1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
|
%Mecaso, un package LaTeX pour les formules en mécanique du solide
%Conçu par : Youssef DERRAZI, version 1.0
%Distribué sous la license GNU Public License V3.0
\NeedsTeXFormat{LaTeX2e}
\ProvidesPackage{mecaso}[2021/08/27 v1.0]
\RequirePackage{amsmath}
\RequirePackage{amssymb}
\RequirePackage{mathrsfs}
%Commands :
\newcommand{\R}{\mathbb{R}}
%Derivative on line \Dex[R]{u(t)} :
\newcommand{\Dex}[2][R]{\frac{d}{dt}{#2}\bigg|_{#1}}
%Derivative on fraction \Din[R]{u(t)} :
\newcommand{\Din}[2][R]{\frac{d{#2}}{dt}\bigg|_{#1}}
%Vector representation \Vct{AB} :
\newcommand{\Vct}[1]{\overrightarrow{#1}}
%################################### A-Kinematics :
%Rotation vector definition \Rotation[R]{S} :
\newcommand{\Rotation}[2][R]{\Vct{\omega}_{#2/#1}}
%Velocity vector definition \Vel[R]{A}{S} :
\newcommand{\Vel}[3][R]{\Vct{v}_{#2\in #3/#1}}
%Transport formula for velocities \VARK[R]{A}{B}{S} :
\newcommand{\VARK}[4][R]{\Vel[#1]{#3}{#4}=\Vel[#1]{#2}{#4}+\Rotation[#1]{#4}\times\Vct{#2 #3}}
%################################### B-Statics :
%Force vector definition \Force[S]{Ext} :
\newcommand{\Force}[2][S]{\Vct{F}_{#2\rightarrow #1}}
%Moment vector definition with force precision \Moment[S]{Ext}{A} :
\newcommand{\Moment}[3][S]{\Vct{M}_{#3}(\Vct{F}_{#2\rightarrow #1})}
%Moment vector definition without force precision \Gmoment{Force}{A} :
\newcommand{\Gmoment}[2]{\Vct{M}_{#2}(#1)}
%Transport formula for moments with force precision \VARS[S]{A}{B}{Ext} :
\newcommand{\VARS}[4][S]{\Moment[#1]{#4}{#3}=\Moment[#1]{#4}{#2}+\Force[#1]{#4}\times\Vct{#2 #3}}
%Transport formula for moments without force precision \GVARS{Force}{A}{B} :
\newcommand{\GVARS}[3]{\Gmoment{#1}{#3}=\Gmoment{#1}{#2}+{#1}\times\Vct{#2 #3}}
%Volumetric force resultant \Vnet[S]{f}{Ext} :
\newcommand{\Vnet}[3][S]{\iiint_{M \in #1}\Vct{#2}_{#3\rightarrow #1}(M)dm}
%Volumetric force resultant with explicit volume \VVnet[S]{f}{Ext} :
\newcommand{\VVnet}[3][S]{\iiint_{M \in #1}\rho(M)\Vct{#2}_{#3\rightarrow #1}(M)dV}
%Surface force resultant \Snet[S]{T}{Ext} :
\newcommand{\Snet}[3][S]{\iint_{M \in \partial #1}\Vct{#2}_{#3\rightarrow #1}(M)dS}
%Surface force resultant with explicit normal \SSnet[S]{T}{Ext}{n} :
\newcommand{\SSnet}[4][S]{\iint_{M \in \partial #1}{#2}_{#3\rightarrow #1}(M)\Vct{#4}dS}
%################################### C-Kinetics :
%Momentum vector definition \Psr[R]{S} :
\newcommand{\Psr}[2][R]{\Vct{p}_{#2/#1}}
%Momentum vector 2nd definition \Mv[R]{S} :
\newcommand{\Mv}[2][R]{m_{#2}\Vel[#1]{G}{#2}}
%Angular momentum integral def \Lmi[R]{A}{S}:
\newcommand{\Lmi}[3][R]{\int_{M \in {#3}}\Vct{#2 M}\times \Vel[#1]{M}{#3} dm}
%Angular momentum definition \Lm[R]{A}{S} :
\newcommand{\Lm}[3][R]{\Vct{L}_{#2, #3/#1}}
%Transport formula for angular momenta \VARC[R]{A}{B}{S} :
\newcommand{\VARC}[4][R]{\Lm[#1]{#3}{#4}=\Lm[#1]{#2}{#4}+\Psr[#1]{#4}\times\Vct{#2 #3}}
%Alternate transport formula for angular momenta \AVARC[R]{A}{B}{S} :
\newcommand{\AVARC}[4][R]{\Lm[#1]{#3}{#4}=\Lm[#1]{#2}{#4}+\Mv[#1]{#4}\times\Vct{#2 #3}}
%Inertia tensor definition \Inertia[R]{A}{S} :
\newcommand{\Inertia}[3][R]{\overline{\overline{I}}_{#2}(#3/#1)}
%Angular momentum general definition on arbitrary point \LA[R]{A}{S} :
\newcommand{\LA}[3][R]{m_{#3}\Vct{#2 G}\times \Vel[#1]{G}{#3}+\Inertia[#1]{#2}{#3} \cdot \Rotation[#1]{#3}}
%Angular momentum general definition on fixed point and/or center of gravity \LF[R]{A}{S} :
\newcommand{\LF}[3][R]{\Inertia[#1]{#2}{#3} \cdot \Rotation[#1]{#3}}
%Transport inertia tensor from G to A \Ip[S]{G}{A} :
\newcommand{\Ip}[3][S]{\overline{\overline{I}}_{\Vct{#3 #2}}(#1)}
%Huygens formula \Huygens[R]{G}{A}{S} :
\newcommand{\Huygens}[4][R]{\Inertia[#1]{#3}{#4}=\Inertia[#1]{#2}{#4}+ \Ip[#4]{#2}{#3}}
%Standard inertia tensor explicit expression \InertiaE[R]{A}{S} :
\newcommand{\InertiaE}[3][R]{\begin{Bmatrix}
A_{#3} & -D_{#3} & -E_{#3} \\
-D_{#3} & B_{#3} & -F_{#3} \\
-E_{#3} & -F_{#3} & C_{#3}
\end{Bmatrix}_{ (#3 / #1) }}
%################################### C-Dynamics :
%Acceleration vector definition \Acc[R]{A}{S} :
\newcommand{\Acc}[3][R]{\Vct{\Gamma}_{#2\in #3/#1}}
%Acceleration vector differential definition \Accd[R]{A}{S} :
\newcommand{\Accd}[3][R]{\Dex[#1]{\Vel[#1]{#2}{#3}}}
%Coriolis acceleration vector \Coriolis{R_0}{R_1}{A}{S} :
\newcommand{\Coriolis}[4]{2\Rotation[#1]{#2}\times\Vel[#2]{#3}{#4}}
%Transport acceleration vector \Entr{R_0}{R_1}{O}{A} :
\newcommand{\Entr}[4]{\Acc[#1]{#3}{#2}+\Rotation[#1]{#2}\times(\Rotation[#1]{#2}\times \Vct{#3 #4})+\Dex[#1]{\Rotation[#1]{#2}}\times\Vct{#3 #4}}
%Acceleration momentum vector definition \Am[R]{S} :
\newcommand{\Am}[2][R]{\Vct{d}_{#2/#1}}
%Acceleration momentum vector 2nd definition \Amg[R]{S} :
\newcommand{\Amg}[2][R]{m_{#2}\Acc[#1]{G}{#2}}
%Dynamic momentum integral def \IDelta[R]{A}{S}:
\newcommand{\IDelta}[3][R]{\int_{M \in {#3}}\Vct{#2 M}\times \Acc[#1]{M}{#3} dm}
%Dynamic momentum definition \ADelta[R]{A}{S} :
\newcommand{\ADelta}[3][R]{\Vct{\delta}_{#2, #3/#1}}
%Transport formula for dynamic momenta \VARD[R]{A}{B}{S} :
\newcommand{\VARD}[4][R]{\ADelta[#1]{#3}{#4}=\ADelta[#1]{#2}{#4}+\Am[#1]{#4}\times\Vct{#2 #3}}
%Alternate transport formula for dynamic momenta \AARD[R]{A}{B}{S} :
\newcommand{\AVARD}[4][R]{\ADelta[#1]{#3}{#4}=\ADelta[#1]{#2}{#4}+\Amg[#1]{#4}\times\Vct{#2 #3}}
%Dynamic momentum general expression \EDelta[R]{A}{S} :
\newcommand{\EDelta}[3][R]{\Dex[#1]{\Lm[#1]{#2}{#3}}+m_{#3}\Vct{v}_{#2/#1}\times\Vct{v}_{G/#1}}
%Dynamic momentum general expression for fixed point or center of gravity \FDelta[R]{G}{S} :
\newcommand{\FDelta}[3][R]{\Dex[#1]{\Lm[#1]{#2}{#3}}}
%################################### D-Screw field representation :
%Kinematic screw field on a point \Ktor[R]{A}{S}:
\newcommand{\Ktor}[3][R]{\begin{Bmatrix}
\mathscr{V}_{({#3}/{#1})}
\end{Bmatrix}=
\begin{Bmatrix}
\Rotation[#3]{#1} \\
\Vel[#1]{#2}{#3}
\end{Bmatrix}_{#2}}
%Explicit kinematic screw field for a support \EKtor[R]{A}{S} :
\newcommand{\EKtor}[3][R]{\begin{Bmatrix}
\mathscr{V}_{({#3}/{#1})}
\end{Bmatrix}=
\begin{Bmatrix}
\omega_{x,({#3}/{#1})} & v_{x,(#2\in #3/#1)} \\
\omega_{y,({#3}/{#1})} & v_{y,(#2\in #3/#1)} \\
\omega_{z,({#3}/{#1})} & v_{z,(#2\in #3/#1)}
\end{Bmatrix}_{#2}}
%Static screw field on a point \Stor[S]{Ext}{A}:
\newcommand{\Stor}[3][S]{\begin{Bmatrix}
\mathscr{T}_{({#2}\rightarrow{#1})}
\end{Bmatrix}=
\begin{Bmatrix}
\Force[#1]{#2} \\
\Moment[#1]{#2}{#3}
\end{Bmatrix}_{#3}}
%Kinetic screw field on a point \Ctor[R]{A}{S}:
\newcommand{\Ctor}[3][R]{\begin{Bmatrix}
\mathscr{C}_{({#3}/{#1})}
\end{Bmatrix}=
\begin{Bmatrix}
\Psr[#3]{#1} \\
\Lm[#1]{#2}{#3}
\end{Bmatrix}_{#2}}
%Dynamic screw field on a point \Dtor[R]{A}{S}:
\newcommand{\Dtor}[3][R]{\begin{Bmatrix}
\mathscr{D}_{({#3}/{#1})}
\end{Bmatrix}=
\begin{Bmatrix}
\Am[#3]{#1} \\
\ADelta[#1]{#2}{#3}
\end{Bmatrix}_{#2}}
%Explicit static screw field for a support \Ltor{S_1}{S_2}{A} :
\newcommand{\Ltor}[3]{\begin{Bmatrix}
\mathscr{L}_{({#1}\rightarrow{#2})}
\end{Bmatrix}=
\begin{Bmatrix}
X_{({#1}\rightarrow{#2})} & L_{({#1}\rightarrow{#2})} \\
Y_{({#1}\rightarrow{#2})} & M_{({#1}\rightarrow{#2})} \\
Z_{({#1}\rightarrow{#2})} & N_{({#1}\rightarrow{#2})}
\end{Bmatrix}_{#3}}
%Explicit static screw field for a planar support \Lptor{S_1}{S_2}{A} :
\newcommand{\Lptor}[3]{\begin{Bmatrix}
\mathscr{L}_{({#1}\rightarrow{#2})}
\end{Bmatrix}=
\begin{Bmatrix}
X_{({#1}\rightarrow{#2})} & 0 \\
Y_{({#1}\rightarrow{#2})} & 0 \\
0 & M_{({#1}\rightarrow{#2})}
\end{Bmatrix}_{#3}}
%Empty screw field template on a point \Ftor[S/R]{W}{A}{B}{O}:
\newcommand{\Ftor}[5][Ref]{\begin{Bmatrix}
\mathscr{#2}_{#1}
\end{Bmatrix}=
\begin{Bmatrix}
{#3} \\
{#4}
\end{Bmatrix}_{#5}}
%Empty explicit screw field template on a point \LFtor[S/R]{W}{X}{Y}{Z}{X}{Y}{Z}{0}:
\newcommand{\LFtor}[9][Ref]{\begin{Bmatrix}
\mathscr{#2}_{#1}
\end{Bmatrix}=
\begin{Bmatrix}
{#3} & {#6} \\
{#4} & {#7} \\
{#5} & {#8}
\end{Bmatrix}_{#9}}
%################################### E-Energy and power :
%Power delivered from ext to S \Pow[R]{S}{Ext} :
\newcommand{\Pow}[3][R]{P_{(#3 \rightarrow #2/#1)}}
%Power delivered from ext to S, screw expression \Ptor[R]{S}{Ext} :
\newcommand{\Ptor}[3][R]{\begin{Bmatrix}
\mathscr{T}_{({#3}\rightarrow{#2})}
\end{Bmatrix} \otimes \begin{Bmatrix}
\mathscr{V}_{({#2}/{#1})}
\end{Bmatrix}}
%Power delivered from ext to S, explicit expression \Power[R]{A}{S}{Ext} :
\newcommand{\Power}[4][R]{\Force[#3]{#4}\cdot\Vel[#1]{#2}{#3} + \Gmoment{\Force[#3]{#4}}{#2}\cdot \Rotation[#1]{#3}}
%Power delivered from ext to S, integral expression \IPow[R]{S}{f} :
\newcommand{\IPow}[3][R]{\int_{M \in #2} \Vct{#3}(M)\cdot \Vel[#1]{M}{#2} dm}
%Internal support power \LPow{S_1}{S_2} :
\newcommand{\LPow}[2]{P_{(#1 \leftrightarrow #2)}}
%Internal support power, screw definition \PLtor{S_1}{S_2} :
\newcommand{\PLtor}[2]{\begin{Bmatrix}
\mathscr{T}_{({#1}\rightarrow{#2})}
\end{Bmatrix} \otimes \begin{Bmatrix}
\mathscr{V}_{({#2}/{#1})}
\end{Bmatrix}}
%Kinetic energy, integral expression \KE[R]{S}:
\newcommand{\KE}[2][R]{ \frac{1}{2}\int_{M \in #2} \Vel[#1]{M}{#2}^{2}dm }
%Kinetic energy, screw expression \KEtor[R]{S}:
\newcommand{\KEtor}[2][R]{\frac{1}{2} \begin{Bmatrix}
\mathscr{C}_{(#2 / #1)}
\end{Bmatrix} \otimes \begin{Bmatrix}
\mathscr{V}_{(#2 / #1)}
\end{Bmatrix}}
%Kinetic energy, translation only \KineticT[R]{A}{S}:
\newcommand{\KineticT}[3][R]{\frac{1}{2}m_{#3}\Vel[#1]{#2}{#3}^{2}}
%Kinetic energy, rotation about center only \KineticR[R]{C}{S}:
\newcommand{\KineticR}[3][R]{\frac{1}{2}\Rotation[#1]{#3} \cdot (\Inertia[#1]{#2}{#3} \cdot \Rotation[#1]{#3})}
%Kinetic energy, general expression \Kinetic[R]{A}{S}:
\newcommand{\Kinetic}[3][R]{\KineticT[#1]{#2}{#3} + \KineticR[#1]{#2}{#3} + m_{#3} \Rotation[#1]{#3} \cdot( \Vct{#2 G} \times \Vel[#1]{#2}{#3}) }
%Kinetic energy written in G \KineticG[R]{S}:
\newcommand{\KineticG}[2][R]{\KineticT[#1]{G}{#2} + \KineticR[#1]{G}{#2}}
\endinput
|