline{($\alpha$:$d$)}{no default}{$\alpha$ is an angle in degrees, $d$ is a dimension}

\midrule
options &  default & definition \\

\midrule
\TOline{[pt]} {no default} {\tkzcname{tkzDefShiftPoint}[A](0:4)\{B\}}
\end{tabular}
\end{NewMacroBox}

\subsubsection{Isosceles triangle with  \tkzcname{tkzDefShiftPoint}}
This macro allows you to place one point relative to another. This is equivalent to a translation. Here is how to construct an isosceles triangle with main vertex $A$ and angle at vertex of $30^{\circ} $.

\begin{tkzexample}[latex=7cm,small]
\begin{tikzpicture}[rotate=-30]
 \tkzDefPoint(2,3){A}
 \tkzDefShiftPoint[A](0:4){B}
 \tkzDefShiftPoint[A](30:4){C}
 \tkzDrawSegments(A,B B,C C,A)
 \tkzMarkSegments[mark=|,color=red](A,B A,C)
 \tkzDrawPoints(A,B,C)
 \tkzLabelPoints(B,C)
 \tkzLabelPoints[above left](A)
\end{tikzpicture}
\end{tkzexample}

\subsubsection{Equilateral triangle}
Let's see how to get an equilateral triangle (there is much simpler)

\begin{tkzexample}[latex=7cm,small]
\begin{tikzpicture}[scale=1]
 \tkzDefPoint(2,3){A}
 \tkzDefShiftPoint[A](30:3){B}
 \tkzDefShiftPoint[A](-30:3){C}
 \tkzDrawPolygon(A,B,C)
 \tkzDrawPoints(A,B,C)
 \tkzLabelPoints(B,C)
 \tkzLabelPoints[above left](A)
 \tkzMarkSegments[mark=|,color=red](A,B A,C B,C)
\end{tikzpicture}
\end{tkzexample}

\subsubsection{Parallelogram}
There's a simpler way
\begin{tkzexample}[latex=7cm,small]
\begin{tikzpicture}
 \tkzDefPoint(0,0){A}
 \tkzDefPoint(30:3){B}
 \tkzDefShiftPointCoord[B](10:2){C}
 \tkzDefShiftPointCoord[A](10:2){D}
 \tkzDrawPolygon(A,...,D)
 \tkzDrawPoints(A,...,D)
\end{tikzpicture}
\end{tkzexample}

%<--------------------------------------------------------------------------->
\subsection{Definition of multiple points: \tkzcname{tkzDefPoints}}

\begin{NewMacroBox}{tkzDefPoints}{\oarg{local options}\marg{$x_1/y_1/n_1,x_2/y_2/n_2$, ...}}%
$x_i$ and $y_i$ are the coordinates of a referenced point $n_i$

\begin{tabular}{lll}%
\toprule
arguments &  default  & example  \\
\midrule
\TAline{$x_i/y_i/n_i$}{}{\tkzcname{tkzDefPoints\{0/0/O,2/2/A\}}}
\end{tabular}

\medskip
\begin{tabular}{lll}%
options             & default & definition   \\ 
\midrule
\TOline{shift} {no default} {Adds $(x,y)$ or $(\alpha:d)$ to all coordinates}
\end{tabular}
\end{NewMacroBox}

\subsection{Create a triangle}
\begin{tkzexample}[latex=6cm,small]
\begin{tikzpicture}[scale=1]
 \tkzDefPoints{0/0/A,4/0/B,4/3/C}
 \tkzDrawPolygon(A,B,C)
 \tkzDrawPoints(A,B,C)
\end{tikzpicture}
\end{tkzexample}

\subsection{Create a square}
Note here the syntax for drawing the polygon.
\begin{tkzexample}[latex=6cm,small]
\begin{tikzpicture}[scale=1]
 \tkzDefPoints{0/0/A,2/0/B,2/2/C,0/2/D}
 \tkzDrawPolygon(A,...,D)
 \tkzDrawPoints(A,B,C,D)
\end{tikzpicture}
\end{tkzexample}

\section{Special points}
The introduction of the dots was done in \tkzname{tkz-base}, the most important macro being \tkzcname{tkzDefPoint}. Here are some special points.
%<--------------------------------------------------------------------------->
\subsection{Middle of a segment \tkzcname{tkzDefMidPoint}}
It is a question of determining the middle of a segment.

\begin{NewMacroBox}{tkzDefMidPoint}{\parg{pt1,pt2}}%
The result is in \tkzname{tkzPointResult}. We can access it with \tkzcname{tkzGetPoint}.

 \medskip
\begin{tabular}{lll}%
\toprule
arguments & default & definition \\
\midrule
\TAline{(pt1,pt2)}{no default}{pt1 and pt2 are two points}
\end{tabular}
\end{NewMacroBox}

\subsubsection{Use of \tkzcname{tkzDefMidPoint}}
Review the use of \tkzcname{tkzDefPoint} in \tkzNamePack{tkz-base}.
\begin{tkzexample}[latex=7cm,small]
\begin{tikzpicture}[scale=1]
 \tkzDefPoint(2,3){A}
 \tkzDefPoint(4,0){B}
 \tkzDefMidPoint(A,B) \tkzGetPoint{C}
 \tkzDrawSegment(A,B)
 \tkzDrawPoints(A,B,C)
 \tkzLabelPoints[right](A,B,C)
\end{tikzpicture}
\end{tkzexample}

\subsection{Barycentric coordinates }

$pt_1$, $pt_2$, \dots, $pt_n$ being $n$ points, they define $n$ vectors $\overrightarrow{v_1}$, $\overrightarrow{v_2}$, \dots, $\overrightarrow{v_n}$ with the origin of the referential as the common endpoint. $\alpha_1$, $\alpha_2$,
\dots $\alpha_n$ are $n$ numbers, the vector obtained by:
\begin{align*}
  \frac{\alpha_1 \overrightarrow{v_1} + \alpha_2 \overrightarrow{v_2} + \cdots + \alpha_n \overrightarrow{v_n}}{\alpha_1
    + \alpha_2 + \cdots + \alpha_n}
\end{align*}
defines a single point.

\begin{NewMacroBox}{tkzDefBarycentricPoint}{\parg{pt1=$\alpha_1$,pt2=$\alpha_2$,\dots}}%
\begin{tabular}{lll}%
arguments & default & definition \\
\midrule
\TAline{(pt1=$\alpha_1$,pt2=$\alpha_2$,\dots)}{no default}{Each point has a assigned weight}
\bottomrule
\end{tabular}

\medskip
You need at least two points.
\end{NewMacroBox}


\subsubsection{Using \tkzcname{tkzDefBarycentricPoint} with two points}
In the following example, we obtain the barycentre of points $A$ and $B$ with coefficients $1$ and $2$, in other words:
\[
  \overrightarrow{AI}= \frac{2}{3}\overrightarrow{AB}
\]

\begin{tkzexample}[latex=7cm,small]
\begin{tikzpicture}
  \tkzDefPoint(2,3){A}
  \tkzDefShiftPointCoord[2,3](30:4){B}
  \tkzDefBarycentricPoint(A=1,B=2)
  \tkzGetPoint{I}
  \tkzDrawPoints(A,B,I)
  \tkzDrawLine(A,B)
  \tkzLabelPoints(A,B,I)
\end{tikzpicture}
\end{tkzexample}

\subsubsection{Using \tkzcname{tkzDefBarycentricPoint} with three points}
This time $M$ is simply the centre of gravity of the triangle. For reasons of simplification and homogeneity, there is also \tkzcname{tkzCentroid}.
\begin{tkzexample}[latex=7cm,small]
\begin{tikzpicture}[scale=.8]
  \tkzDefPoint(2,1){A}
  \tkzDefPoint(5,3){B}
  \tkzDefPoint(0,6){C}
  \tkzDefBarycentricPoint(A=1,B=1,C=1)
  \tkzGetPoint{M}
  \tkzDefMidPoint(A,B)  \tkzGetPoint{C'}
  \tkzDefMidPoint(A,C)  \tkzGetPoint{B'}
  \tkzDefMidPoint(C,B)  \tkzGetPoint{A'}
  \tkzDrawPolygon(A,B,C)
  \tkzDrawPoints(A',B',C')
  \tkzDrawPoints(A,B,C,M)
  \tkzDrawLines[add=0 and 1](A,M B,M C,M)
  \tkzLabelPoint(M){$M$}
  \tkzAutoLabelPoints[center=M](A,B,C)
  \tkzAutoLabelPoints[center=M,above right](A',B',C')
\end{tikzpicture}
\end{tkzexample}

\subsection{Internal Similitude Center}
The centres of the two homotheties in which two circles correspond are called external and internal centres of similitude.

\begin{tkzexample}[latex=6cm,small]
\begin{tikzpicture}[scale=.75,rotate=-30]
 \tkzDefPoint(0,0){O}
 \tkzDefPoint(4,-5){A}
 \tkzDefIntSimilitudeCenter(O,3)(A,1) 
 \tkzGetPoint{I}
 \tkzExtSimilitudeCenter(O,3)(A,1) 
 \tkzGetPoint{J}
 \tkzDefTangent[from with R= I](O,3 cm)  
 \tkzGetPoints{D}{E}
 \tkzDefTangent[from with R= I](A,1 cm)  
 \tkzGetPoints{D'}{E'}
 \tkzDefTangent[from  with R= J](O,3 cm) 
 \tkzGetPoints{F}{G}
 \tkzDefTangent[from with R= J](A,1 cm)   
 \tkzGetPoints{F'}{G'}
 \tkzDrawCircle[R,fill=red!50,opacity=.3](O,3 cm)
 \tkzDrawCircle[R,fill=blue!50,opacity=.3](A,1 cm)
 \tkzDrawSegments[add = .5 and .5,color=red](D,D' E,E')
 \tkzDrawSegments[add= 0 and 0.25,color=blue](J,F J,G)
 \tkzDrawPoints(O,A,I,J,D,E,F,G,D',E',F',G')
 \tkzLabelPoints[font=\scriptsize](O,A,I,J,D,E,F,G,D',E',F',G')
\end{tikzpicture}
\end{tkzexample}

\endinput