summaryrefslogtreecommitdiff
path: root/macros/latex/contrib/nchairx/source/chairxmathDiffgeoDoc.dtx
blob: 922f1acaca3a3e13b245f8dbc51d309ee89c46c2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
% \iffalse meta-comment
%
% Copyright (C) 2018 - 2021 by ChairX
%
% This file may be distributed and/or modified under the
% conditions of the LaTeX Project Public License, either
% version 1.3 of this license or (at your option) any later
% version.  The latest version of this license is in:
%
%    http://www.latex-project.org/lppl.txt
%
% and version 1.3 or later is part of all distributions of
% LaTeX version 2005/12/01 or later.
%
% This file contains the documentation of all differential geometry related macros .
%
% Macros have to be described by (delete the first %)
% \DescribeMacro{\macro}
% Description and usage of the macro.
%
% The description will appear in the usage
% part of the documentation. Use \subsubsection{} etc. for structuring.
%
% The implementation of the macros defined here has to be written in
% chairxmathDiffgeo.dtx
%\fi
%
%\subsubsection{General Macros in Differential Geometry} \label{sec:Doc_GeneralMacrosDiffGeo}
%
% \DescribeMacro{\Lie}
% Lie derivative |\Lie_X f|: $\Lie_X f$
%
% \DescribeMacro{\Schouten}
% Schouten bracket |\Schouten{X,Y}|: $\Schouten{X, Y}$.
%
% \DescribeMacro{\Forms}
% Differential forms |\Forms(M)|: $\Forms(M)$
%
% \DescribeMacro{\ZdR}
% DeRham cocycles |\ZdR(M, \mathbb{C})|: $\ZdR(M, \mathbb{C})$ \\
% Uses |operatorfont|.
%
% \DescribeMacro{\BdR}
% DeRham coboundaries |\BdR(M, \mathbb{C})|: $\BdR(M, \mathbb{C})$ \\
% Uses |operatorfont|.
%
% \DescribeMacro{\HdR}
% DeRham cohomology |\HdR(M, \mathbb{C})|: $\HdR(M, \mathbb{C})$ \\
% Uses |operatorfont|.
%
% \DescribeMacro{\Diffeo}
% Diffeomorphism group |\Diffeo(M)|: $\Diffeo(M)$ \\
% Uses |operatorfont|.
%
% \DescribeMacro{\Diffop}
% Differential operators |\Diffop(M)|: $\Diffop(M)$ \\
% Uses |operatorfont|.
%
% \DescribeMacro{\loc}
% To be used as an index |M_\loc|: $M_\loc$ \\
% Uses |scriptfont|.
%
% \DescribeMacro{\germ}
% Germs of functions |\germ_p(f)|: $\germ_p(f)$ \\
% Uses |operatorfont|.
%
% \DescribeMacro{\prol}
% Prolongation map |\prol(f)|: $\prol(f)$ \\
% Uses |operatorfont|.
%
% \DescribeMacro{\NRbracket}
% Nijenhuis-Richardson bracket |\NRbracket{a, b}|: $\NRbracket{a, b}$ \\
% Uses |scriptfont|.
%
% \DescribeMacro{\FNbracket}
% Fröhlicher-Nijenhuis bracket |\FNbracket{a, b}|: $\FNbracket{a, b}$ \\
% Uses |scriptfont|.
%
% \DescribeMacro{\Manifolds}
% The category of manifolds |\Manifolds|: $\Manifolds$ \\
% Uses |categorynamefont|
%
%\subsubsection{Lie Groups and Principal Fiber Bundles}
%
% \DescribeMacro{\lefttriv}
% Left trivialization |\lefttriv|: $\lefttriv$ \\
% Uses |operatorfont|.
%
% \DescribeMacro{\righttriv}
% Right trivialization |\righttriv|: $\righttriv$ \\
% Uses |operatorfont|.
%
% \DescribeMacro{\Gau}
% Gauge group |\Gau(P)|: $\Gau(P)$ \\
% Uses |operatorfont|.
%
% \DescribeMacro{\Conn}
% Connection one-forms |\Conn(P)|: $\Conn(P)$ \\
% Uses |operatorfont|.
%
% \DescribeMacro{\ratio}
% Ratio map of principal fiber bundle |\ratio(u, v)|: $\ratio(u, v)$ \\
% Uses |operatorfont|.
%
% \DescribeMacro{\Parallel}
% Parallel transport |\Parallel_{0 \to 1, \gamma}(v)|: $\Parallel_{0 \to 1, \gamma}(v)$ \\
% Uses |operatorfont|.
%
% \DescribeMacro{\CE}
% Chevalley-Eilenberg as index |C_\CE|: $C_\CE$ \\
% Uses |scriptfont|.
%
% \DescribeMacro{\HCE}
% Chevalley-Eilenberg cohomology |\HCE(\liealg{g})|: $\HCE(\liealg{g})$ \\
% Uses |operatorfont|.
%
% \DescribeMacro{\fund}
% Trivialization by fundamental vector fields |\fund|: $\fund$ \\
% Uses |operatorfont|.
%
% \DescribeMacro{\Universal}
% Universal enveloping algebra |\Universal{\liealg{g}}|: $\Universal(\liealg{g})$\\
% Uses |operatorfont|.
%
% \DescribeMacro{\BCH}
% BCH as small index |\sigma_\BCH|: $\sigma_\BCH$\\
% Uses |scriptfont|.
%
% \DescribeMacro{\LieGroups}
% The category of Lie groups |\LieGroups|: $\LieGroups$ \\
% Uses |categorynamefont|.
%
% \DescribeMacro{\Principal}
% The category of principal bundles |\Principal|: $\Principal$ \\
% Uses |categorynamefont|.
%
% \DescribeMacro{\GPrincipal}
% The category of $G$-principal bundles |\GPrincipal|: $\GPrincipal$ \\
% or with optional structure group |\GPrincipal[H]|: $\GPrincipal[H]$ \\
% Uses |categorynamefont|.
%
% \DescribeMacro{\Fiber}
% The category of fiber bundles |\Fiber|: $\Fiber$
% Uses |categorynamefont|.
%
% \DescribeMacro{\FFiber}
% The category of fiber bundles with typical fiber |\FFiber|:
% $\FFiber$ \\
% or with specified typical fiber |\FFiber[X]|: $\FFiber[X]$ \\
% Uses |categorynamefont|.
%
% \DescribeMacro{\Pin}
% The pin group |\Pin(q, p)|: $\Pin(p, q)$ \\
% Uses |groupfont|.
%
% \DescribeMacro{\Spin}
% The spin group |\Spin(q, p)|: $\Spin(p, q)$ \\
% Uses |groupfont|.
%
%\subsubsection{(Pseudo-) Riemannian Geometry}
%
% \DescribeMacro{\nablaLC}
% Levi-Civita covariant derivative |\nablaLC_X Y|: $\nablaLC_X Y$ \\
% Uses |scriptfont|.
%
% \DescribeMacro{\Laplace}
% Laplace operator |\Laplace f|: $\Laplace f$
%
% \DescribeMacro{\dAlembert}
% D'Alembert operator |\dAlembert u|: $\dAlembert u$
%
% \DescribeMacro{\feynman}
% Feynman slash notation |\feynman{D} = \feynman{A} + \feynman{\partial}|: 
% $\feynman{D} = \feynman{A} + \feynman{\partial}$
%
% \DescribeMacro{\Dirac}
% Dirac operator |\Dirac u|: $\Dirac u$
%
% \DescribeMacro{\rotation}
% Rotation (i.e. curl) of a vector field |\rotation(X)|: $\rotation(X)$. Not to be confused with $\textrm{grün}(X)$. \\
% Uses |operatorfont|.
%
% \DescribeMacro{\curl}
% Curl of a vector field |\curl \vec{X}|: $\curl \vec{X}$ \\
% Uses |operatorfont|.
%
% \DescribeMacro{\divergence}
% Divergence of a vector field |\divergence(X)|: $\divergence(X)$ \\
% Uses |operatorfont|.
%
% \DescribeMacro{\gradient}
% Gradient of a function |\gradient f|: $\gradient f$ \\
% Uses |operatorfont|.
%
% \DescribeMacro{\Tor}
% Torsion of a covariant derivative |\Tor (X, Y)|: $\Tor (X, Y)$ \\
% Uses |operatorfont|.
%
% \DescribeMacro{\Ric}
% Ricci curvature |\Ric (X, Y)|: $\Ric (X, Y)$ \\
% Uses |operatorfont|.
%
% \DescribeMacro{\scal}
% Scalar curvature |\scal|: $\scal$ \\
% Uses |operatorfont|.
%
% \DescribeMacro{\Riem}
% The set of Riemannian metrics (linear and on manifolds) |\Riem(M)|: $\Riem(M)$ \\
% Uses |operatorfont|.
%
% \DescribeMacro{\Hessian}
% Hessian of a function |\Hessian(f) \in \Secinfty(\Sym^2T^*M)|: $\Hessian(f) \in \Secinfty(\Sym^2T^*M)$ \\
% Uses |operatorfont|.
%
% \DescribeMacro{\hodge}
% Hodge star operator |\alpha \mapsto \hodge\alpha|: $\alpha \mapsto \hodge\alpha$
%
%\subsubsection{Complex Geometry}
%
% \DescribeMacro{\Nijenhuis}
% Nijenhuis operator |\Nijenhuis(X, Y)|: $\Nijenhuis(X, Y)$ \\
% Uses |operatorfont|.
%
% \DescribeMacro{\del}
% Dolbeault operator |\del \omega|: $\del \omega$
%
% \DescribeMacro{\delbar}
% CC of Dolbeault operator |\delbar\alpha|: $\delbar\alpha$
%
% \DescribeMacro{\FS}
% Fubini Study as very small index |\omega_\FS|: $\omega_\FS$ \\
% Uses |scriptfont|.
%
%\subsubsection{Vector Bundles}
%
% \DescribeMacro{\Lift}
% Generic lift of something |\nabla^\Lift|: $\nabla^\Lift$ \\
% Uses |scriptfont|.
%
% \DescribeMacro{\ver}
% Vertical lift |X^\ver|: $X^\ver$ \\
% Uses |scriptfont|.
%
% \DescribeMacro{\hor}
% Horizontal lift |X^\hor|: $X^\hor$ \\
% Uses |scriptfont|.
%
% \DescribeMacro{\Ver}
% Vertical subbundle |\Ver(E)|: $\Ver(E)$ \\
% Uses |operatorfont|.
%
% \DescribeMacro{\Hor}
% Horizontal subbundle |\Hor(E)|: $\Hor(E)$ \\
% Uses |operatorfont|.
%
% \DescribeMacro{\Sec}
% $C^k$-sections |\Sec(E)|: $\Sec(E)$ and |\Sec[2](E)|: $\Sec[2](E)$
%
% \DescribeMacro{\Secinfty}
% Smooth sections |\Secinfty(E)|: $\Secinfty(E)$
%
% \DescribeMacro{\HolSec}
% Holomorphic sections |\HolSec(U, E)|: $\HolSec(U, E)$ \\
% Uses |scriptfont|.
%
% \DescribeMacro{\SymD}
% Symmetrized covariant derivative |\SymD^n f|: $\SymD^n f$ \\
% Uses |operatorfont|.
%
% \DescribeMacro{\Densities}
% Densities of a vector bundle of rank $n$ or specific rank |\Densities TM|: $\Densities TM$
% and |\Densities[k]^\alpha E|: $\Densities[k]^\alpha E$.
%
% \DescribeMacro{\MeasurableSections}
% Measurable sections |\MeasurableSections(E)|: $\MeasurableSections(E)$ \\
% Uses |spacefont|.
%
% \DescribeMacro{\IntpSections}
% $p$-Integrable Sections |\IntpSections(\Densities T^*M)|: $\IntpSections(\Densities T^*M)$
% or with optional argument |\IntpSections[q](\Densities T^*M)|: $\IntpSections[q](\Densities T^*M)$.
%
% \DescribeMacro{\IntegrableSections}
% Integrable sections |\IntegrableSections(\Densities T^*M)|: $\IntegrableSections(\Densities T^*M)$
%
% \DescribeMacro{\Translation}
% Fiber translations |\Translation_A|: $\Translation_A$ \\
% Uses |operatorfont|.
%
% \DescribeMacro{\frames}
% Font for local frames |\frames{e}_1, \ldots, \frames{e}_k|: $\frames{e}_1, \ldots, \frames{e}_k$ \\
% Uses |operatorfont|.
%
% \DescribeMacro{\Frames}
% Frame bundle of a vector bundle |\Frames(E) \longrightarrow M|:\\
% $\Frames(E) \longrightarrow M$ \\
% Uses |operatorfont|.
%
%\DescribeMacro{\FDiff}
% Fiber derivative |\FDiff L|: $\FDiff L$ \\
% Uses |operatorfont|.
%
%\subsubsection{Symplectic and Poisson Geometry}
%
% \DescribeMacro{\Sympl}
% Symplectomorphism group |\Sympl(M, \omega)|: $\Sympl(M, \omega)$ \\
% Uses |groupfont|.
%
% \DescribeMacro{\Jacobiator}
% Jacobiator |\Jacobiator|: $\Jacobiator$
% and |\Jacobiator[\nu]|: $\Jacobiator[\nu]$ \\
% Uses |operatorfont|.
%
% \DescribeMacro{\red}
% Reduced as an index |M_\red|: $M_\red$ \\
% Uses |scriptfont|.
%
% \DescribeMacro{\Hess}
% Hess map |\Hess|: $\Hess(\nabla)$ \\
% Uses |operatorfont|.
%
% \DescribeMacro{\KKS}
% KKS as tiny index |\{f, g\}_\KKS|: $\{f, g\}_\KKS$ \\
% Uses |scriptfont|.
%
% \DescribeMacro{\Courant}
% Courant bracket |\Courant{a, b}|: $\Courant{a, b}$ \\
% Uses |scriptfont|.
%
% \DescribeMacro{\Dorfman}
% Dorfman bracket |\Dorfman{(x, \xi), (y, \eta)}|:
% $\Dorfman{(x, \xi), (y, \eta)}$ \\
% Uses |scriptfont|
%
% \DescribeMacro{\Dir}
% (Linear) Dirac structures |\Dir(V)|: $\Dir(V)$ \\
% Uses |operatorfont|.
%
% \DescribeMacro{\Forward}
% Forward map |\Forward(\phi)|: $\Forward(\phi)$ 
%
% \DescribeMacro{\Backward}
% Backward map |\Backward(\phi)|: $\Backward(\phi)$ 
%
% \DescribeMacro{\Tangent}
% Generalized tangent bundle/map |\Tangent M|: $\Tangent M$ 
%
% \DescribeMacro{\MWreduction}
% Marsden-Weinstein reduction |M \MWreduction G|: $M \MWreduction G$ 
%
% \DescribeMacro{\Mon}
% Monodromy groupoid |\Mon(M)|: $\Mon(M)$ \\
% Uses |operatorfont|.
%
% \DescribeMacro{\Hol}
% Holonomy groupoid |\Hol(M)|: $\Hol(M)$ \\
% Uses |operatorfont|.
%
% \endinput
% Local Variables:
% mode: doctex
% TeX-master: "nchairx"
% End: