summaryrefslogtreecommitdiff
path: root/macros/latex/contrib/multenum/multienum.sample
blob: b90f146386db0e22402478cdae3b7397b8102b79 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
%This is a 2-page sample illustrating how to use the
%multienum package

\documentclass{article}
\setlength{\textwidth}{6in}
\setlength{\textheight}{8.5in}
\setlength{\topmargin}{-0.5in}
\setlength{\oddsidemargin}{0.25in}
\usepackage{multicol,multienum}



\begin{document}
\begin{center}
{\Large\bf Sample formating using {\tt multienumerate}}
\end{center}

\bigskip
Sometimes we want to typeset the solutions to exercises. This
is easy to do using the {\tt multienumerate} environment.
\subsection*{Answers to All Exercises}
\begin{multienumerate}
\mitemxxxx{Not}{Linear}{Not}{Quadratic}
\mitemxxxo{Not}{Linear}{No; if $x=3$, then $y=-2$.}
\mitemxx{$(x_1,x_2)=(2+\frac{1}{3}t,t)$ or
$(s,3s-6)$}{$(x_1,x_2,x_3)=(2+\frac{5}{2}s-3t,s,t)$}
\mitemx{$(x_1,x_2,x_3,x_4)= (\frac{1}{4}+\frac{5}{4}s+\frac{3}{4}t-u,s,t,u)$
or $(s,t,u,\frac{1}{4}-s+\frac{5}{4}t+\frac{3}{4}u)$}
\mitemxxxx{$(2,-1,3)$}{None}{$(2,1,0,1)$}{$(0,0,0,0)$}
\end{multienumerate}


\bigskip
\hrule

\bigskip

We can also enumerate the items using an even-only or odd only
counter.
\subsection*{Answers to Even-Numbered Exercises}
\begin{multienumerate}[evenlist]
\mitemxxxx{Not}{Linear}{Not}{Quadratic}
\mitemxxxo{Not}{Linear}{No; if $x=3$, then $y=-2$.}
\mitemxx{$(x_1,x_2)=(2+\frac{1}{3}t,t)$ or
$(s,3s-6)$}{$(x_1,x_2,x_3)=(2+\frac{5}{2}s-3t,s,t)$}
\mitemx{$(x_1,x_2,x_3,x_4)= (\frac{1}{4}+\frac{5}{4}s+\frac{3}{4}t-u,s,t,u)$
or $(s,t,u,\frac{1}{4}-s+\frac{5}{4}t+\frac{3}{4}u)$}
\mitemxxxx{$(2,-1,3)$}{None}{$(2,1,0,1)$}{$(0,0,0,0)$}
\end{multienumerate}

\hrule

\subsection*{Answers to Odd-Numbered Exercises}
\begin{multienumerate}[oddlist]
\mitemxxxx{Not}{Linear}{Not}{Quadratic}
\mitemxxxo{Not}{Linear}{No; if $x=3$, then $y=-2$.}
\mitemxx{$(x_1,x_2)=(2+\frac{1}{3}t,t)$ or
$(s,3s-6)$}{$(x_1,x_2,x_3)=(2+\frac{5}{2}s-3t,s,t)$}
\mitemx{$(x_1,x_2,x_3,x_4)= (\frac{1}{4}+\frac{5}{4}s+\frac{3}{4}t-u,s,t,u)$
or $(s,t,u,\frac{1}{4}-s+\frac{5}{4}t+\frac{3}{4}u)$}
\mitemxxxx{$(2,-1,3)$}{None}{$(2,1,0,1)$}{$(0,0,0,0)$}
\end{multienumerate}

\bigskip
\hrule

\bigskip

Sometimes we want to create sublists which are
enumerated using an alpha counter.

\begin{multienumerate}
\mitemx{Which of the following numbers is the solution of the
equation
$x+3=7$:}
\begin{multienumerate}
\mitemxxxx{1}{2}{3}{4}
\end{multienumerate}
\mitemx{The value of $\log_28$ is:}
\begin{multienumerate}
\mitemxxxx{1}{$-1$}{3}{$-3$}
\end{multienumerate}
\end{multienumerate}
\pagebreak

\begin{multicols}{2}
\subsection*{Answers to All Exercises}
\begin{multienumerate}
\mitemxx{Not}{Linear}
\mitemxx{Not}{Quadratic}
\mitemxx{Not}{Linear}
\mitemx{$(x_1,x_2)=(2+\frac{1}{3}t,t)$ or
$(s,3s-6)$}
\mitemx{$(x_1,x_2,x_3)=(2+\frac{5}{2}s-3t,s,t)$}
\mitemx{$(x_1,x_2,x_3,x_4)= (\frac{1}{4}+\frac{5}{4}s+\frac{3}{4}t-u,s,t,u)$
or $(s,t,u,\frac{1}{4}-s+\frac{5}{4}t+\frac{3}{4}u)$}
\mitemxx{$(2,-1,3)$}{None}
\mitemxx{$(2,1,0,1)$}{$(0,0,0,0)$}
\mitemxx{Not}{Linear}
\mitemxx{Not}{Quadratic}
\mitemxx{Not}{Linear}
\mitemx{$(x_1,x_2)=(2+\frac{1}{3}t,t)$ or
$(s,3s-6)$}
\mitemx{$(x_1,x_2,x_3)=(2+\frac{5}{2}s-3t,s,t)$}
\mitemx{$(x_1,x_2,x_3,x_4)= (\frac{1}{4}+\frac{5}{4}s+\frac{3}{4}t-u,s,t,u)$
or $(s,t,u,\frac{1}{4}-s+\frac{5}{4}t+\frac{3}{4}u)$}
\mitemxx{$(2,-1,3)$}{None}
\mitemxx{$(2,1,0,1)$}{$(0,0,0,0)$}
\mitemxx{Not}{Linear}
\mitemxx{Not}{Quadratic}
\mitemxx{Not}{Linear}
\mitemx{$(x_1,x_2)=(2+\frac{1}{3}t,t)$ or
$(s,3s-6)$}
\mitemx{$(x_1,x_2,x_3)=(2+\frac{5}{2}s-3t,s,t)$}
\mitemx{$(x_1,x_2,x_3,x_4)= (\frac{1}{4}+\frac{5}{4}s+\frac{3}{4}t-u,s,t,u)$
or $(s,t,u,\frac{1}{4}-s+\frac{5}{4}t+\frac{3}{4}u)$}
\mitemxx{$(2,-1,3)$}{None}
\mitemxx{$(2,1,0,1)$}{$(0,0,0,0)$}
\end{multienumerate}

\subsection*{Multiple Choice}
\begin{multienumerate}
\mitemx{Which of the following numbers is the solution of the
equation
$x+3=7$:}
\begin{multienumerate}
\mitemxxxx{1}{2}{3}{4}
\end{multienumerate}
\mitemx{The value of $\log_28$ is:}
\begin{multienumerate}
\mitemxxxx{1}{$-1$}{3}{$-3$}
\end{multienumerate}
\mitemx{Which of the following numbers is the solution of the
equation
$x+3=7$:}
\begin{multienumerate}
\mitemxxxx{1}{2}{3}{4}
\end{multienumerate}
\mitemx{The value of $\log_28$ is:}
\begin{multienumerate}
\mitemxxxx{1}{$-1$}{3}{$-3$}
\end{multienumerate}
\mitemx{Which of the following numbers is the solution of the
equation
$x+3=7$:}
\begin{multienumerate}
\mitemxxxx{1}{2}{3}{4}
\end{multienumerate}
\mitemx{The value of $\log_28$ is:}
\begin{multienumerate}
\mitemxxxx{1}{$-1$}{3}{$-3$}
\end{multienumerate}
\end{multienumerate}
\end{multicols}

\end{document}