summaryrefslogtreecommitdiff
path: root/macros/latex/contrib/odesandpdes/odesandpdes.dtx
blob: c7bd3a9a9f9b7ea2f1865bb9a9750457b9a5c710 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
% \iffalse meta-comment
% !TEX program  = pdfLaTeX 
%<*internal>
\iffalse
%</internal>
%<*readme>
----------------------------------------------------------------
odesandpdes --- A package for the streamlining of the use of
odes and pdes in mathematical texts typset by LaTeX

E-mail: anakin@ruc.dk
Released under the LaTeX Project Public License v1.3c or later
See http://www.latex-project.org/lppl.txt
----------------------------------------------------------------

This package is the solution no one asked for, to a problem 
nobody had. Have you ever thought to yourself "wow, I sure do
dislike having to remember multiple macros for my odes and pdes"
and the author of this package has to agree, wholeheartedly.
In the modern world of "tik-toking" and "family guy surfing", 
our brains have rotted beyond salvage for even basic levels of 
cognitive recall. This package aims to fix this, through two
macros that have been set to each have an identical form and 
function. with an emphasis on intuitive use. Through setting 
options, the multiple common notational style are easily
swapped between, all by a single option.
You're Welcome.

----------------------------------------------------------------
%</readme>
%<*internal>
\fi
\def\nameofplainTeX{plain}
\ifx\fmtname\nameofplainTeX\else
  \expandafter\begingroup
\fi
%</internal>
%<*install>
\input docstrip.tex
\keepsilent
\askforoverwritefalse
\preamble
----------------------------------------------------------------
odesandpdes --- A package for the streamlining of the use of 
odes and pdes in mathematical texts typset by LaTeX

E-mail: anakin@ruc.dk
Released under the LaTeX Project Public License v1.3c or later
See http://www.latex-project.org/lppl.txt
----------------------------------------------------------------
\endpreamble
\postamble
File: odesandpdes.dtx

Copyright (C) 2024 by Anakin anakin@ruc.dk
-----------------------------------------------------------

This work may be distributed and/or modified under the
conditions of the LaTeX Project Public License (LPPL), either
version 1.3c of this license or (at your option) any later
version. The latest version of this license is in the file:

    http://www.latex-project.org/lppl.txt

This work is "maintained" (as per LPPL maintenance status) by
Anakin.

This work consists of the file  odesandpdes.dtx
and the derived files           odesandpdes.ins,
                                odesandpdes.pdf and
                                odesandpdes.sty.

\endpostamble
\usedir{tex/latex/odesandpdes}
\generate{
  \file{\jobname.sty}{\from{\jobname.dtx}{package}}
}
%</install>
%<install>\endbatchfile
%<*internal>
\usedir{source/latex/odesandpdes}
\generate{
  \file{\jobname.ins}{\from{\jobname.dtx}{install}}
}
\nopreamble\nopostamble
\usedir{doc/latex/odesandpdes}
\generate{
  \file{README.txt}{\from{\jobname.dtx}{readme}}
}
\ifx\fmtname\nameofplainTeX
  \expandafter\endbatchfile
\else
  \expandafter\endgroup
\fi
%</internal>
%<*package>
\NeedsTeXFormat{LaTeX2e}
\ProvidesPackage{odesandpdes}[2024/01/17 v1.0.0 For streamlining ODE and PDE usage]
%
%</package>  
%<*driver>
\PassOptionsToPackage{hidelinks, breaklinks= true,
linkcolor = [rgb]{0,0,0}, urlcolor  = [rgb]{0,0,0}, citecolor = [rgb]{0,0,0},
pdfdisplaydoctitle = true,
pdfkeywords={LaTeX, dtx, source, odesandpdes, ODE, PDE, differentials},
pdfsubject={Optimizing useage of ODE and PDE commands for LaTeX},
pdfauthor={Anakin}, pdftitle={The odesandpdes package}}{hyperref}
\documentclass[11pt,a4paper]{ltxdoc}
\usepackage[T1]{fontenc}
\usepackage{indentfirst}
\usepackage[centering, vscale = 0.80, hscale = 0.65]{geometry}
\usepackage{mathptmx,amsmath,fdsymbol}
\usepackage{\jobname}
\usepackage{tikz}
\usetikzlibrary{graphs,quotes}
\makeatletter
\setlength{\parskip}{5\p@ plus2\p@ minus2\p@}
\setlength{\jot}{7\p@}
\makeatother
\EnableCrossrefs
\CodelineIndex
\RecordChanges
\begin{document}
    \DocInput{\jobname.dtx}
\end{document}
%</driver>
% \fi
%
% \CheckSum{618}
%
% \DoNotIndex{\def,\gdef,\global,\edef,\xdef,\long,\let,\futurelet}
% \DoNotIndex{\ifnum,\ifdim,\iftrue,\iffalse,\ifx,\ifcase,\else,\or,\fi}
% \DoNotIndex{\kern,\mkern,\setbox,\box}
% \DoNotIndex{\bgroup,\egroup,\begingroup,\endgroup,\begin,\end}
% \DoNotIndex{\relax,\endinput}
% \DoNotIndex{\csname,\endcsname,\string,\the,\noexpand,\expandafter}
% \DoNotIndex{\hbox,\raise,\lower,\vbox,\vtop,\vcenter,\left,\right}
% \DoNotIndex{\newcount,\newbox,\newtoks,\countdef}
% \DoNotIndex{\above,\atop,\over}
% \DoNotIndex{\cdot,\cdots,\dot,\dots,\prime}
% \DoNotIndex{\displaystyle,\scriptstyle,\scriptscriptstyle}
% \DoNotIndex{\advance,\count,\dimen}
% \DoNotIndex{\baselineskip,\lineskip}
% \DoNotIndex{\loop,\repeat}
% \DoNotIndex{\DeclareOptionX,\ExecuteOptionsX,\ProcessOptionsX}
% \DoNotIndex{\m@ne,\z@,\@ne,\tw@,\p@,\@@tmp}
%
% \CharacterTable
%  {Upper-case    \A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\Q\R\S\T\U\V\W\X\Y\Z
%   Lower-case    \a\b\c\d\e\f\g\h\i\j\k\l\m\n\o\p\q\r\s\t\u\v\w\x\y\z
%   Digits        \0\1\2\3\4\5\6\7\8\9
%   Exclamation   \!     Double quote  \"     Hash (number) \#
%   Dollar        \$     Percent       \%     Ampersand     \&
%   Acute accent  \'     Left paren    \(     Right paren   \)
%   Asterisk      \*     Plus          \+     Comma         \,
%   Minus         \-     Point         \.     Solidus       \/
%   Colon         \:     Semicolon     \;     Less than     \<
%   Equals        \=     Greater than  \>     Question mark \?
%   Commercial at \@     Left bracket  \[     Backslash     \\
%   Right bracket \]     Circumflex    \^     Underscore    \_
%   Grave accent  \`     Left brace    \{     Vertical bar  \|
%   Right brace   \}     Tilde         \~}
%
%
% \iffalse
%<*documentation>
% \fi
%
%
% \GetFileInfo{\jobname.sty}
%
% \author{Anakin\\ \texttt{anakin@ruc.dk}}
% \title{The \textsf{odesandpdes} package\thanks{This document 
%   corresponds to \textsf{odesandpdes}~\fileversion, dated \filedate.}}
% \date{Released \filedate}
%
% \maketitle
% 
%
% \changes{v1.0}{2024/01/17}{Initial version}
%
% \begin{abstract}
% This package is the solution no one asked for, to a problem 
% nobody had. Have you ever thought to yourself "wow, I sure do
% dislike having to remember \emph{multiple} macros for my odes and pdes"
% and the author of this package has to agree, wholeheartedly.
% In the modern world of "tik-toking" and "family guy surfing", 
% our brains have rotted beyond salvage for even basic levels of 
% cognitive recall. This package aims to fix this, through two
% macros that have been set to each have an identical form and 
% function, with an emphasis on intuitive use.
% Through setting options, the multiple
% common notational style are easily
% swapped between, all by a single option.
% \emph{You're welcome}.
% \end{abstract}
%
%
%
%
% {\setlength{\parskip}{0.25ex}\small
% \tableofcontents}
%
% 
%
% \newpage
% \section*{My funny little ODE/PDE package}
% \hspace{1em} Start by first having \verb|odesandpdes.sty| downloaded in an
% accessible directory, or in the same directory as your 
% overleaf main.tex, using it by inserting; 
% \begin{center}
% \cs{usepackage\oarg{options}\{odesandpdes\}}
% \end{center}
% into the preamble, Ideally after any font changing packages you use.
%
% \section{Usage}
%
% If the reader does not wish to be gradually introduced to the package
% and its features, feel free to skip directly to section \ref{sec:examples}.
%
% \subsection{Options}
%
% \DescribeMacro{notation}
% \DescribeMacro{maxprimes}
% The options included are based off of the three most
% common notations
% (according to Wikipedia), Lagrange, Leibniz, and Newton. 
% They can be accessed through the \oarg{options} when importing the package;
% \par\hbox to \textwidth{\hss
% \cs{usepackage[notation=\meta{option}]\{odesandpdes\}} \hss}
%
% In the case of Lagrange or Newton notation, there is the |maxprimes| option
% for determination of how many physical markings are allowed to be
% made before the notation switches to a symbolic version;
% \par\hbox to \textwidth{\hss
% \cs{usepackage[maxprimes=\meta{integer}]\{odesandpdes\}}\hss}
% \vspace{1ex}
% 
%
% \DescribeMacro{\setDE}
% However, if one might wish to change it on a section to section basis,
% the command \cs{setDE}\marg{options} is able
% to take any package option as an argument and will
% apply the new option going forward.
%
%
% \par\hbox to \textwidth{\hss
% \begin{tabular}{lcl}\hline
%   Option list & Default Value & Valid Arguments \\ \hline
%   notation & Leibniz & {default, Lagrange, Leibniz, Newton} \\
%   maxprimes & 3 & $\text{maxprimes} = n, n \in \mathbb N_+$ \\ \hline
% \end{tabular}\hss}
%
% 
%
% \subsection{The Meat and Potatoes}
%
% \hspace{1em} The command(s) are approached with the philosophy
% of of an intuitive and modular usage. 
% The full extent of its usage can look like;
% \begin{equation*} |\ode*[x]^2 X(x) =\ode T_{\eta} at 0; -\alpha| 
% \Rightarrow
% \ode*[x]^2 X(x)=\ode T_{\eta} at 0; -\alpha
% \end{equation*}
% very quickly, and very easily building complex interactions
% of differentials.
% The quick functional break down of each element that comprises the macro;
% \newline
% \centerline{ \cs{ode}\meta{star}\oarg{variable}\string^\meta{degree}
% \marg{function}at\textvisiblespace\meta{position};}\vspace{1ex}
% \par\hbox to \textwidth{\hss
% \begin{tabular}{cl}\hline
%    Argument &  Usage \\ \hline
%    \oarg{variable} & The variable being derived \\ 
%    \meta{degree} & The order/degree of the derivative \\
%    \marg{function} & The function being derived \\
%    \textvisiblespace at\textvisiblespace\meta{point}; 
%       & Where the function is being derived \\ \hline
% \end{tabular}\hss}\vspace{1ex}
% All arguments are conditionally optional, only the function is
% mandatory, but the command can forgo needing a function if a star is placed.
%
% \subsubsection*{Notation Style}
%
% \DescribeMacro{\LagrODE}
% \DescribeMacro{\LeibODE}
% \DescribeMacro{\NewtODE}
% \DescribeMacro{\LagrPDE}
% \DescribeMacro{\LeibPDE}
% \DescribeMacro{\NewtPDE}
% There are 3 distinct notational styles
% one can choose between. This choice can be made as a package option
% in the preamble, in the text with \cs{setDE}\marg{options}, or if 
% one only needs to use a notation style once, through its respective 
% macro.
%
% In essense, all the \cs{ode} or \cs{pde} commands do are call the 
% respective notational varient aligned with the currently set option.
% This makes it simple enough to just use one of the notational varients,
% should one wish to do so:
% \begin{equation*} |\LagrODE[x] c = \LeibODE[x] c = \NewtODE[x] c |\quad
% \Rightarrow\quad \LagrODE[x] c = \LeibODE[x] c = \NewtODE[x] c 
% \end{equation*}
% This also means that all these functions are identical in what arguments
% they take.
%
%
% \subsubsection*{Variable and Function Arguments}
% \DescribeMacro{\ode}
% \DescribeMacro{\ode*}
% The most barebone form can be understood as:\par\noindent
% \hbox to \textwidth{\hss\vbox{
% \hbox{\cs{ode}\oarg{variable}\marg{ function}}
% \hbox{\cs{ode*}\oarg{variable}}}\hss}
%
% \DescribeMacro{\pde}
% \DescribeMacro{\pde*}
% and for the sake of parity, the PDE usage is identical:\par\noindent
% \hbox to \textwidth{\hss\vbox{
% \hbox{\cs{pde}\oarg{variable}\marg{ function}}
% \hbox{\cs{pde*}\oarg{variable}}}\hss}\par
% Any value you give to the \emph{optional} \oarg{variable} argument
% will be represented as the variable being derived. 
% While the \emph{mandatory} \marg{function} argument will be the function you
% are deriving. 
% Say you wish to indicate you are deriving $X(t)$, simple as writing 
% |\ode[t]{X}|, however, its worth noting that $t$ is the default variable
% so writing |\ode{X}| will produce identical results.
% Hence |\ode[t]{X} = \ode{X}| will produce;
% \begin{equation*} |\ode[t]{X} =\ode{X}| \implies \ode[t]{X} = \ode{X} 
% \end{equation*}
%  
% 
% While the \marg{function} argument is mandatory using the 
% non-starred command, using the starred varient
% omits the need for the \marg{function} argument.
% Therefor, writing the exact same equation, just starred
% |\ode*[t]{X} = \ode*{X}| will instead produce;
% \begin{equation*} |\ode*[t]{X} =\ode*{X}| \implies \ode*[t]{X} = \ode*{X} 
% \end{equation*}
% Effectively one can rewrite the `bare-bones' display as:\par\vspace{1ex}
% \par\hbox to \textwidth{\hss
% \cs{ode}\meta{star}\oarg{variable}\marg{ function}
% \hss}
% 
% \subsubsection*{Degree of Derivative}
% The previously shown stated section is something the reader has
% likely encountered before, made themselves. This is where
% this package begins to differentiate\footnote{Calculus Pun!} itself.
% Consider:
% \par\hbox to \textwidth{\hss
% \cs{ode}\meta{star}\oarg{variable}$\uparrow$\meta{degree}\marg{function}
% \hss}
%
% A feature of this family of commands, is that it can `\emph{easily}'
% recognize a following exponent should one be placed. 
% There was rational in choosing to check for the exponent immediately
% after the macro command opposed to checking for the exponent at
% the end after the function. 
% As, often you would want add a higher degree very
% quickly as opposed to \emph{after} defining the function. 
%
% \hbox to \textwidth{\hss
% \cs{ode}|^2{f(x)}| as opposed to \cs{ode\{f(x)\}}|^2| \hss}
%
%
% This was one of the main motivations of creating a package to begin with
% as instead of needing, maybe, two personalized commands,
% such as ``|\ddt{f}| and |\ddxx{f}|'', or ``|\dd{x}{f}| and |\dd[2]{x}{f}|''.
% One simply needs to treat the \cs{ode} macro itself as being raised
% to a higher degree.
% \begin{equation*} |\ode* \left(\ode{f} \right)=\ode^2{f} | 
% \Rightarrow \ode* \left(\ode{f} \right)=\ode^2{f} 
% \end{equation*}
% 
%
% \subsubsection*{Defining Where the Derivative is}
%
% Imagine you, as the reader, are trying to quickly and easily
% write up the boundry conditions of your problem.
% One could always make another macro, in what is no doubt an impressive
% display of differential shortcuts.
% \emph{Or}: \vspace{1ex}
% \par\hbox to \textwidth{\hss
% \cs{ode}\meta{star}\oarg{variable}$\uparrow$\meta{degree}\marg{
% function}\textvisiblespace{}at\textvisiblespace{}\meta{postion};
% \hss}
%
% See, \TeX\ does something very interesting when it uses `\emph{glue}',
% which is partially replicated by packages such as |TikZ|, where it will
% happily take `soft' modifiers written directly in plain english.
% If one wishes to strictly define paragraph spacing in \TeX, they would use
% `\cs{parskip}|=1ex|'. If one would rather give it a range of tolerance
% the following construct `\cs{parskip}|=1ex plus 0.5ex minus 0.5ex|'
% then allows a spacing of $1\pm 0.5$ |ex|.
%
% Glue is of course something special, but that does not mean 
% that the author can not gain inspiration. Say one wishes
% to define Neumann boundries;
% \begin{equation*} |\ode[x]{c} at 0;=0\land\ode[x]{c} at L;=1|
% \Rightarrow \ode[x]{c} at 0;=0\land\ode[x]{c} at L;=1
% \end{equation*}
% \begin{equation*} |\ode[x]{c} at 0 = L;=1|
% \Rightarrow \ode[x]{c} at 0 = L;=1
% \end{equation*}
% Literally could not be easier.\footnote{My source is that I made it up}
% 
%
% Those reading til this point may have recalled that the first example
% did not contain many braces.
% This is because with the ``proper'' spacing, there is little 
% need for the use of the braces, so as to help promote a more fluid, 
% (and readable),
% workflow without always needing to worry about the f|***|ing brace. 
% Not that one can not use the brace for personal taste. 
% In the following section, many examples of use will be illustrated
% to show the range and versitility of the functions.
%
% \noindent
% \fbox{\parbox{\textwidth}{The most important thing to always remember.
% \emph{Just because} the author
% of this package has done as much as they can to `\emph{\rlap{idiot}\hbox{------}
% user proof}' its functions
% does not mean the user does not still need to be cautious. This is 
% \LaTeX\ we are talking about. There are likely many
% scenarios that the author did not think of, nor accidentally came across.}}
%
% \newpage
% \section{Examples of use}\label{sec:examples}
% 
% \stepcounter{subsection}
%
% \addcontentsline{toc}{subsection}{\thesubsection\quad Common Use Examples}
%
% To show the generality of use. The following examples all take identical form 
% in the \TeX/\LaTeX\ itself. 
% Additionally, in order to illustrate the functional boundries of the command with
% respect to each of the notational styles. 
% There is a variety of spacing and bracketing to help highlight these features,
% and will be shown in the following |verbatim| enviroment; 
%
% 
% \begin{minipage}{0.98\textwidth}
% \begin{verbatim}
%\begin{align*}
%\ode A(x)      && \ode[x]{B(x)} && \ode^1 C(x)     && \ode[x]^5 {D(x)} \\
%\ode* {E(x)}   && \ode*[x] F(x) && \ode*^2 {G(x)}  && \ode*[x]^6H(x)   \\
%\pde[t] I(x)   && \pde[x] {J(x)}&& \pde[t]^3K(x)   && \pde[x]^7 {L(x)} \\
%\pde*[t] {M(x)}&& \pde*[x]N(x)  && \pde*[t]^4 O(x) && \pde*[x]^8 P(x)
%\end{align*}
% \end{verbatim}
% \end{minipage}
% 
% \vbox{\centering
% \hbox{\verb|\setDE{notation=Lagrange}| \emph{and/or} \verb|\usepackage[notation=Lagrange]{odesandpdes}|}
% \fbox{\parbox{0.65\textwidth}{
% \setDE{notation=Lagrange}
% \begin{align*}
%   \ode A(x)      && \ode[x]{B(x)} && \ode^1 C(x)     && \ode[x]^5 {D(x)} \\
%   \ode* {E(x)}   && \ode*[x] F(x) && \ode*^2 {G(x)}  && \ode*[x]^6H(x)   \\
%   \pde[t] I(x)   && \pde[x] {J(x)}&& \pde[t]^3K(x)   && \pde[x]^7 {L(x)} \\
%   \pde*[t] {M(x)}&& \pde*[x]N(x)  && \pde*[t]^4 O(x) && \pde*[x]^8 P(x)
% \end{align*}
% }}}\vspace{1.25em}
% 
% \vbox{\centering
% \hbox{\verb|\setDE{notation=Leibniz}| \emph{and/or} \verb|\usepackage[notation=Leibniz]{odesandpdes}|}
% \fbox{\parbox{0.65\textwidth}{
% \setDE{notation=Leibniz}
% \begin{align*}
%   \ode A(x)      && \ode[x]{B(x)} && \ode^1 C(x)     && \ode[x]^5 {D(x)} \\
%   \ode* {E(x)}   && \ode*[x] F(x) && \ode*^2 {G(x)}  && \ode*[x]^6H(x)   \\
%   \pde[t] I(x)   && \pde[x] {J(x)}&& \pde[t]^3K(x)   && \pde[x]^7 {L(x)} \\
%   \pde*[t] {M(x)}&& \pde*[x]N(x)  && \pde*[t]^4 O(x) && \pde*[x]^8 P(x)
% \end{align*}
% }}}\vspace{1.25em}
% 
% \vbox{\centering
% \hbox{\verb|\setDE{notation=Newton}| \emph{and/or} \verb|\usepackage[notation=Newton]{odesandpdes}|}
% \fbox{\parbox{0.65\textwidth}{
% \setDE{notation=Newton}
% \begin{align*}
%   \ode A(x)      && \ode[x]{B(x)} && \ode^1 C(x)     && \ode[x]^5 {D(x)} \\
%   \ode* {E(x)}   && \ode*[x] F(x) && \ode*^2 {G(x)}  && \ode*[x]^6H(x)   \\
%   \pde[t] I(x)   && \pde[x] {J(x)}&& \pde[t]^3K(x)   && \pde[x]^7 {L(x)} \\
%   \pde*[t] {M(x)}&& \pde*[x]N(x)  && \pde*[t]^4 O(x) && \pde*[x]^8 P(x)
% \end{align*}
% }}}
% 
% \vbox{\centering
% \hbox{\verb|\setDE{maxprimes=7}| \emph{and/or} \verb|\usepackage[maxprimes=7]{odesandpdes}|}
% \fbox{\parbox{0.65\textwidth}{
% \setDE{notation=Lagrange,maxprimes=7}
% \begin{align*}
% \ode^1 f &&\ode^2 f &&\ode^3 f &&\ode^4 f &&
% \ode^5 f &&\ode^6 f &&\ode^7 f &&\ode^8 f &&\ode^9 f 
% \end{align*}
% \setDE{notation=Newton}
% \vspace{-1.5em}
% \begin{align*}
% \ode^1 f &&\ode^2 f &&\ode^3 f &&\ode^4 f &&
% \ode^5 f &&\ode^6 f &&\ode^7 f &&\ode^8 f &&\ode^9 f 
% \end{align*}
% }}}
%
% 
%
% \subsection{"at x;" Usage Examples}
%
% 
% 
% \hspace{1em} Now, because the author is not an insane person, and went through the 
% effort of learning how TEX deconstructs text into constitute 
% registries and boxes, the way any sane person might. When using 
% a non-starred version of a command, after the function is defined, you can
% place an `|at|\textvisiblespace\meta{point}|;|', and the representation will 
% shown according to notational convention.
%
%
% \vbox{
% \begin{center}
% \begin{minipage}[c]{0.45\textwidth}
% \begin{verbatim}
%\begin{align*}
%    \ode[x]  c at 23\pi;   &= 1 \\
%    \ode[x]^3 c   at 69;   &= 2 \\
%    \ode[x]^{69} c at L;+t &= 3 \\
%    \ode[x]^9  c af 420;   &= 4 \\
%    \ode[x]^6  c  a t 13;  &= 5 
%\end{align*}
% \end{verbatim}
% \end{minipage}
% \end{center}
% \noindent
% \hbox{\begin{minipage}[t]{0.35\textwidth}
% \setDE{notation=Lagrange}
% \noindent\setlength{\jot}{2em}
% \begin{verbatim}
%\setDE{notation=Lagrange}
% \end{verbatim}
% \vspace{-1em}
%\begin{align*}
%    \ode[x]  c at 23\pi;   &= 1 \\
%    \ode[x]^3 c   at 69;   &= 2 \\
%    \ode[x]^{69} c at L;+t &= 3 \\
%    \ode[x]^9  c af 420;   &= 4 \\
%    \ode[x]^6  c  a t 13;  &= 5 
%\end{align*}
% \end{minipage}}\vline~
% \hbox{\begin{minipage}[t]{0.34\textwidth}
% \setDE{notation=Leibniz} 
% \noindent\setlength{\jot}{0.70em}
% \begin{verbatim}
%\setDE{notation=Leibniz}
% \end{verbatim}
% \vspace{-1em}
%\begin{align*}
%    \ode[x]  c at 23\pi;   &= 1 \\
%    \ode[x]^3 c   at 69;   &= 2 \\
%    \ode[x]^{69} c at L;+t &= 3 \\
%    \ode[x]^9  c af 420;   &= 4 \\
%    \ode[x]^6  c  a t 13;  &= 5 
%\end{align*}
% \vphantom{l}
% \end{minipage}}\vline~
% \hbox{\begin{minipage}[t]{0.32\textwidth}
% \setDE{notation=Newton}
% \noindent\setlength{\jot}{1.75em}
% \begin{verbatim}
%\setDE{notation=Newton}
% \end{verbatim}
% \vspace{-1em}
%\begin{align*}
%    \ode[x]  c at 23\pi;   &= 1 \\
%    \ode[x]^3 c   at 69;   &= 2 \\
%    \ode[x]^{69} c at L;+t &= 3 \\
%    \ode[x]^9  c af 420;   &= 4 \\
%    \ode[x]^6  c  a t 13;  &= 5 
%\end{align*}
% \end{minipage}}}
%
% \hspace{1em} As can be seen in the examples, this `\emph{modifier}' is robust
% enough that one can write effectively any combination of characters
% after the function, excluding, \emph{verbatim}, `|at|\textvisiblespace' 
% and it will work as intended.
%
% \vbox{
% \hspace{1em} \emph{Important to note}, due to a slight difference in how the
% notational styles are defined, 
% only the Leibniz notation can take arguments for the 
% function that involve subscripts and superscripts without delimiters.
% Mostly easily illustrated in this following 
% example using the \cs{pde} command;
% \begin{center}
% \begin{minipage}[c]{0.45\textwidth}
% \begin{verbatim}
%\begin{align*}
%   \pde[y]   f_1         &= 1 \\
%   \pde[y]   f_1   at L; &= 2 \\
%   \pde[y]   f     at L; &= 3 \\
%   \pde[y] {(f_1)}       &= 4 \\
%   \pde[y] {(f_1)} at L; &= 5
%\end{align*}
% \end{verbatim}
% \end{minipage}
% \end{center}
% \noindent
% \hbox{\begin{minipage}[t]{0.35\textwidth}
% \setDE{notation=Lagrange}
% \noindent\setlength{\jot}{2.20em}
% \begin{verbatim}
%\setDE{notation=Lagrange}
% \end{verbatim}
% \vspace{-1em}
%\begin{align*}
%   \pde[y]   f_1         &= 1 \\
%   \pde[y]   f_1   at L; &= 2 \\
%   \pde[y]   f     at L; &= 3 \\
%   \pde[y] {(f_1)}       &= 4 \\
%   \pde[y] {(f_1)} at L; &= 5
%\end{align*}
% \end{minipage}}\vline~
% \hbox{\begin{minipage}[t]{0.34\textwidth}
% \setDE{notation=Leibniz} 
% \noindent\setlength{\jot}{0.70em}
% \begin{verbatim}
%\setDE{notation=Leibniz}
% \end{verbatim}
% \vspace{-1em}
%\begin{align*}
%   \pde[y]   f_1         &= 1 \\
%   \pde[y]   f_1   at L; &= 2 \\
%   \pde[y]   f     at L; &= 3 \\
%   \pde[y] {(f_1)}       &= 4 \\
%   \pde[y] {(f_1)} at L; &= 5
%\end{align*}
% \vphantom{l}
% \end{minipage}}\vline~
% \hbox{\begin{minipage}[t]{0.32\textwidth}
% \setDE{notation=Newton}
% \noindent\setlength{\jot}{2.20em}
% \begin{verbatim}
%\setDE{notation=Newton}
% \end{verbatim}
% \vspace{-1em}
%\begin{align*}
%   \pde[y]   f_1         &= 1 \\
%   \pde[y]   f_1   at L; &= 2 \\
%   \pde[y]   f     at L; &= 3 \\
%   \pde[y] {(f_1)}       &= 4 \\
%   \pde[y] {(f_1)} at L; &= 5
%\end{align*}
% \end{minipage}}
% }
%
% \subsection{Prime Count Limits}
% \hspace{1em} Because the Newton and Lagrange notation is procedural;
% the only limit is your imagination, and also the fact that 
% \TeX\ can only have something like 127 unplaced tokens at a time.\par
% \hbox to \textwidth{\hss\cs{setDE\{maxprimes=69\}}\hss}
% \fbox{\parbox{\textwidth}{
% \setDE{maxprimes=69}
% \begin{minipage}{0.45\textwidth}
% \setDE{notation=Lagrange}
% \begin{equation*}
%    \begin{split}
%       \ode^{5}  f \\
%       \ode^{16} f \\
%       \ode^{32} f \\
%       \ode^{54} f \\
%       \ode^{69} f \\
%       \ode^{70} f \\
%    \end{split}
% \end{equation*}
% \end{minipage}~
% \begin{minipage}{0.05\textwidth}
% \setDE{notation=Lagrange}
% \begin{equation*}
%    \begin{split}
%       \boxed{5}  \\
%       \boxed{16} \\
%       \boxed{32} \\
%       \boxed{54} \\
%       \boxed{69} \\
%       \boxed{70} \\
%    \end{split}
% \end{equation*}
% \end{minipage}~
% \begin{minipage}{0.35\textwidth}
% \setDE{notation=Newton}
% \begin{equation*}
%       \ode^{5}  f \quad
%       \ode^{16} f \quad
%       \ode^{32} f \quad
%       \ode^{54} f \quad
%       \ode^{69} f \quad
%       \ode^{70} f \quad
% \end{equation*}
% \begin{equation*}
%       \mkern-15mu\boxed{5}  
%       \boxed{16}
%       \boxed{32} 
%       \boxed{54}
%       \boxed{69} 
%       \boxed{70} 
% \end{equation*}
% \end{minipage}}}
%
%
% ^^A Truly beautiful.\par\vspace{1em}
%
% ^^A In the next semester I expect to try seeing if its possible to, given that you put multiple variable in the options, to procedurally generate partials that address separate variables sequatentially.
% ^^A  \begin{equation*}
%  ^^A     \frac{\partial^2}{\partial x \partial y}
% ^^A  \end{equation*}
%
% 
%
%\StopEventually{^^A
%  \PrintChanges
%	}
%
%
% \iffalse
%</documentation>
% \fi
%
% ^^A************************************************ [odesandpdes.sty]
% \newpage
% \iffalse
%<*package>
% \fi
% \section{Package Implementation}
% 
% As a fair warning for anyone interested in the implementation
% of this package, it is documented in what might be considered, \emph{absurd}
% levels of detail. This comes from the creation of this package being a great
% learning experience for the author, and the in-depth documentation of 
% that understanding is only beneficial. 
% Futhermore, a lot of the techniques used in this package are not obvious.
% Some of which, to paraphrase
% the creator of \TeX, his divine emmisary 
% \emph{Donald E. Knuth} himself in the ever holy \TeX book,
% were prefaced with
% ``\emph{Worthy of being known to, at least a few, wizards able to traverse
% the nether world of \TeX arcana}''. 
% 
% 
% 
%
% \subsection{Set-up}
% \iffalse
%<package>%% ----------------------------------------------------------------
%<package>%% Package initialize
%<package>%% ----------------------------------------------------------------
% \fi
%
% 
% Package options are difficult to deal with, so using the |xkeyval| package
% alleviates much of the \emph{pain} associated with it,
%    \begin{macrocode}
\RequirePackage{xkeyval}    
%    \end{macrocode}
% 
% \begin{macro}{\m@xm@rk}\begin{macro}{\exp@c@unt}\begin{macro}{\@detempv@l}
% \hspace{1em} Being that there are a lot of minor calculations within the package
% reserving registries for integer counts feels like a good idea
%    \begin{macrocode}
\newcount\m@xm@rk%
\newcount\exp@c@unt%
\countdef\@detempv@l=255%
%    \end{macrocode}
% \end{macro}\end{macro}\end{macro}
%
% \begin{macro}{\v@rr@t@ks}\begin{macro}{\func@t@ks}\begin{macro}{\@tpost@ks}
% As well reserving token registries for tossing arguments around 
% the groups and macros,
%    \begin{macrocode}
\newtoks\v@rr@t@ks%
\newtoks\func@t@ks%
\newtoks\@tpost@ks%
%    \end{macrocode}
% \end{macro}\end{macro}\end{macro}
%
% \begin{macro}{\@dev@rb@x}\begin{macro}{\@defunb@x}\begin{macro}{\@deresb@x}
% Reserving box registries for the purpose of collecting the components
% together in \newline a coherent manner,
%    \begin{macrocode}
\newbox\@dev@rb@x%
\newbox\@defunb@x%
\newbox\@deresb@x%
%    \end{macrocode}
% \end{macro}\end{macro}\end{macro}
%
%
% \subsubsection{Package Options}
% \iffalse
%<package>%% ----------------------------------------------------------------
%<package>%% Package Options
%<package>%% ----------------------------------------------------------------
% \fi
%
%
% \begin{macro}{\@de@option}
% \hspace{1em} Defining the package options for notational styles
% using the \LaTeX\ \cs{providecommand} to reloading times.
% Important to note that defining the command is not the same
% as using the command, which is useful in conjunction with \cs{csname}
% and \cs{endcsname} for macro defintions.
%    \begin{macrocode}
\providecommand\@de@option{Leib} 
%    \end{macrocode}
%
% Now using the |keyval| package, it becomes possible to define
% a family of package options associated with inputing some |notation=#1|.
% This allows for easily defining the notation for the entire document.
% The possible options will be defined afterwards,
%    \begin{macrocode}
\DeclareOptionX{notation}[default]%
    {\def\@de@option{\csname @de@not@#1\endcsname}}
%    \end{macrocode}
% \end{macro} 
%
% \begin{macro}{\@de@not@Lagrange}
% \begin{macro}{\@de@not@Leibniz}
% \begin{macro}{\@de@not@Newton}
%
% \hspace{1em} Once the package option has been declared, 
% now the options can be defined. The options take identical form
% with the exception of the last part of definition.
% This is because the \cs{@de@option} is not the macro used for 
% the notation definitions. Rather, \cs{@de@option} is an intermediate
% that expands into one of the defined options, which subsequently 
% expands into one of the four character strings,
% ``|Lagr|'', ``|Leib|'', or ``|Newt|''
% \begin{center}\vspace{-0.75em}
% \makeatletter
% \tikz[every node/.style={minimum size=1.5em},line width=0.9pt] 
% \graph[no placement,y=0]
% {\string\@de@option[x=0] ->[bend right,"expands to"'] 
% \string\@de@not@``option''[x=3.5] ->[bend left,"expands to"] 
% ``string''[x=6.5]};
% \makeatother
% \end{center}
% 
%    \begin{macrocode}
\def\@de@not@Lagrange{Lagr}
\def\@de@not@Leibniz{Leib}
\def\@de@not@Newton{Newt}
%    \end{macrocode}
% \begin{macro}{\@de@not@default}
% \hspace{1em} The default option for the notation is defined by 
% pointing to the definition of the |Leibniz| notation option,
%    \begin{macrocode}
\let\@de@not@default\@de@not@Leibniz
%    \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
%
%
% A second option is defined to allow freedom in deciding the cut-off point 
% for the Lagrange and Newton notations where it no longer makes more
% physical marks and uses the symbolic extension instead, with a default
% of 3 marks before becoming symbolic.
%    \begin{macrocode}
\DeclareOptionX{maxprimes}[3]{\m@xm@rk=#1\advance\m@xm@rk\@ne}
%    \end{macrocode}
%
%
% To ensure that all other options given to the package will be ignored
% the star is used to indicate that all undefined options will be directed
% towrds this declared option,
%    \begin{macrocode}
\DeclareOptionX*{\PackageWarning{odesandpdes}{`\CurrentOption' ignored}}
%    \end{macrocode}
% Finally the declared options are executed as to allow the default
% options to initialize and be processed,
%    \begin{macrocode}
\ExecuteOptionsX{notation,maxprimes}
\ProcessOptionsX\relax 
%    \end{macrocode}
%
% \subsection{Package Configuration}\label{sec:options}
%
%
%\iffalse
%<package>\define@key[package]{@de}{notation}
%<package>    {\def\@de@option{\csname @de@not@#1\endcsname}}
%<package>\define@key[package]{@de}{maxprimes}
%<package>    {\m@xm@rk=#1\advance\m@xm@rk\@ne}
%\fi
%
% \begin{macro}{\setDE}
% \hspace{1em} In addition to being able to use options directly in the 
% \cs{usepackage} package command, one also gets access to the command
% \cs{setDE}.
% Which can be used at any point in the document to change the style
% of notation or max prime count. Functionally done in identical manner
% to how \cs{DeclareOptionX} is used.
%
%    \begin{macrocode}
\newcommand\setDE[1]{\setkeys[package]{@de}{#1}}
%    \end{macrocode}
% \end{macro}
%
% \subsubsection{To not conflict with amsmath}
%
% \begin{macro}{\@de@ver}
% \begin{macro}{\@de@top}
% \begin{macro}{\@de@bove}
%
% \hspace{1em} Purely because amsmath is a bitch and doesn't want 
% anyone enjoying their time in \TeX\ it becomes required to make 
% compatibility checks and work within their abstracted definitions,
%    \begin{macrocode}
\@ifpackageloaded{amsmath}{
    \let\@de@ver=\@@over%
    \let\@de@top=\@@atop%
    \let\@de@bove=\@@above}%
%    \end{macrocode}
% Otherwise it just uses the \TeX\ primitive commands for fractions
% because of increase ease of function and speed of processing,
%    \begin{macrocode}
    {\let\@de@ver=\over%    
    \let\@de@top=\atop% 
    \let\@de@bove=\above}
%    \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
%
% \subsection{Foundational macros}
% \iffalse
%<package>%% ----------------------------------------------------------------
%<package>%% Package Macros 
%<package>%% ----------------------------------------------------------------
% \fi
%
% \begin{macro}{\d@@}\begin{macro}{\d@l} 
% \hspace{1em} Creating protected macro definitions for increase in 
% speed of processes,
%    \begin{macrocode}
\def\d@@{\mathrm d} 
\let\d@l=\partial   
%    \end{macrocode}
% \begin{macro}{\@dest@red}\begin{macro}{\@den@st@r}
% \hspace{1em} In the same vein, strings are defined for the starred and 
% unstarred versions of macro commands,
%    \begin{macrocode}
\def\@dest@red{st@r@d}
\def\@den@st@r{n@st@r}
%    \end{macrocode}
% \end{macro}\end{macro}
% \end{macro}\end{macro}
% 
%
% \begin{macro}{\ode}\begin{macro}{\pde}
% \hspace{1em} The macro definitions of the ODE and PDE commands
%    \begin{macrocode}
\def\ode{\csname \@de@option ODE\endcsname}
\def\pde{\csname \@de@option PDE\endcsname} 
%    \end{macrocode}
% In essence these two are the same command.
% This is done for the sake of consistancy in use and effect.
% As well, in an attempt to not make the alternative notations
% \emph{inaccesible}, the main macros are themselves stepping stones
% to the package declared option. As perhaps multiple notational styles
% might be useful in a single equation, who knows?
% \end{macro}\end{macro}
% 
%
%
% 
% \begin{macro}{\LagrODE}\begin{macro}{\LeibODE}\begin{macro}{\NewtODE}
% \hspace{1em} There is unfortunately no way to avoid the process
% of making an individual macro for each ODE version;
%    \begin{macrocode}
\def\LagrODE{\let\@de@perat@r\d@@% sets the d
    \let\@dec@mm@nd\@de@not@Lagrange
    \@de@ifst@r}
\def\LeibODE{\let\@de@perat@r\d@@%
    \let\@dec@mm@nd\@de@not@Leibniz
    \@de@ifst@r}
\def\NewtODE{\let\@de@perat@r\d@@%
    \let\@dec@mm@nd\@de@not@Newton
    \@de@ifst@r}
%    \end{macrocode}
% \end{macro}\end{macro}\end{macro}
% \begin{macro}{\LagrPDE}\begin{macro}{\LeibPDE}\begin{macro}{\NewtPDE}
% As well as making a macro for each PDE version;
%    \begin{macrocode}
\def\LagrPDE{\let\@de@perat@r\d@l% sets the del
    \let\@dec@mm@nd\@de@not@Lagrange
    \@de@ifst@r} 
\def\LeibPDE{\let\@de@perat@r\d@l%
    \let\@dec@mm@nd\@de@not@Leibniz
    \@de@ifst@r} 
\def\NewtPDE{\let\@de@perat@r\d@l%
    \let\@dec@mm@nd\@de@not@Newton
    \@de@ifst@r} 
%    \end{macrocode}
%
% In terms of usage, these are all the same command, the main
% differences come from what the operator is defined as,
% \cs{d@@} or \cs{d@l}, and  which notational form that 
% \cs{@dec@mm@nd} points at for further processes down the stream.
% They are however, given all caps for the \emph{ode} and \emph{pde}
% in order to enhance visual clarity should one use them.
% 
% \end{macro}\end{macro}\end{macro}
%
% 
% \subsubsection{The `Yoinkers'}
% \begin{macro}{\@dest@r@rg}
% \begin{macro}{\@de@ption@l@rg}\begin{macro}{\@de@exponent@rg}
% \hspace{1em} Now a group of functions are needed for the processing
% each of the major elements, the star (|*|), for whether to have a function 
% parameter. The option (|[|), for determining the variable 
% being differentiated. And exponent (|^|), for deteriming what order 
% the differential should be. Whether these functions should be used
% or not, comes from the use of a macro described in section 
% \ref{sec:checkpoints}.
%
% Importantly each of these elements, should they appear,
% require the relevant token to be `yoinked' by the macro in question.
% Should a star appear, \cs{@dest@r@rg} `gobbles' said star and propmts
% the next element, an optional argument, to be checked for.
%    \begin{macrocode}
\def\@dest@r@rg*{\expandafter\@de@ifbr@ck}
%    \end{macrocode}
%
% For an optional argument, \cs{@de@option@l@rg} will yoink the argument,
% as well as the surrounding brackets,
%    \begin{macrocode}
\def\@de@ption@l@rg[#1]{\expandafter\v@rr@t@ks{#1}\relax \@de@ifexp@n}% 
%    \end{macrocode}
%
% If an exponent should appear, \cs{@de@exponent@rg} will yoink the |^|,
% and the integer following it,
%    \begin{macrocode}
\def\@de@exponent@rg^#1{\exp@c@unt#1\relax \@deifst@rred}
%    \end{macrocode}
%
%
%
% \begin{macro}{\@dest@r@dy@ink}\begin{macro}{\@den@st@ry@ink}
%
% \hspace{1em} Depending on if one is using the starred
% version of the command,
% there is a command that yoinks the following function variable
% and one that ends the compiling here.
%    \begin{macrocode}
\def\@dest@r@dy@ink{\expandafter\@dec@mpf@rm}
\def\@den@st@ry@ink{\expandafter\@dey@inkf@rm}
%    \end{macrocode}
% \end{macro}\end{macro}\end{macro}
% \end{macro}\end{macro}
%
% \begin{macro}{\@de@func@ther}\begin{macro}{\@de@func@Leib}
% \begin{macro}{\@de@func@Lagr}\begin{macro}{\@de@func@Newt}
% 
% \hspace{1em} As a consequence of the inherent differences in how
% the notational styles treat functions,
% the \cs{@de@func@Leib} macro has to be treated differently. 
% Whereas both
% the Lagrange and Newton notations will just accept the first token
% following the call of the function yoinker. The Leibniz varient will
% attempt to absorb all the tokens untill the first space token is found. 
% This is not done in the traditional way of denoting an explicit space
% token at the end of the control sequence, but rather through a special
% macro defined in section \ref{sec:nextchar}.
% This had to be done as a consequence
% of getting the `|at|\textvisiblespace |x;|' function to work properly.
%    \begin{macrocode}
\def\@de@func@ther#1{\expandafter\func@t@ks{#1}\relax
    \expandafter\@de@if@tpos}
\def\@de@func@Leib{\expandafter\func@t@ks{}\relax
    \expandafter\@de@ifbrace}
\let\@de@func@Lagr\@de@func@ther
\let\@de@func@Newt\@de@func@ther
%    \end{macrocode}
% \end{macro}\end{macro}
% \end{macro}\end{macro}
% 
%
% \begin{macro}{\@de@tpos@rg}
% \hspace{1em} Finally, the last element that can be used, is designed to
% eat all the tokens between its call and the first semi-colon it sees,
% to ensure a function can be derived anywhere.
%    \begin{macrocode}
\def\@de@tpos@rg#1;{\expandafter\@tpost@ks{#1}\relax \@de@tf@rm}
%    \end{macrocode}
% \end{macro}
%
%
%
% \subsubsection{Macro `Checkpoints'}\label{sec:checkpoints}
% \begin{macro}{\@de@ifst@r}
% \begin{macro}{\@de@ifbr@ck}
% \begin{macro}{\@de@ifexp@n}
% \hspace{1em} As can be seen in the definitions of the \cs{ode} and \cs{pde}, 
% there are no explicitely defined \cs{ode*} or \cs{pde*} macros.
% A workaround is implemented by making the first step of the macro
% to check if the first token that appears is a star, or \emph{asterisk}, 
% if one would prefer the technical language. These macros make use of an
% ancilliariy function \cs{@deifch@r}, 
% which is defined in the section \ref{sec:nextchar}.
%
%    \begin{macrocode}
\def\@de@ifst@r{\@deifch@r * 
    {\@dest@rgument\@dest@red\@dest@r@rg} 
    {\@dest@rgument\@den@st@r\@dest@r@rg*}}
\def\@de@ifbr@ck{\@deifch@r [ 
    \@de@ption@l@rg 
    {\@de@ption@l@rg[t]}}
\def\@de@ifexp@n{\@deifch@r ^ 
    \@de@exponent@rg 
    {\@de@exponent@rg^\@ne}}
%    \end{macrocode}
% \begin{macro}{\@de@ifbrace}
% \hspace{1em} \cs{@de@ifbrace} is a bit more special than the other \cs{@deif} 
% conditionals, as it is not a general use conditional. Only the 
% Leibniz notational style function yoinker makes use of it.
% This is likely not a good long-term solution, but
% that just means it's going to be this way for at least a few years.
%    \begin{macrocode}
\def\@de@ifbrace{\@deifch@r \bgroup
    \@de@func@ther
    \@de@tilsp@ce}
%    \end{macrocode}
% \end{macro}\end{macro}\end{macro}\end{macro}
%
%
% \begin{macro}{\@de@if@tpos}\begin{macro}{\@de@tDoubleCheck}
% \hspace{1em} In the same way, there also exist a macro to check 
% for the `|at|\textvisiblespace'. The main difference however,
% is the follow up command that helps
% \emph{robustify} \cs{@de@if@tpos}. This is done through absorbing all the 
% tokens after the `|a|' until the next space token, if only 
% a single token is absorbed, and that token is a `|t|', then success! Otherwise
% nothing happens.\footnotemark
%    \begin{macrocode} 
\def\@de@if@tpos{\@deifch@r a \@de@tDoubleCheck \@dec@mpf@rm}
\def\@de@tDoubleCheck a#1 {\ifx t#1\expandafter\@de@tpos@rg\else
    \@dec@mpf@rm a#1\fi}%
%    \end{macrocode}
%
% \footnotetext{There is a way to make this function in a far more generalized way using
% \cs{csname} and \cs{endcsname}. However, as this package makes use of 
% this feature exactly \emph{once}, there is no benefit to
% generalizing the functionality.}
% \end{macro}\end{macro}
%
% 
%
% 
% \subsection{Ancilliary Functions}
% There are a lot of macros or command sequences that need to be used
% in addendum to the main commands that one would download this package for.
% As a consequence, there are a plethora of ancilliary functions to pull from
% defined in this section.
%
%
% \iffalse
%<package>%% ----------------------------------------------------------------
%<package>%% Ancilliary Package Functions
%<package>%% ----------------------------------------------------------------
% \fi
% \subsubsection{Variable Macronames}
%
% \begin{macro}{\@dest@rgument}
% \begin{macro}{\@deifst@rred}
% \begin{macro}{\@dec@mpf@rm}
%
% \hspace{1em}It becomes useful to be able to freely define which macro 
% to be used when going through the option tree.
% Subsequently, three macros are defined
% to fufill that purpose. \cs{@dest@rgument} takes an argument and defines 
% two macros \cs{@deifst@rred} which defines 
% whether the function `yoinker' exists or not, and \cs{@dec@mpf@rm}
% which works with \cs{@de@option},defined in subsection \ref{sec:options}, 
% to define the final ODE or PDE form.
%    \begin{macrocode}
\def\@dest@rgument#1{%
    \def\@deifst@rred{\csname @de#1y@ink\endcsname}%
    \def\@dec@mpf@rm{\csname#1@\@dec@mm@nd\endcsname}}
%    \end{macrocode}
% \end{macro}\end{macro}\end{macro}
% 
%
%
%
%
% \begin{macro}{\@de@tf@rm}\begin{macro}{\@dey@inkf@rm}
% \hspace{1em} Additional macros are also defined for determining 
% intermediate forms during the construction
% process of the resulting ODEs and PDEs
%    \begin{macrocode}
\def\@de@tf@rm{\csname @de@t@\@dec@mm@nd\endcsname}%
\def\@dey@inkf@rm{\csname @de@func@\@dec@mm@nd\endcsname}%
%    \end{macrocode}
% \end{macro}\end{macro}
%
%
% 
% \subsubsection{Determing the next token}\label{sec:nextchar}
% An integral part of the `\emph{mastication}' process
% is the identification of the proceeding token in the oncoming token stream.
% Therefore, a macro is defined to streamline this process instead of needing
% to create a unique \cs{futurelet} sequence for each token type.\par
% The use of \cs{futurelet} is a strange and arcane process
% that better described by occult terminology than the proper scientific
% terms one would use in daily life.
% However, it is important to understand at least a little bit for the
% implementation of the \cs{@deifch@r} macro. 
%
% \begin{macro}{\@deifch@r}\begin{macro}{\@detesttoken}
% 
% \begin{macro}{\@de@tmpA}\begin{macro}{\@de@tmpB}
%
% \hspace{1em} \cs{@deifch@r} takes in three tokens as arguments, 
% the first argument will assign \cs{@detesttoken} and be
% what the macro looks out for, 
% while the other two arguments are for storage to be executed later. 
% Building off this, there are two main elements that compose the macro, 
% the namesake \cs{@deifch@r}, and its supplement macro 
% \cs{@denext@rg}. This is because \cs{futurelet} is a primitive that will
% act as the \cs{let} primitive, just one token removed.
%
% \begin{minipage}[b]{0.45\textwidth}
%    \tikz \graph[grow right = 1.5cm]{ 
%    \string\let -!- token1 <- token2 -!- token3 };
% \end{minipage}~
% \begin{minipage}[b]{0.45\textwidth}
%    \tikz \graph[grow right = 1.5cm]{ 
%    \string\futurelet -!- token1 -!- token2 -!- token3, 
%    token1 <-[bend left, "\string\let\ token1 token3"] token3 };
% \end{minipage}
%
% 
% The most important consequence is that, 
% should \cs{futurelet} be enacted upon a stream of three 
% tokens, ``\cs{futurelet}| token1 token2 token3|''; |token1| will be \cs{let} 
% to point at |token3| \emph{before} 
% |token2| is expanded. What this means, is one is able to have |token3|
% \emph{act upon the unexpanded} 
% |token2|.\footnote{If this means something to you, it's too late. 
% You've lost your chance of escaping \TeX.} 
%    \begin{macrocode}
\def\@deifch@r#1#2#3{%
    \let\@dew@tcht@k=#1\relax
    \def\@de@tmpA{#2} \def\@de@tmpB{#3}
    \futurelet\@detesttoken\@denext@rg}
%    \end{macrocode}
% \hspace{1em} Using this \emph{enlightenment}, 
% define the token representing an
% `|if-then-else|' control sequence \cs{@denext@rg}. In 
% \cs{@deifch@r},  \cs{@dew@tcht@k} becomes a macro for
% the token we want to check against. Using this to our advantage, 
% before \TeX\ expands \cs{@denext@rg}, it will assign \cs{@detesttoken}
% to point to a third, currently, unknown token after \cs{@denext@rg}.
% This is where the magic happens; because \cs{@denext@rg} only expands
% \emph{after} the assignment of \cs{@detesttoken}, meaning it becomes
% possible to compare \cs{@detesttoken} and \cs{@dew@tcht@k} against
% eachother to determine which outcome should be executed.\par
% \end{macro}\end{macro}
% 
% \end{macro}\end{macro}
% 
%
%
% \begin{macro}{\@denext@rg}\begin{macro}{\@de@nextact}
% 
% \hspace{1em} The first half of \cs{@denext@rg} ensures that a
% space tokens does not get in the way of assignment,
% as unfortunate as it is, the \cs{futurelet} primitive \emph{does}
% consider a space token to be a valid token to point to.
% 
%    \begin{macrocode}
\def\@denext@rg{%
    \ifx\@detesttoken\@sptoken\relax
        \let\@de@nextact\@desp@cegobbler\else
%    \end{macrocode}
% \hspace{1em} The second half of \cs{@denext@rg} is what does 
% the actual comparison. Should the comparison be positive,
% \cs{@detesttoken} = \cs{@dew@tcht@k}, then the code stored
% in \cs{@de@tmpA} will be executed, otherwise, \cs{@de@tmpB} 
% will be executed
%    \begin{macrocode}
        \ifx\@detesttoken\@dew@tcht@k\relax  % if 
            \let\@de@nextact\@de@tmpA\else       % ifn't
            \let\@de@nextact\@de@tmpB\fi\fi
    \@de@nextact}
%    \end{macrocode}
%
% \begin{macro}{\@desp@cegobbler}
% \iffalse
%<package>\let\@desavedef\<
% \fi
%
% \hspace{1em} Ensuring that the space(s), explicit or implicit, trailing after
% \cs{@deifch@r} requires some \TeX\ \emph{tomfoolary}. 
% By defining the function with a non-character token, the trailing space 
% will matter for the macro definition, thereby, creating a macro that gobbles
% one space token on use.
%    \begin{macrocode}
\def\<{\@desp@cegobbler} 
\expandafter\def\< {\futurelet\@detesttoken\@denext@rg}
%    \end{macrocode}
% These three macros work together as a three point cycle discarding spaces
% until the first non-space token is found, in which case the \cs{if}-\cs{else}
% will be executed.
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\@de@tilsp@ce}
%
% \hspace{1em} While the previous macro gobbles space tokens until it finds
% a non-space token \cs{@de@tilsp@ce} gobbles non-space
% tokens until it finds a space token. 
% There is a difference however, in that \cs{@de@tilsp@ce} stores the
% gobbled tokens until it finds that space token, subsequently 
% \rlap{ {ejaculating} }\hbox{---------------}
% \emph{returning} the the tokens as a registry list.
%    \begin{macrocode}
\def\@de@tilsp@ce#1 {%
    \beginnext%
    \toks0={#1}
    \edef\next{\func@t@ks=\expandafter{\the\toks0}}
    \endnext \@de@if@tpos}
%    \end{macrocode}
% \end{macro}
%
%
%
% \begin{macro}{\beginnext}
% \begin{macro}{\endnext}
%
% \hspace{1em} The \cs{beginnext}, \cs{endnext} construct
% is a relatively common construct one finds when working with
% variable macros and subsequently working with \cs{edef} commands. 
% Using the explicit \cs{begingroup} and \cs{endgroup} group denotions
% means that one can play all sorts of registry based games, 
% that can not be broken by implicit groupings.
% By \cs{edef}'ing \cs{next} inside this construct, whatever finalized
% product you have assigned to \cs{next}, will be a fully expanded 
% assortment of values from those registries.
%    \begin{macrocode}
\def\beginnext{\begingroup
    \let\next\undefined}
\def\endnext{\expandafter\endgroup\next}
%    \end{macrocode}
% \end{macro}
% \end{macro}
%
%
%
%
% \subsection{Notational Morphology}
% \iffalse
%<package>%% ----------------------------------------------------------------
%<package>%% Package Notations
%<package>%% ----------------------------------------------------------------
% \fi
% 
% There is nothing particularly interesting about the methodology
% behind preparing the output forms, just using the classical 
% \TeX\ methods of exponents and fractions. So while these macro definitions
% will be left in, there won't be much commenting on them directly.
% The follow-up section will be illustrating the macros used 
% \emph{within} the ode replacement text, those will be explained.
%
% One thing of note, is that these macros make \emph{heavy} use of the 
% `\cs{the}\cs{registry}' commands to expand registries previously 
% used for storing tokens, and integers. Another hugely important
% element in these macros are the \cs{box} commands for arranging and
% subsequently storing said arrangement into a \emph{box} which can 
% then float to the top of the groupings like a message in a bottle.
% 
% \subsubsection*{Starred Forms}
% \begin{macro}{\st@r@d@Lagr}
% Macro for Lagr+star
%    \begin{macrocode}
\def\st@r@d@Lagr{%
    \setbox\@deresb@x\hbox{$
        {f^{\mkern1mu\@dedr@wm@rk\lagr@prime\lagr@prime\br@ced@xpon}
        _{\m@kep@rtLagr}}\mkern-\tw@ mu\left(\the\v@rr@t@ks\right)
        $}%
    \@derele@se}%
%    \end{macrocode}
% \end{macro}
%
%
% \begin{macro}{\st@r@d@Leib}
%  Macro for Leib+star
%    \begin{macrocode}
\def\st@r@d@Leib{%
    \setbox\@defunb@x\hbox{$\@de@perat@r^{\@deem@rex}$}%
    \b@se@Leib}%
%    \end{macrocode}
% \end{macro}
%
%
% \begin{macro}{\st@r@d@Newt}
%  Macro for Newt+star
%    \begin{macrocode}
\def\st@r@d@Newt{%     
    \setbox\@dev@rb@x\hbox{$\the\v@rr@t@ks$} \b@se@Newt}%
%    \end{macrocode}
% \end{macro}
%
%
%
%
% \subsubsection*{Unstarred Forms}
% \begin{macro}{\n@st@r@Lagr}
% Macro for Lagr
%    \begin{macrocode}
\def\n@st@r@Lagr{%
    \setbox\@deresb@x\hbox{$
        {\the\func@t@ks
        ^{\mkern\@ne mu\@dedr@wm@rk\lagr@prime\lagr@prime\br@ced@xpon}
        _{\m@kep@rtLagr}}\mkern\m@ne mu$}%
    \@derele@se}%
%    \end{macrocode}
% \end{macro}
%
%
% \begin{macro}{\n@st@r@Leib}
%  Macro for Leib
%    \begin{macrocode}
\def\n@st@r@Leib{%  
    \setbox\@defunb@x\hbox{$
        \@de@perat@r^{\@deem@rex}\mkern0.40mu\the\func@t@ks$} 
        \b@se@Leib}
%    \end{macrocode}
% \end{macro}
%
%
% \begin{macro}{\n@st@r@Newt}
%  Macro for Newt
%    \begin{macrocode}
\def\n@st@r@Newt{% 
    \setbox\@dev@rb@x\hbox{$\the\func@t@ks$} \b@se@Newt}%
%    \end{macrocode}
% \end{macro}
%
% \subsubsection*{``At Position'' Forms}
% \begin{macro}{\@de@t@Lagr}
% Macro for Lagr at point
%    \begin{macrocode}
\def\@de@t@Lagr{%
    \noexpand\hbox{$
        \n@st@r@Lagr\mkern-\thr@@ mu\left(\the\@tpost@ks\right)
        $}}%
%    \end{macrocode}
% \end{macro}
%
%
% \begin{macro}{\@de@t@Leib}
% Macro for Leib at point
%    \begin{macrocode}
\def\@de@t@Leib{%
    \noexpand\hbox{$
        \left.\n@st@r@Leib\mkern\@ne mu\right|
        _{\mkern1mu\displaystyle\the\v@rr@t@ks\mkern2mu
        \rlap{$\scriptstyle=\mkern\thinmuskip\the\@tpost@ks$}}
        $}%
    }%
%    \end{macrocode}
% \end{macro}
%
%
% \begin{macro}{\@de@t@Newt}
% Macro for Newton at point
%    \begin{macrocode}
\def\@de@t@Newt{%
    \noexpand\hbox{$
        \n@st@r@Newt\mkern-\tw@ mu\left(\the\@tpost@ks\right)
        $}}%
%    \end{macrocode}
% \end{macro}
%
%
%
%
%
%
% \subsubsection*{Foundational forms}
%
%
% \begin{macro}{\m@kep@rtLagr}
% Macro for Lagr partial notations
%    \begin{macrocode}
\def\m@kep@rtLagr{\ifx\@de@perat@r\d@l\the\v@rr@t@ks\else\empty\fi}
%    \end{macrocode}
% \end{macro}
%
%
% \begin{macro}{\b@se@Leib}
% Macro for the base Leibniz form
%    \begin{macrocode}
\def\b@se@Leib{%
    \setbox\@dev@rb@x\hbox{$
        \@de@perat@r\mkern0.40mu\the\v@rr@t@ks^{\@deem@rex}$}%
    \setbox\@deresb@x\hbox{\kern0.5\p@%
        $\raise2\p@\box\@defunb@x\@de@ver\lower5\p@\box\@dev@rb@x$%
        \kern0.5\p@}%
    \@derele@se}%
%    \end{macrocode}
% \end{macro}
%
%
% \begin{macro}{\b@se@Newt}
% Macro for the base Newton form
%    \begin{macrocode}
\def\b@se@Newt{%
    \setbox\@defunb@x\hbox{\vbox{\baselineskip=\z@\lineskip=\m@ne\p@%
        \@dedr@wm@rk\@de@ned@ts\@detw@d@ts\@denewt@nd@t}}%
    \setbox\@deresb@x\hbox{\vbox{\baselineskip=\z@\lineskip=-0.5\p@%
        \hbox to\wd\@dev@rb@x{\hss\raise\z@\box\@defunb@x\hss}%
        \hbox{\raise\z@\box\@dev@rb@x}}}%
    \@derele@se}
%    \end{macrocode}
% \end{macro}
%
% \begin{macro}{\m@kep@rtNewt}
% Macro for Newt partial notations
%    \begin{macrocode}
\def\m@kep@rtNewt{\ifx\@de@perat@r\d@l\empty\fi}
%    \end{macrocode}
% \end{macro}
%
%
%
%
%
% \subsection{Notational Shaping Tools}
%
% Here's where some spice comes back into play. 
% One of the major challenges\footnote{Aside from my mental challenges.}
% was ensuring that the appropriate number of primes or dots were
% placed when changing the |maxprimes| option.
%
% Did the author realistically need to make it so one could have
% a procedural number of primes/dots? Nope. Would there ever be a realistic
% use-case for a derivative of order 3 or higher in 
% which one would use markings? Of course not. Did the author do it anyways?
% Absolutely.
%
%
% \begin{macro}{\lagr@prime}
% \begin{macro}{\br@ced@xpon}
% \hspace{1em} The macro for the Lagrangian prime is very straightforward
% each time \cs{lagr@prime} is used, a prime mark will be placed,
% and the exponent count will reduce by one. The function does this
% repeatedly until the exponent count is reduced to 1.
%    \begin{macrocode}
\def\lagr@prime{\mkern0.35mu\prime\global\advance\exp@c@unt\m@ne}
%    \end{macrocode}
% 
% Should the exponent count be greater than the maximum allowed prime
% markings, \cs{br@ced@xpon} will be used instead, which will display 
% the general form of an integer enclosed by parenthesis.
%    \begin{macrocode}
\def\br@ced@xpon{\left(\the\exp@c@unt\right)}
%    \end{macrocode}
%
%
% \end{macro}
% \end{macro}
%
%
%
% \begin{macro}{\@detw@d@ts}
% \begin{macro}{\@de@ned@ts}
% \hspace{1em} The dots for the Newtonian notation are more complicated than 
% just incrementing a counter by one for each placed mark.
% Because Newtonian notation is built with a point at the top, it
% requires the initial dot to be place prior the rest of the dots as
% the \cs{vbox} primitive builds top down
% 
% In order to deal with that, this set of macros, \cs{@detw@d@ts} 
% and \cs{@de@ned@ts}
% will take the exponent count, and determine if the number is $\equiv|mod2|$
% if it is congruent. There is no initial dot created, if it is not congruent
% \emph{and} a greater value than the set maxprimes, an initial dot is 
% placed into the token stream to become the star on top.
%
% The reason for these macros to be so complicated, is that \TeX\ only has
% addition, and multiplication with integer registries. There is no divsion
% or float value functionality.
%    \begin{macrocode}
\def\@detw@d@ts{\ifnum\exp@c@unt>\@ne%
        \advance\exp@c@unt-\tw@\hbox to 5\p@{\hss$\cdot\cdot$\hss}\fi}%    
\def\@de@ned@ts{\@detempv@l=\the\exp@c@unt%
    \loop\ifnum\@detempv@l>\tw@%
        \advance\@detempv@l-\tw@\repeat%
    \ifnum\@detempv@l<\tw@%
        \advance\exp@c@unt\m@ne\hbox to 5\p@{\hss$\cdot$\hss}\fi}%    
%    \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\@denewt@nd@t}
% \hspace{1em} The generalized form of the the Newtonian derivative notation is 
% is just a glorified fraction, with a dot as the denominator, and a number
% as the numerator.
%    \begin{macrocode}
\def\@denewt@nd@t{\hbox{\vbox{%
    \hbox to 5\p@{\hss\raise\thr@@\p@\hbox{$\scriptstyle\@deem@rex$}\hss}%
    \hbox to 5\p@{\hss\hbox{$\displaystyle\cdot$}\hss}}}}%
%    \end{macrocode}
% \end{macro}
%
% \begin{macro}{\@deem@rex}
% For the Leibniz notation, there is no reason to display the exponent
% should it be an integer value less than 2, therefor, any 
% exponent count less than two will be replaced with \cs{empty}.
%    \begin{macrocode}
\def\@deem@rex{\ifnum\tw@>\exp@c@unt\empty\else\the\exp@c@unt\fi}
%    \end{macrocode}
%
% \begin{macro}{\@dedr@wm@rk}
% \hspace{1em} Because both the Lagrangian and Newtonian notational styles involve
% a physical marking being repeated, common macro was made that 
% takes 3 arguments, the first will be for the initial placement,
% the second argument is fed into a follow-up macro \cs{@derepe@tdr@w},
% and the third argument is what
% will be placed should the exponent count be higher than the max allowed.
%
% Effectively \cs{@dedr@wm@rk} is what checks whether it should be a marking 
% or the more symbolic generalized form. 
%    \begin{macrocode}
\def\@dedr@wm@rk#1#2#3{
    \ifnum\exp@c@unt<\m@xm@rk
        #1\@derepe@tdr@w#2\else
        #3\fi}
%    \end{macrocode}
% \begin{macro}{\@derepe@tdr@w}
% While \cs{@derepe@tdr@w} is what provides the 
% conditional looping enviroment to ensure the markings are placed;
%    \begin{macrocode}
\def\@derepe@tdr@w#1{\loop\ifnum\exp@c@unt>\z@#1\repeat}
%    \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\@derele@se}
% Shorthand for allowing the final formed ode or pde to rise to the surface
%    \begin{macrocode}
\def\@derele@se{\noexpand{\box\@deresb@x}}
%    \end{macrocode}
% \end{macro}
% 
% \iffalse
%</package>
% \fi
%
% 
% \iffalse
%<package>\let\<\@desavedef
%<package>\endinput
% \fi
%
%
%
%
% \Finale