summaryrefslogtreecommitdiff
path: root/macros/latex/contrib/lapdf/lapdf.sty
blob: 541aa51b8973fc2a0399beb90d2f98f3430649a9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
% =========================================================================
% LAPDF.STY: Version 1.1, Copyright(C) 2006-2011, Detlef Reimers
% Lapdf is distributed under the terms of the GNU general public licence
% -------------------------------------------------------------------------
% Email:   detlefreimers@gmx.de     Website: http://detlefreimers.de
% =========================================================================
\NeedsTeXFormat{LaTeX2e}
\ProvidesPackage{lapdf}[2006/04/09 v1.0 Drawing with pdfTeX]
\RequirePackage{calc}

\newtoks\@c \newtoks\@d \newtoks\@e \newtoks\@f

\let\@ta\@tempcnta \let\@tb\@tempcntb \newcount\@@s
\newcount\@@i \newcount\@@k \newcount\@@n \newcount\col
\newcount\@az \newcount\@bz \newcount\@cz \newcount\@xz
\newcount\@ca \newcount\@cb \newcount\@cc \newcount\@cd
\newcount\@ce \newcount\@cf \newcount\@cg \newcount\@ch
\newcount\@ci \newcount\@ck \newcount\@cl \newcount\@cm
\newcount\@cn

\let\@tbox\@tempboxa
\let\@@a\@ovdx \let\@@b\@ovdy \let\@@t\@ovxx \let\@@u\@ovyy
\newdimen\wid \newdimen\tmp
\newdimen\@@d \newdimen\@@m \newdimen\@@x \newdimen\@@y
\newdimen\@@A \newdimen\@@B \newdimen\@@C \newdimen\@@D
\newdimen\@@T \newdimen\@@U \newdimen\@@X \newdimen\@@Y
\newdimen\@CR \newdimen\@CG \newdimen\@CB
\newdimen\@ax \newdimen\@ay \newdimen\@az
\newdimen\@bx \newdimen\@by \newdimen\@bz
\newdimen\@cx \newdimen\@cy \newdimen\@cz
\newdimen\@dx \newdimen\@dy \newdimen\@dz
\newdimen\@ex \newdimen\@ey \newdimen\@ez
\newdimen\@fx \newdimen\@fy \newdimen\@fz
\newdimen\@gx \newdimen\@gy \newdimen\@gz
\newdimen\@hx \newdimen\@hy \newdimen\@hz
\newdimen\@rx \newdimen\@ry \newdimen\@rz \newdimen\@rw
\newdimen\@sx \newdimen\@sy \newdimen\@tx \newdimen\@ty
\newdimen\@ux \newdimen\@uy \newdimen\@vx \newdimen\@vy
\newdimen\@wx \newdimen\@wy
\newdimen\@xx \newdimen\@xy \newdimen\@xz
\newdimen\@zx \newdimen\@zy \newdimen\@zz
\newdimen\@yx \newdimen\@yy

% -------------------------------------------------------------------------
\@ck=0
\wid=0.35pt

% -------------------------------------------------------------------------
\DeclareOption{black}{%
 \@cl=0
 \gdef\Resetcol{}
 \gdef\Stepcol(#1,#2,#3){}
 \gdef\Nextcol(#1,#2){}
}
\DeclareOption{color}{%
 \@cl=1
 \gdef\Resetcol{\col=-1}
 \gdef\Stepcol(#1,#2,#3){%
  \@cc=\col \Add(\@cc,#3)
  \ifnum#1<0 \@ca=0 \else \@ca=#1 \fi
  \ifnum#2>95 \@cb=95 \else \@cb=#2 \fi
  \ifnum\col<\@ca \col=\@ca \else
   \ifnum\col>\@cb \col=\@ca \else
    \ifnum\@cc<\@ca \col=\@ca \else
     \ifnum\@cc>\@cb \col=\@ca \else \col=\@cc \fi\fi\fi\fi
  \ifnum\col<96%
   \Colval(\col,8,\@rx)
   \Colval(\col,0,\@gx)
   \Colval(\col,16,\@bx)
   \Setcol(\Np\@rx,\Np\@gx,\Np\@bx) \fi}
 \gdef\Nextcol(#1,#2){\Stepcol(#1,#2,1)}
}

% -------------------------------------------------------------------------
% Calculates the cromatic intensity of a specific color. n is the color,
% d is the color offset (r: 8, g: 0, b: 16) and r is the result register.
%   \Colval(n,d,r)
% -------------------------------------------------------------------------
\gdef\Colval(#1,#2,#3){%
 \ifnum#1>71 \@cm=3 \else \ifnum#1>47 \@cm=2 \else
  \ifnum#1>23 \@cm=1 \else \@cm=0 \fi \fi \fi
 \@cn=#1 \Add(\@cn,#2) \Mod(\@cn,24)
 \Sub(\@cn,8) \Abs(\@cn)
 \ifnum\@cn<4 \Dset(#3,1) \else
  \ifnum\@cn<8 \Dset(#3,8) \Dsub(#3,\@cn)
   \Div(#3,4) \else \Dset(#3,0) \fi \fi
 \Dset(\@tx,5) \Dsub(\@tx,\@cm) \Dmul(#3,\@tx) \Div(#3,5) \Crnd(#3)}

% -------------------------------------------------------------------------
% This macro is only necessary, because my TeX compiler under MacOS9.2
% says 'out of color stack space' without the rounding. With this function,
% all color values have two digits or less. \Crnd(col)
% -------------------------------------------------------------------------
\gdef\Crnd(#1){\Ddiv(#1,0.0999pt) \Mul(#1,10) \Dint(#1) \Ddiv(#1,100pt)}

% -------------------------------------------------------------------------
\ExecuteOptions{black}
\ProcessOptions
 \ifnum\@cl>0 \AtBeginDocument{\Resetcol} \fi

% -------------------------------------------------------------------------
% Strips the pt dimension
% -------------------------------------------------------------------------
{\catcode`t=12\catcode`p=12\gdef\nP#1pt{#1}}
\gdef\Np#1{\expandafter\nP\the#1}%

% -------------------------------------------------------------------------
%   \Lapdf{}  the Lapdf logo
% -------------------------------------------------------------------------
\def\Lapdf{L\kern-.2em\lower.5ex\hbox{A}\kern-.15emPDF}

% -------------------------------------------------------------------------
%   \pdfTeX{}  a pdfTeX logo
% -------------------------------------------------------------------------
\def\pdfTeX{\hbox{pdf}\kern+.05em\TeX{}}

% -------------------------------------------------------------------------
%   \PDF{cmd} for the pdf specials, which are used here
% -------------------------------------------------------------------------
\gdef\PDF#1{\@killglue\special{pdf:#1}}

% -------------------------------------------------------------------------
%   \lapdf(x1,y1)(x2,y2)  the lapdf environment
% -------------------------------------------------------------------------
\newcommand{\pdf}{\Gsave \Scale(\Np\unitlength,\Np\unitlength)
 \Setwidth(0.02) \Setcap(1) \Setdash([] 0)}
\def\endpdf{\Grestore}

\newcommand{\lapdf}{\@pdfpict}
 \gdef\@pdfpict(#1,#2)(#3,#4){\begin{picture}(#1,#2)(#3,#4) \begin{pdf}}
\def\endlapdf{\end{pdf} \end{picture}}

% -------------------------------------------------------------------------
% Gets the unit length from document. Define and set a register.
% -------------------------------------------------------------------------
\gdef\Ul{\unitlength}
\gdef\Set(#1,#2){#1=#2}
\gdef\Dset(#1,#2){#1=#2pt}
\gdef\Defnum(#1,#2){\newcount#1 #1=#2}
\gdef\Defdim(#1,#2){\newdimen#1 #1=#2pt}

% -------------------------------------------------------------------------
% Two macros for count or dimen registers. If nested, you have to use
% brackets around the inner looop.
%  \whilenum{num condition}{commands}  \whiledim{dim condition}{commands}
% -------------------------------------------------------------------------
\gdef\Whilenum#1#2{\loop\ifnum#1#2\repeat}
\gdef\Whiledim#1#2{\loop\ifdim#1pt#2\repeat}

% -------------------------------------------------------------------------
% Arithmetic with count registers.
% -------------------------------------------------------------------------
\gdef\Add(#1,#2){\advance#1#2}
\gdef\Sub(#1,#2){\advance#1-#2}
\gdef\Mul(#1,#2){\multiply#1#2}
\gdef\Div(#1,#2){\divide#1#2}
\gdef\@Abs(#1){\ifnum#1<\z@ #1=-#1 \@@s=-1 \else \@@s=1 \fi}
\gdef\Abs(#1){\ifnum#1<\z@ #1=-#1 \fi}
\gdef\Sig(#1,#2){\ifnum#1<\z@ \Set(#2,-1) \else \Set(#2,1) \fi}
\gdef\Mod(#1,#2){\@@i=#1 \Div(\@@i,#2) \Mul(\@@i,#2) \Sub(#1,\@@i)}

% -------------------------------------------------------------------------
% Arithmetic with dimen registers. Dmul & Ddiv use the calc package.
% -------------------------------------------------------------------------
\gdef\Dadd(#1,#2){\advance#1#2pt}
\gdef\Dsub(#1,#2){\advance#1-#2pt}
\gdef\Dmul(#1,#2){\setlength{#1}{#1*\ratio{#2}{1pt}}}
\gdef\Ddiv(#1,#2){\setlength{#1}{1pt*\ratio{#1}{#2}}}
\gdef\@Dabs(#1){\ifdim#1<\z@ #1=-#1 \@@s=-1 \else \@@s=1 \fi}
\gdef\Dabs(#1){\ifdim#1<\z@ #1=-#1 \fi}
\gdef\Dint(#1){\@@i=#1 \Div(\@@i,65536) \Dset(#1,\@@i)}
\gdef\Dsig(#1,#2){\ifdim#1<\z@ \Set(#2,-1) \else \Set(#2,1) \fi}
\gdef\Dmod(#1,#2){\@@m=#1 \Ddiv(\@@m,#2pt)
 \Dint(\@@m) \Dmul(\@@m,#2pt) \Sub(#1,\@@m)}

% -------------------------------------------------------------------------
% Conversion to radian or degree.
%   \Rad(x,result)   \Deg(x,result)
% -------------------------------------------------------------------------
\gdef\Rad(#1,#2){\Dset(#2,#1) #2=0.017453#2}
\gdef\Deg(#1,#2){\Dset(#2,#1) #2=57.29578#2}

% -------------------------------------------------------------------------
% Calculates the sinus of an angle r in radian. The result is returned
% in register r. First, we reduce the argument to [0,2pi]. \Sin(x,r)
% -------------------------------------------------------------------------
\gdef\Sin(#1,#2){%
 \Dset(\@@x,#1) \Dmod(\@@x,6.2832)
 \@@y=\@@x \@@a=\@@x
 \Dset(\@@d,1) \@ta=1
 \@whiledim{\@@d>0pt}\do{%
  \Dmul(\@@a,\@@x) \Add(\@ta,1) \Div(\@@a,\@ta)
  \Dmul(\@@a,\@@x) \Add(\@ta,1) \Div(\@@a,\@ta)
  \@@a=-\@@a \Add(\@@y,\@@a) \@@d=\@@a \Dabs(\@@d)} #2=\@@y}

% -------------------------------------------------------------------------
% Calculates the cosinus of an angle r in radian. The result is returned
% in register r. First, we reduce the argument to [0,2pi]. \Cos(x,r)
% -------------------------------------------------------------------------
\gdef\Cos(#1,#2){%
 \Dset(\@@x,#1) \Dmod(\@@x,6.2832)
 \Dset(\@@d,1) \@ta=0
 \Dset(\@@y,1) \Dset(\@@a,1)
 \@whiledim{\@@d>0pt}\do{%
  \Dmul(\@@a,\@@x) \Add(\@ta,1) \Div(\@@a,\@ta)
  \Dmul(\@@a,\@@x) \Add(\@ta,1) \Div(\@@a,\@ta)
  \@@a=-\@@a \Add(\@@y,\@@a) \@@d=\@@a \Dabs(\@@d)} #2=\@@y}

% -------------------------------------------------------------------------
% Calculates the tangens of an angle r in radian. The result is returned
% in register r.  First, we reduce the argument to [0,2pi]. We limit the
% maximum value at |n/2*pi| to 5. \Tan(x,r)
% -------------------------------------------------------------------------
\gdef\Tan(#1,#2){%
 \Dset(\@@U,#1) \Dmod(\@@U,6.2832)
 \Sin(\Np\@@U,\@@X) \Cos(\Np\@@U,\@@Y)
 \ifdim\@@Y=0pt \Dset(\@@X,5) \else \Ddiv(\@@X,\@@Y) \fi
 #2=\@@X}

% -------------------------------------------------------------------------
% Calculates the arcus sinus of x. The result is returned in register r.
% \Asin(x,r)
% -------------------------------------------------------------------------
\gdef\Asin(#1,#2){%
 \Dset(\@@x,#1) \@ta=1
 \ifdim\@@x<1.0pt
  \ifdim\@@x>-1.0pt
   \@@y=\@@x \@@t=\@@x \Dset(\@@d,1)
   \@whiledim{\@@d>0pt}\do{%
    \Mul(\@@t,\@ta) \Dmul(\@@t,\@@x) \Add(\@ta,1)
    \Div(\@@t,\@ta) \Dmul(\@@t,\@@x) \Add(\@ta,1)
    \@@u=\@@t \Div(\@@t,\@ta) \Add(\@@y,\@@t)
    \@@d=\@@t \Dabs(\@@d) \@@t=\@@u}
  \else \Dset(\@@y,-1.5708) \fi
 \else \Dset(\@@y,1.5708) \fi #2=\@@y}

% -------------------------------------------------------------------------
% Calculates the arcus cosinus of x. The result is returned in register r.
% \Acos(x,r)
% -------------------------------------------------------------------------
\gdef\Acos(#1,#2){%
 \Asin(#1,\@@y) \Dset(#2,1.5708) \Sub(#2,\@@y)}

% -------------------------------------------------------------------------
% Calculates the arcus tangens of x. The result is returned in register r.
% Because the power series of atan converges too slowly, we use the
% addition theorem of atan and split the calculation to get accurate
% results. \Atan(x,r)
% -------------------------------------------------------------------------
\gdef\Atan(#1,#2){%
 \Dset(\@@x,#1) \@ta=1 \@Dabs(\@@x)
 \ifdim\@@x<0.2500pt \Dset(\@@u,0.00000)
  \@@a=1.0\@@x \Dsub(\@@a,0) \@@b=0.0\@@x \Dadd(\@@b,1)
 \else
  \ifdim\@@x<0.6875pt \Dset(\@@u,0.46365)
   \@@a=2.0\@@x \Dsub(\@@a,1) \@@b=1.0\@@x \Dadd(\@@b,2)
  \else
   \ifdim\@@x<1.1875pt \Dset(\@@u,0.78540)
    \@@a=1.0\@@x \Dsub(\@@a,1) \@@b=1.0\@@x \Dadd(\@@b,1)
   \else
    \ifdim\@@x<3.375pt \Dset(\@@u,0.98279)
     \@@a=2.0\@@x \Dsub(\@@a,3) \@@b=3.0\@@x \Dadd(\@@b,2)
    \else \Dset(\@@u,1.57080)
     \@@a=0.0\@@x \Dsub(\@@a,1) \@@b=1.0\@@x \Dadd(\@@b,0)
    \fi\fi\fi\fi
 \Ddiv(\@@a,\@@b) \@@x=\@@a \@@y=\@@x \@@t=\@@x \Dset(\@@d,1)
 \@whiledim{\@@d>0pt}\do{%
  \Dmul(\@@t,\@@x) \Add(\@ta,2)
  \Dmul(\@@t,\@@x) \Div(\@@t,\@ta)
  \@@t=-\@@t \Add(\@@y,\@@t)
  \@@d=\@@t \ifdim\@@d<0pt \@@d=-\@@d \fi}
 \Add(\@@y,\@@u) \Mul(\@@y,\@@s) #2=\@@y}

% -------------------------------------------------------------------------
% Calculates the sinus hyperbolicus. The result is returned in register r.
% \Sinh(x,r)
% -------------------------------------------------------------------------
\gdef\Sinh(#1,#2){%
 \Dset(\@@x,#1) \@ta=1
 \@@y=\@@x \@@t=\@@x \Dset(\@@d,1)
 \@whiledim{\@@d>0pt}\do{%
  \Dmul(\@@t,\@@x) \Add(\@ta,1) \Div(\@@t,\@ta)
  \Dmul(\@@t,\@@x) \Add(\@ta,1) \Div(\@@t,\@ta)
  \Add(\@@y,\@@t) \@@d=\@@t \Dabs(\@@d)} #2=\@@y}

% -------------------------------------------------------------------------
% Calculates the cosinus hyperbolicus. The result is returned in register
% r. \Cosh(x,r)
% -------------------------------------------------------------------------
\gdef\Cosh(#1,#2){%
 \Dset(\@@x,#1) \@ta=0
 \Dset(\@@y,1) \Dset(\@@t,1) \Dset(\@@d,1)
 \@whiledim{\@@d>0pt}\do{%
  \Dmul(\@@t,\@@x) \Add(\@ta,1) \Div(\@@t,\@ta)
  \Dmul(\@@t,\@@x) \Add(\@ta,1) \Div(\@@t,\@ta)
  \Add(\@@y,\@@t) \@@d=\@@t \Dabs(\@@d)} #2=\@@y}

% -------------------------------------------------------------------------
% Calculates the tangens hyperbolicus. The result is returned in register
% r. \Tanh(x,r)
% -------------------------------------------------------------------------
\gdef\Tanh(#1,#2){%
 \Dset(\@@a,#1) \Dset(\@@b,#1)
 \Cosh(#1,\@@a) \Sinh(#1,\@@b)
 \Ddiv(\@@b,\@@a) #2=\@@b}

% -------------------------------------------------------------------------
% Calculates the area sinus of x. The result is returned register r.
% \Asinh(x,r)
% -------------------------------------------------------------------------
\gdef\Asinh(#1,#2){%
 \Dset(\@@a,#1) \Dmul(\@@a,\@@a)
 \Dadd(\@@a,1) \Sqrt(\Np\@@a,\@@a)
 \Dadd(\@@a,#1) \Ln(\Np\@@a,\@@a) #2=\@@a}

% -------------------------------------------------------------------------
% Calculates the area cosinus of x. The result is returned register r.
% \Acosh(x,r)
% -------------------------------------------------------------------------
\gdef\Acosh(#1,#2){%
 \Dset(\@@a,#1)
 \ifdim\@@a<12pt \Dmul(\@@a,\@@a)
  \Dsub(\@@a,1) \Sqrt(\Np\@@a,\@@a)
  \Dadd(\@@a,#1) \Ln(\Np\@@a,\@@a)
 \else \Add(\@@a,\@@a) \Ln(\Np\@@a,\@@a) \fi #2=\@@a}

% -------------------------------------------------------------------------
% Calculates the area tangens of x. The result is returned register r.
% We limit the maximum value of atanh to 5. \Atanh(x,r)
% -------------------------------------------------------------------------
\gdef\Atanh(#1,#2){%
 \Dset(\@@a,#1) \@Dabs(\@@a)
 \ifdim\@@a>0.9999pt \Dset(\@@a,5) \else
  \Dset(\@@b,1) \Sub(\@@b,\@@a) \Dadd(\@@a,1)
  \Ln(\Np\@@a,\@@a) \Ln(\Np\@@b,\@@b)
  \Sub(\@@a,\@@b) \Div(\@@a,2) \fi
 \Mul(\@@a,\@@s) #2=\@@a}

% -------------------------------------------------------------------------
% Calculates the natural logarithm. The result is returned in register r.
% For large numbers we reduce the argument x, using  ln(x)=ln(x/e^k)+k.
% For small numbers we enlarge the argument x, using ln(x)=ln(x*e^k)-k.
% The value of k is added at the end. \Ln(x,r)
% -------------------------------------------------------------------------
\gdef\Ln(#1,#2){%
 \Dset(\@@x,#1) \Dset(\@@t,2.71828) \@ta=1 \@tb=0
 \@whiledim{\@@x>\@@t}\do{\Ddiv(\@@x,\@@t) \Add(\@tb,1)}
 \@whiledim{\@@x<1pt}\do{\Dmul(\@@x,\@@t) \Sub(\@tb,1)}
 \@@t=\@@x \Dadd(\@@t,1)
 \Dsub(\@@x,1) \Ddiv(\@@x,\@@t)
 \@@y=\@@x \@@t=\@@x \Dset(\@@d,1)
 \@whiledim{\@@d>0pt}\do{%
  \Dmul(\@@t,\@@x) \Dmul(\@@t,\@@x)
  \@@u=\@@t \Add(\@ta,2) \Div(\@@t,\@ta)
  \Add(\@@y,\@@t) \@@d=\@@t \ifdim\@@d<0pt \@@d=-\@@d \fi
  \@@t=\@@u} \Mul(\@@y,2) \Dadd(\@@y,\@tb) #2=\@@y}

% -------------------------------------------------------------------------
% Calculates the logarithm of x to basis a. The result is returned in
% register r. \Log(a,x,r)
% -------------------------------------------------------------------------
\gdef\Log(#1,#2,#3){%
 \Ln(#1,\@ax) \Ln(#2,\@@x)
 \Ddiv(\@@x,\@ax) #3=\@@x}

% -------------------------------------------------------------------------
% Calculates the natural power of x. The result is returned in register r.
% \Exp(x,r)
% -------------------------------------------------------------------------
\gdef\Exp(#1,#2){%
 \Dset(\@@x,#1) \@ta=1
 \Dset(\@@y,1) \Dset(\@@t,1) \Dset(\@@d,1)
 \@whiledim{\@@d>0pt}\do{%
  \Dmul(\@@t,\@@x) \Div(\@@t,\@ta) \Add(\@ta,1)
  \Add(\@@y,\@@t) \@@d=\@@t \Dabs(\@@d)} #2=\@@y}

% -------------------------------------------------------------------------
% Calculates the x-th power of number a. The result is returned in
% register r. \Pow(a,x,r)
% -------------------------------------------------------------------------
\gdef\Pow(#1,#2,#3){%
 \Dset(\@@x,#1) \Dset(\@@y,#2)
 \ifdim\@@y=1.0pt #3=\@@x \else
  \ifdim\@@x>0pt
   \Ln(#1,\@@y) \Dset(\@@x,#2) \Dmul(\@@x,\@@y) \@ta=1
   \Dset(\@@y,1) \Dset(\@@t,1) \Dset(\@@d,1)
   \@whiledim{\@@d>0pt}\do{%
    \Dmul(\@@t,\@@x) \Div(\@@t,\@ta) \Add(\@ta,1)
    \Add(\@@y,\@@t) \@@d=\@@t \Dabs(\@@d)}
   #3=\@@y \else #3=\@@x \fi \fi}

% -------------------------------------------------------------------------
% Calculates the n-th root of a number x. The result is returned in
% register r. \Root(x,n,r)
% -------------------------------------------------------------------------
\gdef\Root(#1,#2,#3){%
 \Dset(\@@x,#1) \Dset(\@@y,#2)
 \ifdim\@@y=1pt #3=\@@x \else
  \ifdim\@@x>0pt
   \Ln(#1,\@@x) \Dset(\@@y,#2) \Ddiv(\@@x,\@@y) \@ta=1
   \Dset(\@@y,1) \Dset(\@@t,1) \Dset(\@@d,1)
   \@whiledim{\@@d>0pt}\do{%
    \Dmul(\@@t,\@@x) \Div(\@@t,\@ta) \Add(\@ta,1)
    \Add(\@@y,\@@t) \@@d=\@@t \Dabs(\@@d)}
   #3=\@@y \else #3=\@@x \fi \fi}

% -------------------------------------------------------------------------
% Calculates the n-th potenz (pos or neg integer) of a number a. The
% result is returned in register r. \Pot(a,n,r)
% -------------------------------------------------------------------------
\gdef\Pot(#1,#2,#3){%
  \Dset(\@@x,1) \@cm=#2 \@Abs(\@cm) \@ta=0
  \@whilenum{\@ta<\@cm}\do{%
   \Dmul(\@@x,#1pt) \Add(\@ta,1)}
  \ifnum\@@s<0 \Dset(#3,1) \Ddiv(#3,\@@x) \else #3=\@@x \fi}

% -------------------------------------------------------------------------
% Calculates the square root of a number x. The result is returned in
% register r. First we reduce the argument to get fewer steps. \Sqrt(x,r)
% -------------------------------------------------------------------------
\gdef\Sqrt(#1,#2){%
 \Dset(\@@t,#1) \Dset(\@@x,1) \@@d=\@@x \@@b=\@@x
 \ifdim\@@t=0pt \Dset(#2,0) \else
  \@whiledim{\@@t>4pt}\do{\Div(\@@t,4) \Mul(\@@b,2)}
  \@whiledim{\@@d>0pt}\do{\@@y=\@@t
   \Ddiv(\@@y,\@@x) \Sub(\@@y,\@@x) \Div(\@@y,2)
   \@@d=\@@y \Dabs(\@@d) \Add(\@@x,\@@y)} #2=\Np\@@b\@@x \fi}

% -------------------------------------------------------------------------
% Calculates the distance between two points. The result is returned in
% register r. \Len(x1,y1)(x2,y2)(r)
% -------------------------------------------------------------------------
\gdef\Len(#1,#2)(#3,#4)(#5){%
 \Dset(\@@a,#3) \Sub(\@@a,#1pt)
 \Dset(\@@b,#4) \Sub(\@@b,#2pt)
 \Dmul(\@@a,\@@a) \Dmul(\@@b,\@@b)
 \Add(\@@a,\@@b) \Sqrt(\Np\@@a,#5)}

% -------------------------------------------------------------------------
% Calculates the hypothenuse of a rectangular triangle. The result is
% returned in register r. \Hypot(a,b,r)
% -------------------------------------------------------------------------
\gdef\Hypot(#1,#2,#3){%
 \Dset(\@@a,#1) \Dset(\@@b,#2)
 \Dmul(\@@a,\@@a) \Dmul(\@@b,\@@b)
 \Add(\@@a,\@@b) \Sqrt(\Np\@@a,#3)}

% -------------------------------------------------------------------------
% Calculates the directional angle between two points. The result in rad
% is returned in register r. The first point is the reference point.
% \Direc(x1,y1)(x2,y2)(r)
% -------------------------------------------------------------------------
\gdef\Direc(#1,#2)(#3,#4)(#5){%
 \Dset(\@@X,#3) \Dset(\@@A,#1) \Sub(\@@X,\@@A)
 \Dset(\@@Y,#4) \Dset(\@@B,#2) \Sub(\@@Y,\@@B)
 \@@U=\@@X \Abs(\@@U)
 \ifdim\@@U<0.001pt \Dset(\@@A,1.5708)
  \ifdim\@@Y<0pt \Dadd(\@@A,3.1416) \fi
 \else \@@A=\@@Y \Ddiv(\@@A,\@@X) \Atan(\Np\@@A,\@@A)
  \ifdim\@@X<0pt \Dadd(\@@A,3.1416)
  \else \ifdim\@@Y<0pt \Dadd(\@@A,6.2832) \fi\fi\fi #5=\@@A}

% -------------------------------------------------------------------------
% Rotate a point around the origin by angle a. The result is returned in
% x2,y2. \Rotpoint(a)(x1,y1)(x2,y2)
% -------------------------------------------------------------------------
\gdef\Rotpoint(#1)(#2,#3)(#4,#5){%
 \Dset(\@zx,#2) \Dset(\@zy,#3)
 \Dset(\@yx,#2) \Dset(\@yy,#3)
 \Rad(#1,\@@U)
 \Sin(\Np\@@U,\@@A) \Cos(\Np\@@U,\@@B)
 \Dmul(\@zx,\@@B) \Dmul(\@zy,\@@A)
 \Dmul(\@yx,\@@A) \Dmul(\@yy,\@@B)
 \Sub(\@zx,\@zy) \Add(\@yx,\@yy)
 #4=\@zx #5=\@yx}

% -------------------------------------------------------------------------
% Draws a small point, filled with gray value g (0..1) at x,y.
%   \Point(g)(x,y)
% -------------------------------------------------------------------------
\gdef\Point(#1)(#2,#3){\Gsave \Setwidth(0.01) \Setcol(0,0,0)%
 \Circle(32)(#2,#3,0.065) \Fill(#1,#1,#1) \Grestore}

% -------------------------------------------------------------------------
% TeX typesetting a text at x,y with positional specification s. We have
% to temporary leave lapdf and reenter afterwords. If you want to add any
% macro from the picture environment, you have to use the same procedure.
%   \Text(x,y,s){text}
% -------------------------------------------------------------------------
\gdef\Text(#1,#2,#3)#4{%
 \end{pdf} \normalsize \put(#1,#2){\makebox(0,0)[#3]{#4}} \begin{pdf}}

% -------------------------------------------------------------------------
%   \Setcol(r,g,b) set a color
%   \Setgray(v) set a gray
%   \@setcol(switch,r,g,b) helper function
%      rg and g are fore filling  (f is first param)
%      RG and G are fore stroking (s is first param)
% -------------------------------------------------------------------------
\gdef\@setcol(#1,#2,#3,#4){\def\@c{#1}
 \Dset(\@CR,#2) \Dset(\@CG,#3) \Dset(\@CB,#4)
 \ifnum\@cl=1
  \if\@c f \@f={rg} \else \@f={RG} \fi
  \def\@e{#2 #3 #4}
 \else
   \ifdim\@ax=1.0pt \def\@e{1} \else \def\@e{0} \fi
 \fi
 \PDF{\@e\space \the\@f}}

\gdef\Setcol(#1,#2,#3){\@setcol(s,#1,#2,#3)}
\gdef\Setgray(#1){\@setcol(s,#1,#1,#1)}

% -------------------------------------------------------------------------
% Some useful predefined colors. All names start with capital letters.
% -------------------------------------------------------------------------
\gdef\Black{\Setcol(0,0,0)}
\gdef\Dred{\Setcol(0.7,0,0)}
\gdef\Dgreen{\Setcol(0,0.7,0)}
\gdef\Dblue{\Setcol(0,0,0.7)}
\gdef\Dcyan{\Setcol(0,0.7,0.7)}
\gdef\Dmagenta{\Setcol(0.7,0,0.7)}
\gdef\Dyellow{\Setcol(0.7,0.7,0)}
\gdef\Dgray{\Setcol(0.4,0.4,0.4)}
\gdef\Gray{\Setcol(0.8,0.8,0.8)}
\gdef\Red{\Setcol(1,0,0)}
\gdef\Green{\Setcol(0,1,0)}
\gdef\Blue{\Setcol(0,0,1)}
\gdef\Cyan{\Setcol(0,1,1)}
\gdef\Magenta{\Setcol(1,0,1)}
\gdef\Yellow{\Setcol(1,1,0)}
\gdef\White{\Setcol(1,1,1)}

% -------------------------------------------------------------------------
% The first macro strokes with current and fills with specified color.
%   \Fill(r,g,b)
% The second macro simply uses gray instead of a color value
%   \Gfill(gr)
% The third strokes and fills with the current color (CR, CG, CB).
%   \Sfill
% -------------------------------------------------------------------------
\gdef\Fill(#1,#2,#3){\@setcol(f,#1,#2,#3) \PDF{B*}}
\gdef\Gfill(#1){\@setcol(f,#1,#1,#1) \PDF{B*}}
\gdef\Sfill{\Fill(\Np\@CR,\Np\@CG,\Np\@CB)}

% -------------------------------------------------------------------------
% The main PDF commands, please read a PDF-Specification fore their meaning
% and also the documentation of Lapdf
% -------------------------------------------------------------------------
\gdef\Gsave{\PDF{q}}
\gdef\Grestore{\PDF{Q}}
\gdef\Setclip{\PDF{W* n}}
\gdef\Stroke{\PDF{S}}
\gdef\Closepath{\PDF{h}}
\gdef\Setwidth(#1){\PDF{#1 w}}
\gdef\Thick{\PDF{0.03 w}}
\gdef\Thin{\PDF{0.01 w}}
\gdef\Setcap(#1){\PDF{#1 J}}
\gdef\Setjoin(#1){\PDF{#1 j}}
\gdef\Setflat(#1){\PDF{#1 i}}
\gdef\Setmiter(#1){\PDF{#1 M}}
\gdef\Setdash(#1){\PDF{#1 d}}
\gdef\Bezier(#1,#2,#3,#4,#5,#6){\PDF{#1 #2 #3 #4 #5 #6 c}}
\gdef\Concat(#1,#2,#3,#4,#5,#6){\PDF{#1 #2 #3 #4 #5 #6 cm}}
\gdef\Translate(#1,#2){\PDF{1 0 0 1 #1 #2 cm}}
\gdef\Scale(#1,#2){\PDF{#1 0 0 #2 0 0 cm}}
\gdef\Rotate(#1){\Cos(#1,\@ax) \Sin(#1,\@bx)
 \@cx=-\@bx \@rotate(\Np\@ax,\Np\@bx,\Np\@cx)}
 \gdef\@rotate(#1,#2,#3){\PDF{#1 #2 #3 #1 0 0 cm}}
\gdef\Rect(#1,#2,#3,#4){\PDF{#1 #2 #3 #4 re}}

% -------------------------------------------------------------------------
%   \Dash(n) 4 predefined standard dashes (0..3).
% -------------------------------------------------------------------------
\gdef\Dash(#1){\def\@c{#1}
 \ifnum\@c=0 \PDF{[] 0 d} \fi
 \ifnum\@c=1 \PDF{[0.1 0.1] 0 d} \fi
 \ifnum\@c=2 \PDF{[0.1 0.1 0.025 0.1] 0 d} \fi
 \ifnum\@c=3 \PDF{[0.025 0.1] 0 d} \fi}

% -------------------------------------------------------------------------
% Move to point and line drawing in affine space.
%   \Moveto(x1,y1)   \Lineto(x1,y1)   \Line(x1,y1,x2,y2)
% -------------------------------------------------------------------------
\gdef\Moveto(#1,#2){\Dset(\@xx,#1) \Dset(\@xy,#2) \PDF{#1 #2 m}}
\gdef\Lineto(#1,#2){\Dset(\@xx,#1) \Dset(\@xy,#2) \PDF{#1 #2 l}}
\gdef\Line(#1,#2)(#3,#4){\Moveto(#1,#2) \Lineto(#3,#4)}

% -------------------------------------------------------------------------
% Move to point in homogeneous space.
%   \Rmoveto(x1,y1,z1)
% -------------------------------------------------------------------------
\gdef\Rmoveto(#1,#2,#3){\Dset(\@xx,#1) \Dset(\@xy,#2) \Dset(\@xz,#3)
 \PDF{#1 #2 m}}

% -------------------------------------------------------------------------
% Helper macros for all the grid drawings.
% -------------------------------------------------------------------------
\gdef\@Putline(#1,#2)(#3,#4)(#5){\put(#1,#2){\line(#3,#4){#5}}}
\gdef\@Putvector(#1,#2)(#3,#4)(#5){\put(#1,#2){\vector(#3,#4){#5}}}
\gdef\@Puttext(#1,#2)[#3]#4{\put(#1,#2){\makebox(0,0)[#3]{#4}}}

% -------------------------------------------------------------------------
% Helper: Draws a graphic dot at point (x,y).
%   \@Gdot(x,y)
% -------------------------------------------------------------------------
\gdef\@Gbox{\setbox\@tbox\hbox{\hskip-\@halfwidth%
 \vrule\@height\@halfwidth\@depth\@halfwidth\@width\@wholewidth}}

\gdef\@Gdot(#1,#2){\@killglue
 \raise#2\hb@xt@\z@{\kern#1\unhcopy\@tbox\hss}}

% -------------------------------------------------------------------------
% Helper: Draws a dashed line with n points per unitlength from current
% point to x,y. \@Gline(n)(x,y)
% -------------------------------------------------------------------------
\gdef\@Gline(#1)(#2,#3){%
 \@cm=#1 \@ci=0
 \@dx=#2\Ul \@dy=#3\Ul
 \Div(\@dx,\@cm) \Div(\@dy,\@cm)
 \Add(\@cm,1) \@Gbox
 \@whilenum{\@ci<\@cm}\do{%
  \@@X=\@ci\@dx \@@Y=\@ci\@dy
  \@Gdot(\@@X,\@@Y) \Add(\@ci,1)}}

% -------------------------------------------------------------------------
% Helper: Draws a dashed circle of radius r with 10 points per unitlength.
%   \@Gcircle(r)
% -------------------------------------------------------------------------
\gdef\@Gcircle(#1){%
 \@cm=#1 \Mul(\@cm,63) \@ci=0
 \Dset(\@dx,6.2832) \Div(\@dx,\@cm) \@Gbox
 \@whilenum{\@ci<\@cm}\do{%
  \@dy=\@ci\@dx
  \Cos(\Np\@dy,\@@X) \@@X=#1\@@X
  \Sin(\Np\@dy,\@@Y) \@@Y=#1\@@Y
  \@Gdot(\Np\@@X\Ul,\Np\@@Y\Ul) \Add(\@ci,1)}}

% -------------------------------------------------------------------------
% Draws a linear grid with n points per unitlength. A grid is drawn if g>0.
% Value a may be 0 (no axes), 1 (simple axes), 2 (additional tickmarks)
% or 3 (additional values). \Lingrid(n)(g,a)(xmin,max)(ymin,ymax)
% -------------------------------------------------------------------------
\gdef\Lingrid(#1)(#2,#3)(#4,#5)(#6,#7){%
 \end{pdf}
 \scriptsize
 \linethickness{\wid}
 \@cd=#7 \Sub(\@cd,#6) \@cg=\@cd \Mul(\@cg,#1)
 \@cb=#4 \@cc=#5 \Add(\@cc,1)
 \ifnum#4=0
  \ifnum#3>1 \@Putline(-0.1,0)(1,0)(0.1) \fi
  \ifnum#3>2 \@Puttext(-0.15,0)[rc]{0} \fi \fi
 \ifnum#6=0
  \ifnum#3>1 \@Putline(0,-0.1)(0,1)(0.1) \fi
  \ifnum#3>2 \@Puttext(0,-0.15)[ct]{0} \fi \fi
 \@whilenum{\@cb<\@cc}\do{%
  \ifnum#2=1 \put(\@cb,#6){\@Gline(\@cg)(0,\@cd)} \fi
  \ifnum\@cb=0 \else
   \ifnum#3>1 \@Putline(\@cb,-0.1)(0,1)(0.1) \fi
   \ifnum#3>2 \@Puttext(\@cb,-0.15)[ct]{\the\@cb} \fi \fi
  \Add(\@cb,1)}
 \@cd=#5 \Sub(\@cd,#4) \@cg=\@cd \Mul(\@cg,#1)
 \@cb=#6 \@cc=#7 \Add(\@cc,1)
 \@whilenum{\@cb<\@cc}\do{%
  \ifnum#2=1 \put(#4,\@cb){\@Gline(\@cg)(\@cd,0)} \fi
  \ifnum\@cb=0 \else
   \ifnum#3>1 \@Putline(-0.1,\@cb)(1,0)(0.1) \fi
   \ifnum#3>2 \@Puttext(-0.15,\@cb)[rc]{\the\@cb} \fi \fi
  \Add(\@cb,1)}
 \Dset(\@@X,#5) \Dsub(\@@X,#4) \Dadd(\@@X,0.4)
 \Dset(\@@Y,#7) \Dsub(\@@Y,#6) \Dadd(\@@Y,0.4)
 \ifnum#3>0 \@Putvector(#4,0)(1,0)(\Np\@@X)
  \@Putvector(0,#6)(0,1)(\Np\@@Y) \fi
 \begin{pdf}}

% -------------------------------------------------------------------------
% Draws a grid with n points per unitlength. It is horizontal logarithmic
% and vertical linear. A grid is drawn if g>0. Value a may be 0 (no axes),
% 1 (simple axes), 2 (additional tickmarks) or 3 (additional values).
% \Logxgrid(n)(g,a)(xmin,max)(ymin,ymax)
% -------------------------------------------------------------------------
\gdef\Logxgrid(#1)(#2,#3)(#4,#5)(#6,#7){%
 \end{pdf}
 \scriptsize
 \linethickness{\wid}
 \@cd=#7 \Sub(\@cd,#6) \@cg=\@cd \Mul(\@cg,#1)
 \@cb=1 \@cc=0 \@ca=#4
 \ifnum#6=0
  \ifnum#3>1 \@Putline(0,-0.1)(0,1)(0.1) \fi
  \ifnum#3>2 \@Puttext(0,-0.15)[ct]{$10^{\the\@ca}$} \fi \fi
 \@whilenum{\@ca<#5}\do{\Log(10,\@cb,\@@X) \Dadd(\@@X,\@cc) \Mul(\@@X,5)
  \ifnum#2=1 \put(\Np\@@X,#6){\@Gline(\@cg)(0,\@cd)} \fi
  \ifnum\@cb<10 \Add(\@cb,1)
  \else \@cb=2 \Add(\@cc,1) \Add(\@ca,1)
   \ifnum#3>1 \@Putline(\Np\@@X,-0.1)(0,1)(0.1) \fi
   \ifnum#3>2 \@Puttext(\Np\@@X,-0.15)[ct]{$10^{\the\@ca}$} \fi \fi}
 \@cd=#5 \Sub(\@cd,#4) \Mul(\@cd,5) \@cg=\@cd \Mul(\@cg,#1)
 \@cb=#6 \@cc=#7 \Add(\@cc,1)
 \@whilenum{\@cb<\@cc}\do{%
  \ifnum#2=1 \put(0,\@cb){\@Gline(\@cg)(\@cd,0)} \fi
  \ifnum#3>1 \@Putline(-0.1,\@cb)(1,0)(0.1) \fi
  \ifnum#3>2 \@Puttext(-0.15,\@cb)[rc]{\the\@cb} \fi \Add(\@cb,1)}
 \Dset(\@@X,#5) \Dsub(\@@X,#4) \Mul(\@@X,5) \Dadd(\@@X,0.4)
 \Dset(\@@Y,#7) \Dsub(\@@Y,#6) \Dadd(\@@Y,0.4)
 \ifnum#3>0 \@Putvector(-0.1,0)(1,0)(\Np\@@X)
  \@Putvector(0,#6)(0,1)(\Np\@@Y) \fi
 \begin{pdf}}

% -------------------------------------------------------------------------
% Draws a grid with n points per unitlength. It is horizontal linear and
% vertical logarithmic. A grid is drawn if g>0. Value a may be 0 (no axes),
% 1 (simple axes), 2 (additional tickmarks) or 3 (additional values).
% \Logygrid(n)(g,a)(xmin,max)(ymin,ymax)
% -------------------------------------------------------------------------
\gdef\Logygrid(#1)(#2,#3)(#4,#5)(#6,#7){%
 \end{pdf}
 \scriptsize
 \linethickness{\wid}
 \@cd=#7 \Sub(\@cd,#6) \@cg=\@cd \Mul(\@cg,#1)
 \@cb=1 \@cc=0 \@ca=#4
 \ifnum#6=0
  \ifnum#3>1 \@Putline(-0.1,0)(1,0)(0.1) \fi
  \ifnum#3>2 \@Puttext(-0.15,0)[rc]{$10^{\the\@ca}$} \fi \fi
 \@whilenum{\@ca<#5}\do{\Log(10,\@cb,\@@Y) \Dadd(\@@Y,\@cc) \Mul(\@@Y,5)
  \ifnum#2=1 \put(#6,\Np\@@Y){\@Gline(\@cg)(\@cd,0)} \fi
  \ifnum\@cb<10 \Add(\@cb,1)
  \else \@cb=2 \Add(\@cc,1) \Add(\@ca,1)
   \ifnum#3>1 \@Putline(-0.1,\Np\@@Y)(1,0)(0.1) \fi
   \ifnum#3>2 \@Puttext(-0.15,\Np\@@Y)[rc]{$10^{\the\@ca}$} \fi \fi}
 \@cd=#5 \Sub(\@cd,#4) \Mul(\@cd,5) \@cg=\@cd \Mul(\@cg,#1)
 \@cb=#6 \@cc=#7 \Add(\@cc,1)
 \@whilenum{\@cb<\@cc}\do{%
  \ifnum#2=1 \put(\@cb,0){\@Gline(\@cg)(0,\@cd)} \fi
  \ifnum#3>1 \@Putline(\@cb,-0.1)(0,1)(0.1) \fi
  \ifnum#3>2 \@Puttext(\@cb,-0.15)[ct]{\the\@cb} \fi \Add(\@cb,1)}
 \Dset(\@@Y,#5) \Dsub(\@@Y,#4) \Mul(\@@Y,5) \Dadd(\@@Y,0.4)
 \Dset(\@@X,#7) \Dsub(\@@X,#6) \Dadd(\@@X,0.4)
 \ifnum#3>0 \@Putvector(#6,0)(1,0)(\Np\@@X)
  \@Putvector(0,-0.1)(0,1)(\Np\@@Y) \fi
 \begin{pdf}}

% -------------------------------------------------------------------------
% Draws a grid with n points per unitlength. It is logarithmic in both
% directions. A grid is drawn if g>0. Value a may be 0 (no axes),
% 1 (simple axes), 2 (additional tickmarks) or 3 (additional values).
% \Logxygrid(n)(g,a)(xmin,max)(ymin,ymax)
% -------------------------------------------------------------------------
\gdef\Logxygrid(#1)(#2,#3)(#4,#5)(#6,#7){%
 \end{pdf}
 \scriptsize
 \linethickness{\wid}
 \@cd=#7 \Sub(\@cd,#6) \Mul(\@cd,5) \@cg=\@cd \Mul(\@cg,#1)
 \@cb=1 \@cc=0 \@ca=#4
 \ifnum#6=0
  \ifnum#3>1 \@Putline(0,-0.1)(0,1)(0.1) \fi
  \ifnum#3>2 \@Puttext(0,-0.15)[ct]{$10^{\the\@ca}$} \fi \fi
 \@whilenum{\@ca<#5}\do{\Log(10,\@cb,\@@X) \Dadd(\@@X,\@cc) \Mul(\@@X,5)
  \ifnum#2=1 \put(\Np\@@X,#6){\@Gline(\@cg)(0,\@cd)} \fi
  \ifnum\@cb<10 \Add(\@cb,1)
  \else \@cb=2 \Add(\@cc,1) \Add(\@ca,1)
   \ifnum#3>1 \@Putline(\Np\@@X,-0.1)(0,1)(0.1) \fi
   \ifnum#3>2 \@Puttext(\Np\@@X,-0.15)[ct]{$10^{\the\@ca}$} \fi \fi}
 \@cd=#5 \Sub(\@cd,#4) \Mul(\@cd,5) \@cg=\@cd \Mul(\@cg,#1)
 \@cb=1 \@cc=0 \@ca=#6
 \ifnum#6=0
  \ifnum#3>1 \@Putline(-0.1,0)(1,0)(0.1) \fi
  \ifnum#3>2 \@Puttext(-0.15,0)[rc]{$10^{\the\@ca}$} \fi \fi
 \@whilenum{\@ca<#7}\do{\Log(10,\@cb,\@@Y) \Dadd(\@@Y,\@cc) \Mul(\@@Y,5)
  \ifnum#2=1 \put(#6,\Np\@@Y){\@Gline(\@cg)(\@cd,0)} \fi
  \ifnum\@cb<10 \Add(\@cb,1)
  \else \@cb=2 \Add(\@cc,1) \Add(\@ca,1)
   \ifnum#3>1 \@Putline(-0.1,\Np\@@Y)(1,0)(0.1) \fi
   \ifnum#3>2 \@Puttext(-0.15,\Np\@@Y)[rc]{$10^{\the\@ca}$} \fi \fi}
 \Dset(\@@X,#5) \Dsub(\@@X,#4) \Mul(\@@X,5) \Dadd(\@@X,0.4)
 \Dset(\@@Y,#7) \Dsub(\@@Y,#6) \Mul(\@@Y,5) \Dadd(\@@Y,0.4)
 \ifnum#3>0 \@Putvector(-0.1,0)(1,0)(\Np\@@X)
  \@Putvector(0,-0.1)(0,1)(\Np\@@Y) \fi
 \begin{pdf}}

% -------------------------------------------------------------------------
% Draws a polar grid with 10 points per unitlength and maximum radius r.
% If g>0, a grid is drawn. Value a may be 0 (no axes), 1 (simple axes),
% 2 (additional tickmarks), 3 (additional values, angles in degree) or
% 4 (like 3, but angles in multiples of pi). \Polgrid(g,a)(r)
% -------------------------------------------------------------------------
\gdef\Polgrid(#1,#2)(#3){%
 \end{pdf}
 \scriptsize
 \linethickness{\wid}
 \@ca=0
 \@whilenum{\@ca<#3}\do{%
  \Add(\@ca,1) \ifnum#1>0 \@Gcircle(\@ca) \fi
  \ifnum#2>1
   \ifnum\@ca=0 \else
    \@Putline(\@ca,-0.1)(0,1)(0.1) \@Putline(-\@ca,-0.1)(0,1)(0.1)
     \@Putline(-0.1,\@ca)(1,0)(0.1) \@Putline(-0.1,-\@ca)(1,0)(0.1)
     \ifnum#2>2 \@Puttext(\@ca,-0.15)[tc]{\the\@ca} \fi \fi \fi}
 \@ca=0 \@cb=0
 \@whilenum{\@ca<360}\do{%
  \@cb=#3 \Mul(\@cb,10) \Rad(\@ca,\@ax)
  \ifnum#1>0
   \Cos(\Np\@ax,\@@X) \Mul(\@@X,#3)
   \Sin(\Np\@ax,\@@Y) \Mul(\@@Y,#3)
   \put(0,0){\@Gline(\@cb)(\Np\@@X,\Np\@@Y)} \fi
  \ifnum#2>2
   \Dset(\@@U,#3) \Dadd(\@@U,0.35)
   \Cos(\Np\@ax,\@@X) \Dmul(\@@X,\@@U)
   \Sin(\Np\@ax,\@@Y) \Dmul(\@@Y,\@@U)
   \ifnum#2>3 \@cb=\@ca \Div(\@cb,15)
    \ifnum\@ca=0 \@Puttext(\Np\@@X,\Np\@@Y)[cc]{0}
    \else \@cc=\@cb \Mod(\@cc,6)
     \ifnum\@cc=0 \Div(\@cb,6)
      \ifnum\@cb=2 \@Puttext(\Np\@@X,\Np\@@Y)[cc]{$\pi$}
      \else \@Puttext(\Np\@@X,\Np\@@Y)[cc]{$\frac{\the\@cb}{2}\pi$} \fi
     \else \@Puttext(\Np\@@X,\Np\@@Y)[cc]{$\frac{\the\@cb}{12}\pi$} \fi \fi
    \else \@Puttext(\Np\@@X,\Np\@@Y)[cc]{$\the\@ca^{\circ}$} \fi \fi
   \Add(\@ca,15)}
 \ifnum#2>0 \Dset(\@@X,#3) \Mul(\@@X,2)
  \@Putline(-#3,0)(1,0)(\Np\@@X) \@Putline(0,-#3)(0,1)(\Np\@@X) \fi
 \begin{pdf}}

% -------------------------------------------------------------------------
% Plots a function with n line segments from x1 to x2. You have to define
% a function \Fx with the command: \def\Fx(#1,#2){..}. #1 is the x value
% and #2 is the result register. \Fplot(n)(x1,x2)             Examples:
% \def\Fx(#1,#2){\Sin(#1,#2) \Mul(#2,3) \Dadd(#2,1)}          y=3*sin(x)+1
% \def\Fx(#1,#2){\Dset(\x,#1) \Dsub(\x,2) \Exp(\Np\x,#2)}     y=exp(x-2)
% -------------------------------------------------------------------------
\gdef\Fplot(#1)(#2,#3){%
 \Dset(\@dx,#3) \Dsub(\@dx,#2) \Div(\@dx,#1)
 \Dset(\@ux,#2) \Fx(\Np\@ux,\@uy)
 \Moveto(\Np\@ux,\Np\@uy)
 \@whiledim{\@ux<#3pt}\do{\Add(\@ux,\@dx)
  \ifdim\@ux>#3pt \Dset(\@ux,#3) \fi
  \Fx(\Np\@ux,\@uy) \Lineto(\Np\@ux,\Np\@uy)}}

% -------------------------------------------------------------------------
% Plots a parametric function with n line segments for t1 to t2. You have
% to define two functions \Tx and \Ty with the commands: \def\Tx(#1,#2){..}
% and \def\Ty(#1,#2){..}. Here #1 is the t value and #2 is the result
% register. \Tplot(n)(t1,t2)                                    Example:
% \def\Tx(#1,#2){\Dset(#2,#1) \Mul(#2,2) \Dsub(#2,1)}           x=2*t-1
% \def\Ty(#1,#2){\Dset(\t,#1) #2=\t \Dmul(#2,#2) \Add(#2,\t)}   y=t^2+t
% -------------------------------------------------------------------------
\gdef\Tplot(#1)(#2,#3){%
 \Dset(\@dx,#3) \Dsub(\@dx,#2) \Div(\@dx,#1)
 \Dset(\@@U,#2) \Tx(\Np\@@U,\@ux)
 \Dset(\@@U,#2) \Ty(\Np\@@U,\@uy)
 \Moveto(\Np\@ux,\Np\@uy)
 \@whiledim{\@@U<#3pt}\do{\Add(\@@U,\@dx)
  \ifdim\@@U>#3pt \Dset(\@@U,#3) \fi
  \Tx(\Np\@@U,\@ux) \Ty(\Np\@@U,\@uy)
  \Lineto(\Np\@ux,\Np\@uy)}}

% -------------------------------------------------------------------------
% Converts a polar function r=f(a) to parametric cartesian form with:
% x=f(a)*cos(a), y=f(a)*sin(a). The result is returned in regs x and y.
% \Pxy(a,x,y)
% -------------------------------------------------------------------------
\gdef\Pxy(#1,#2,#3){%
 \Px(#1,#2) #3=#2
 \Cos(#1,\@@T) \Dmul(#2,\@@T)
 \Sin(#1,\@@T) \Dmul(#3,\@@T)}

% -------------------------------------------------------------------------
% Plots a polar function with n line segments from a1 to a2. You have to
% define a function \Px with the command: \def\Px(#1,#2){..}. #1 is the x
% value and #2 is the result register. \Pplot(n)(a1,a2)      Examples:
% \def\Px(#1,#2){\Dset(\a,#1) #2=2\a \Sin(\Np#2,#2)}         r=cos(2a)
% \def\Px(#1,#2){\Dset(\Sin(#1,#2) \Dadd(#2,1)}              r=1+sin(a)
% -------------------------------------------------------------------------
\gdef\Pplot(#1)(#2,#3){%
 \Dset(\@tx,#2) \Dset(\@ty,#3)
 \Dmul(\@tx,3.14159pt) \Dmul(\@ty,3.14159pt)
 \@dx=\@ty \Sub(\@dx,\@tx) \Div(\@dx,#1)
 \@@U=\@tx \Pxy(\Np\@@U,\@ux,\@uy)
 \Moveto(\Np\@ux,\Np\@uy)
 \@whiledim{\@@U<\@ty}\do{\Add(\@@U,\@dx)
  \ifdim\@@U>\@ty \@@U=\@ty \fi
  \Pxy(\Np\@@U,\@ux,\@uy)
  \Lineto(\Np\@ux,\Np\@uy)}}

% -------------------------------------------------------------------------
% Calculates the derivative dy/dx of a predefined real function \Fx.
% The value is x and the result is stored in register n. \Df(x,n)
% -------------------------------------------------------------------------
\gdef\Df(#1,#2){%
 \Dset(\@dx,#1) \@dy=\@dx \Dadd(\@dy,0.015625) \Dsub(\@dx,0.015625)
 \Fx(\Np\@dy,#2) \Fx(\Np\@dx,\@dx) \Sub(#2,\@dx) #2=32#2}

% -------------------------------------------------------------------------
% Calculates the partial derivative dx/dt of a predefined parameter curve
% \Tx. The value is t and the result is stored in register n. \Dtx(t,n)
% -------------------------------------------------------------------------
\gdef\Dtx(#1,#2){%
 \Dset(\@dx,#1) \@dy=\@dx \Dadd(\@dy,0.015625) \Dsub(\@dx,0.015625)
 \Tx(\Np\@dy,#2) \Tx(\Np\@dx,\@dx) \Sub(#2,\@dx) #2=32#2}

% -------------------------------------------------------------------------
% Calculates the partial derivative dy/dt of a predefined parameter curve
% \Ty. The value is t and the result is stored in register n. \Dty(t,n)
% -------------------------------------------------------------------------
\gdef\Dty(#1,#2){%
 \Dset(\@dx,#1) \@dy=\@dx \Dadd(\@dy,0.015625) \Dsub(\@dx,0.015625)
 \Ty(\Np\@dy,#2) \Ty(\Np\@dx,\@dx) \Sub(#2,\@dx) #2=32#2}

% -------------------------------------------------------------------------
% Calculates the total derivative dy/dx of a predefined parameter curve
% \Ty, \Tx. The value is t and the result is stored in register n. \Dtt(t,n)
% -------------------------------------------------------------------------
\gdef\Dtt(#1,#2){%
 \Dty(#1,#2) \Dtx(#1,\@dz) \Ddiv(#2,\@dz)}

% -------------------------------------------------------------------------
% Calculates the partial derivative dx/da of a predefined polar curve \Px.
% The value is a and the result is stored in register n. \Dpx(a,n)
% -------------------------------------------------------------------------
\gdef\Dpx(#1,#2){%
 \Dset(\@dx,#1) \@dy=\@dx \Dadd(\@dy,0.015625) \Dsub(\@dx,0.015625)
 \Px(\Np\@dy,#2) \Cos(\Np\@dy,\@dy) \Dmul(#2,\@dy)
 \Px(\Np\@dx,\@tx) \Cos(\Np\@dx,\@dx) \Dmul(\@tx,\@dx)
 \Sub(#2,\@tx) #2=32#2}

% -------------------------------------------------------------------------
% Calculates the partial derivative dy/da of a predefined polar curve \Px.
% The value is a and the result is stored in register n. \Dpy(a,n)
% -------------------------------------------------------------------------
\gdef\Dpy(#1,#2){%
 \Dset(\@dx,#1) \@dy=\@dx \Dadd(\@dy,0.015625) \Dsub(\@dx,0.015625)
 \Px(\Np\@dy,#2) \Sin(\Np\@dy,\@dy) \Dmul(#2,\@dy)
 \Px(\Np\@dx,\@tx) \Sin(\Np\@dx,\@dx) \Dmul(\@tx,\@dx)
 \Sub(#2,\@tx) #2=32#2}

% -------------------------------------------------------------------------
% Calculates the total derivative dy/dx of a predefined polar curve \Px.
% The value is a and the result is stored in register n. \Dtp(a,n)
% -------------------------------------------------------------------------
\gdef\Dtp(#1,#2){%
 \Dpy(#1,#2) \Dpx(#1,\@dz) \Ddiv(#2,\@dz)}

% -------------------------------------------------------------------------
% Draws a full ellipse with two rational quadratic bezier curves. x,y is
% the center, a and b are the diameters, n is the number of segments and c
% is the rotation angle in degree. \Ellipse(n)(x,y)(a,b,c)
% -------------------------------------------------------------------------
\gdef\Ellipse(#1)(#2,#3)(#4,#5,#6){%
 \@tb=#1 \Mul(\@tb,3) \Rad(#6,\@sx)
 \Dset(\@ux,#2) \Dset(\@uy,#3)
 \Dset(\@vx,#2) \Dset(\@vy,#3)
 \Dset(\@wx,#2) \Dset(\@wy,#3)
 \Dset(\@ax,#4) \Dset(\@ay,#5)
 \Sin(\Np\@sx,\@sy) \Cos(\Np\@sx,\@sx)
 \@bx=0.866\@ax \@by=0.500\@ay
 \@cx=\@bx \@cy=\@by
 \Dmul(\@bx,\@sx)\Dmul(\@by,\@sy)
 \Dmul(\@cx,\@sy)\Dmul(\@cy,\@sx)
 \Sub(\@ux,\@bx) \Sub(\@ux,\@by)
 \Sub(\@uy,\@cx) \Add(\@uy,\@cy)
 \Add(\@wx,\@bx) \Sub(\@wx,\@by)
 \Add(\@wy,\@cx) \Add(\@wy,\@cy)
 \@bx=0.000\@ax \@by=2.000\@ay
 \@cx=\@bx \@cy=\@by
 \Dmul(\@bx,\@sx)\Dmul(\@by,\@sy)
 \Dmul(\@cx,\@sy)\Dmul(\@cy,\@sx)
 \Add(\@vx,\@bx) \Sub(\@vx,\@by)
 \Add(\@vy,\@cx) \Add(\@vy,\@cy)
 \Rmoveto(\Np\@ux,\Np\@uy,2)
 \Rcurveto(#1)(\Np\@vx,\Np\@vy,1)(\Np\@wx,\Np\@wy,2)
 \Rcurveto(\@tb)(\Np\@vx,\Np\@vy,-1)(\Np\@ux,\Np\@uy,2)}

% -------------------------------------------------------------------------
% Draws a full circle with two rational quadratic Bezier curves.
%   \Circle(n)(x,y,radius)
% -------------------------------------------------------------------------
\gdef\Circle(#1)(#2,#3,#4){%
 \Set(\@tb,#1) \Mul(\@tb,2) 
 \Dset(\@ux,#2) \Dset(\@uy,#3)
 \Dset(\@vx,#2) \Dset(\@vy,#3)
 \Dset(\@wx,#2) \Dset(\@wy,#3)
 \Dset(\@ax,#4) \Dset(\@ay,#4) \Dset(\@az,#4)
 \@ax=0.866\@ax \@ay=0.500\@ay \@az=2.000\@az
 \Sub(\@ux,\@ax) \Add(\@wx,\@ax)
 \Sub(\@uy,\@ay) \Sub(\@vy,\@az) \Sub(\@wy,\@ay)
 \Rmoveto(\Np\@ux,\Np\@uy,2)
 \Rcurveto(#1)(\Np\@vx,\Np\@vy,1)(\Np\@wx,\Np\@wy,2)
 \Rcurveto(\@tb)(\Np\@vx,\Np\@vy,-1)(\Np\@ux,\Np\@uy,2)}

% -------------------------------------------------------------------------
% Draws a rectangle between two points, rotated at point x1,y1 by angle a
% in degree. \Rectangle(x1,y1)(x2,y2)(a)
% -------------------------------------------------------------------------
\gdef\Rectangle(#1,#2)(#3,#4)(#5){%
 \Dset(\@cx,#3) \Dset(\@cy,#4) \Dset(\@@U,#5)
 \@bx=\@cx \Dset(\@by,0) \Dset(\@dx,0) \@dy=\@cy
 \Rotpoint(#5)(\Np\@bx,\Np\@by)(\@ux,\@uy)
 \Rotpoint(#5)(\Np\@cx,\Np\@cy)(\@vx,\@vy)
 \Rotpoint(#5)(\Np\@dx,\Np\@dy)(\@wx,\@wy)
 \Dadd(\@ux,#1) \Dadd(\@uy,#2)
 \Dadd(\@vx,#1) \Dadd(\@vy,#2)
 \Dadd(\@wx,#1) \Dadd(\@wy,#2)
 \Polygon(#1,#2)(\Np\@ux,\Np\@uy)(\Np\@vx,\Np\@vy)(\Np\@wx,\Np\@wy)(#1,#2)}

% -------------------------------------------------------------------------
% Draws a triangle between three points, rotated at point x1,y1 by angle a
% in degree. \Triangle(x1,y1)(x2,y2)(x3,y3)(a)
% -------------------------------------------------------------------------
\gdef\Triangle(#1,#2)(#3,#4)(#5,#6)(#7){%
 \Dset(\@bx,#3) \Dsub(\@bx,#1)
 \Dset(\@by,#4) \Dsub(\@by,#2)
 \Dset(\@cx,#5) \Dsub(\@cx,#1)
 \Dset(\@cy,#6) \Dsub(\@cy,#2)
 \Rotpoint(#7)(\Np\@bx,\Np\@by)(\@ux,\@uy)
 \Rotpoint(#7)(\Np\@cx,\Np\@cy)(\@vx,\@vy)
 \Dadd(\@ux,#1) \Dadd(\@uy,#2)
 \Dadd(\@vx,#1) \Dadd(\@vy,#2)
 \Polygon(#1,#2)(\Np\@ux,\Np\@uy)(\Np\@vx,\Np\@vy)(#1,#2)}

% -------------------------------------------------------------------------
% Draws a equilateral polygon with radius r and n vertices. It is rotated
% around the center x,y by an angle a in degree. The first (unrotated)
% point is r,0. \Epolygon(n)(x,y)(r,a)
% -------------------------------------------------------------------------
\gdef\Epolygon(#1)(#2,#3)(#4,#5){%
 \Rotpoint(#5)(#4,0)(\@vx,\@vy)
 \Dadd(\@vx,#2) \Dadd(\@vy,#3)
 \@ch=0
 \Moveto(\Np\@vx,\Np\@vy)
 \@whilenum{\@ch<#1}\do{\Add(\@ch,1)
  \Dset(\@ax,6.2832) \Div(\@ax,#1) \Mul(\@ax,\@ch)
  \Cos(\Np\@ax,\@vx) \Dmul(\@vx,#4pt)
  \Sin(\Np\@ax,\@vy) \Dmul(\@vy,#4pt)
  \Rotpoint(#5)(\Np\@vx,\Np\@vy)(\@vx,\@vy)
  \Dadd(\@vx,#2) \Dadd(\@vy,#3)
  \Lineto(\Np\@vx,\Np\@vy)}}

% -------------------------------------------------------------------------
% Draws a sector of a circle with center xm,ym, radius r, direction a and
% angle b in degree with n segments. \Sector(n)(xm,ym)(a,b)(r)
% -------------------------------------------------------------------------
\gdef\Sector(#1)(#2,#3)(#4,#5)(#6){%
 \Dset(\@ax,#4) \Dset(\@bx,#5) \Dset(\@rx,#6) \@ch=0
 \Rad(#4,\@sx) \Cos(\Np\@sx,\@sx) \Dmul(\@sx,\@rx)
 \Rad(#4,\@sy) \Sin(\Np\@sy,\@sy) \Dmul(\@sy,\@rx)
 \Dadd(\@sx,#2) \Dadd(\@sy,#3)
 \Line(#2,#3)(\Np\@sx,\Np\@sy)
 \@whilenum{\@ch<#1}\do{\Add(\@ch,1)
  \Dset(\@dx,#5) \Div(\@dx,#1) \Mul(\@dx,\@ch) \Dadd(\@dx,#4)
  \Rad(\Np\@dx,\@sx) \Cos(\Np\@sx,\@sx) \Dmul(\@sx,\@rx)
  \Rad(\Np\@dx,\@sy) \Sin(\Np\@sy,\@sy) \Dmul(\@sy,\@rx)
  \Dadd(\@sx,#2) \Dadd(\@sy,#3) \Lineto(\Np\@sx,\Np\@sy)} \Lineto(#2,#3)}

% -------------------------------------------------------------------------
% These draw a circular arc (or a circular vector) with center xm,ym,
% radius r, direction a and angle b in degree with n segments. Both use
% \@Arc. \Arc(n)(xm,ym)(a,b)(r) \Varc(n)(xm,ym)(a,b)(r)
% -------------------------------------------------------------------------
\gdef\Arc(#1)(#2,#3)(#4,#5)(#6){\@Arc(#1)(#2,#3)(#4,#5)(#6,0)}
\gdef\Varc(#1)(#2,#3)(#4,#5)(#6){\@Arc(#1)(#2,#3)(#4,#5)(#6,1)}

% -------------------------------------------------------------------------
% Helper macro that draws a circular arc (t=0) or vector (t=1).
% It is called by \Arc and \Varc. \@Arc(n)(xm,ym)(a,b)(r,t)
% -------------------------------------------------------------------------
\gdef\@Arc(#1)(#2,#3)(#4,#5)(#6,#7){%
 \Dset(\@ax,#4) \Dset(\@bx,#5) \Dset(\@rx,#6) \@ch=0
 \Rad(#4,\@vx) \Cos(\Np\@vx,\@vx) \Dmul(\@vx,\@rx)
 \Rad(#4,\@vy) \Sin(\Np\@vy,\@vy) \Dmul(\@vy,\@rx)
 \Dadd(\@vx,#2) \Dadd(\@vy,#3)
 \@whilenum{\@ch<#1}\do{\Add(\@ch,1) \@ux=\@vx \@uy=\@vy
  \Dset(\@dx,#5) \Div(\@dx,#1) \Mul(\@dx,\@ch) \Dadd(\@dx,#4)
  \Rad(\Np\@dx,\@vx) \Cos(\Np\@vx,\@vx) \Dmul(\@vx,\@rx)
  \Rad(\Np\@dx,\@vy) \Sin(\Np\@vy,\@vy) \Dmul(\@vy,\@rx)
  \Dadd(\@vx,#2) \Dadd(\@vy,#3)
  \ifnum#7=0 \Polygon(\Np\@ux,\Np\@uy)(\Np\@vx,\Np\@vy) \else
   \ifnum\@ch<#1 \Polygon(\Np\@ux,\Np\@uy)(\Np\@vx,\Np\@vy) \else
    {\Vpolygon(\Np\@ux,\Np\@uy)(\Np\@vx,\Np\@vy) \Stroke} \fi \fi}}

% -------------------------------------------------------------------------
% Draws a circular arc with center xm,ym, radius r, direction a and angle b
% with n segments. The incoming direction goes from the current point. The
% last point x2, y2 gives the outgoing direcion. Lines from the current
% point and to the end point are also drawn. \Arcto(n)(x1,y1)(x2,y2)(r)
% -------------------------------------------------------------------------
\gdef\Arcto(#1)(#2,#3)(#4,#5)(#6){%
 \Dset(\@yx,#2) \Dset(\@yy,#3)
 \Dset(\@zx,#4) \Dset(\@zy,#5) \Dset(\@rx,#6)
 \Direc(#2,#3)(\Np\@xx,\Np\@xy)(\@ax)
 \Direc(#2,#3)(\Np\@zx,\Np\@zy)(\@ay)
 \Len(\Np\@yx,\Np\@yy)(\Np\@xx,\Np\@xy)(\@dx)
 \Len(\Np\@yx,\Np\@yy)(\Np\@zx,\Np\@zy)(\@dy)
 \Len(\Np\@xx,\Np\@xy)(\Np\@zx,\Np\@zy)(\@dz)
 \Cos(\Np\@ay,\@ex) \Dmul(\@ex,\@dx) \Add(\@ex,\@xx)
 \Add(\@ex,\@yx) \@ex=0.5\@ex
 \Sin(\Np\@ay,\@ey) \Dmul(\@ey,\@dx) \Add(\@ey,\@xy)
 \Add(\@ey,\@yy) \@ey=0.5\@ey
 \Direc(\Np\@yx,\Np\@yy)(\Np\@ex,\Np\@ey)(\@az)
 \@cy=2.0\@dx \Dmul(\@cy,\@dy)
 \Dmul(\@dx,\@dx) \Dmul(\@dy,\@dy) \Dmul(\@dz,\@dz)
 \Add(\@dx,\@dy) \Sub(\@dx,\@dz) \Ddiv(\@dx,\@cy)
 \Acos(\Np\@dx,\@cx) \@cy=0.5\@cx
 \Dset(\@@U,1.5708) \Sub(\@@U,\@cy)
 \Tan(\Np\@@U,\@dx) \Dmul(\@dx,\@rx) \Cos(\Np\@@U,\@@U)
 \Cos(\Np\@ax,\@ux) \Dmul(\@ux,\@dx) \Add(\@ux,\@yx)
 \Sin(\Np\@ax,\@uy) \Dmul(\@uy,\@dx) \Add(\@uy,\@yy)
 \Cos(\Np\@ay,\@vx) \Dmul(\@vx,\@dx) \Add(\@vx,\@yx)
 \Sin(\Np\@ay,\@vy) \Dmul(\@vy,\@dx) \Add(\@vy,\@yy)
 \Polygon(\Np\@xx,\Np\@xy)(\Np\@ux,\Np\@uy) \Stroke
 \Rcurve(#1)(\Np\@ux,\Np\@uy,1)(#2,#3,\Np\@@U)(\Np\@vx,\Np\@vy,1)
 \Lineto(#4,#5) \Stroke}

% -------------------------------------------------------------------------
% Draws a vector from point x1,y1 to point x2,y2. \Vect(x1,y1)(x2,y2)
% -------------------------------------------------------------------------
\gdef\Vect(#1,#2)(#3,#4){%
 \Dset(\@ux,#1) \Dset(\@uy,#2)
 \Len(\Np\@ux,\Np\@uy)(#3,#4)(\@tx)
 \Direc(\Np\@ux,\Np\@uy)(#3,#4)(\@ty)
 \@cd=0 \Deg(\Np\@ty,\@ty)
 \@dx=\@tx \Dsub(\@dx,0.20) \Dset(\@dy,0.05)
 \@ex=\@dx \@ey=-\@dy
 \Rotpoint(\Np\@ty)(\Np\@dx,\Np\@dy)(\@dx,\@dy)
 \Rotpoint(\Np\@ty)(\Np\@ex,\Np\@ey)(\@ex,\@ey)
 \Add(\@dx,\@ux) \Add(\@dy,\@uy)
 \Add(\@ex,\@ux) \Add(\@ey,\@uy)
 \Polygon(\Np\@ux,\Np\@uy)(#3,#4)(\Np\@dx,\Np\@dy)(\Np\@ex,\Np\@ey)(#3,#4)
 \Sfill}

% -------------------------------------------------------------------------
% Draws a vector from the current point to point x1,y1. \Vecto(x1,y1)
% -------------------------------------------------------------------------
\gdef\Vecto(#1,#2){\Vect(\Np\@xx,\Np\@xy)(#1,#2)}

% -------------------------------------------------------------------------
% Computes the function value of a polynom (dregree <= 3) at x and stores
% the result in y. \Fpoly(x,y)
% -------------------------------------------------------------------------
\gdef\Fpoly(#1,#2){#2=\@ax
 \Dmul(#2,#1) \Add(#2,\@bx)
 \Dmul(#2,#1) \Add(#2,\@cx)
 \Dmul(#2,#1) \Add(#2,\@dx)}

% -------------------------------------------------------------------------
% Computes the first derivative of a polynom (degree <= 3) at x and stores
% the result in y. \Dpoly(x,y)
% -------------------------------------------------------------------------
\gdef\Dpoly(#1,#2){#2=\@ax
 \Dmul(#2,#1) \Mul(#2,3)
 \Add(#2,\@bx) \Add(#2,\@bx)
 \Dmul(#2,#1) \Add(#2,\@cx)}

% -------------------------------------------------------------------------
% Draws a polynom y=ax^3+bx^2+cx+d from x1 to x2 with a cubic bezier curve.
% All coefficients may be zero. So you can draw lines, parabolas and cubics.
% \Polynom(x1,x2)(a,b,c,d)
% -------------------------------------------------------------------------
\gdef\Polynom(#1,#2)(#3,#4,#5,#6){%
 \Dset(\@sx,#1) \Dset(\@vx,#2)
 \Dset(\@ax,#3) \Dset(\@bx,#4)
 \Dset(\@cx,#5) \Dset(\@dx,#6)
 \@zx=\@vx \Sub(\@zx,\@sx)
 \Div(\@zx,3)
 \@tx=\@sx \Add(\@tx,\@zx)
 \@ux=\@vx \Sub(\@ux,\@zx)
 \Dpoly(\@sx,\@wx) \Dmul(\@wx,\@zx)
 \Dpoly(\@vx,\@wy) \Dmul(\@wy,\@zx)
 \Fpoly(\@sx,\@sy) \Fpoly(\@vx,\@vy)
 \@ty=\@sy \Add(\@ty,\@wx)
 \@uy=\@vy \Sub(\@uy,\@wy)
 \Moveto(\Np\@sx,\Np\@sy)
 \Bezier(\Np\@tx,\Np\@ty,\Np\@ux,\Np\@uy,\Np\@vx,\Np\@vy)}

% -------------------------------------------------------------------------
% Draws the tangent of a polynom y=ax^3+bx^2+cx+d at abszissa x from x1
% to x2 and marks the touching point. \Tangent(x)(x1,x2)(a,b,c,d)
% -------------------------------------------------------------------------
\gdef\Tangent(#1)(#2,#3)(#4,#5,#6,#7){%
 \Dset(\@xx,#1)
 \Dset(\@sx,#2) \Dset(\@tx,#3)
 \Dset(\@ax,#4) \Dset(\@bx,#5)
 \Dset(\@cx,#6) \Dset(\@dx,#7)
 \Fpoly(\@xx,\@xy) \Dpoly(\@xx,\@wx)
 \@sy=\@wx \@ty=\@wx
 \Dmul(\@sy,\@sx) \Dmul(\@ty,\@tx)
 \Add(\@sy,\@xy) \Add(\@ty,\@xy)
 \Dmul(\@wx,\@xx)
 \Sub(\@sy,\@wx) \Sub(\@ty,\@wx)
 \Line(\Np\@sx,\Np\@sy)(\Np\@tx,\Np\@ty)
 \Stroke
 \Point(1)(#1,\Np\@xy)}

% -------------------------------------------------------------------------
% Draws a sequence of line segments. You have to provide m points
% with m=i+1 (i=1,2,..).  \Polygon(x1,y1)(x2,y2)...(xm,ym)
% -------------------------------------------------------------------------
\gdef\Polygon{\@ifnextchar ({\@polygon}{\@ck=0}}
 \gdef\@polygon(#1,#2){\@ifnextchar ({\@pdraw(#1,#2)}{\@ck=0}}
 \gdef\@pdraw(#1,#2)(#3,#4){\ifnum\@ck=0 \@ck=1 \Moveto(#1,#2) \fi
  \Lineto(#3,#4) \Polygon(#3,#4)}

% -------------------------------------------------------------------------
% Draws a sequence of vector segments. You have to provide m points
% with m=i+1 (i=1,2,..).  \Vpolygon(x1,y1)(x2,y2)...(xm,ym)
% -------------------------------------------------------------------------
\gdef\Vpolygon{\@ifnextchar ({\@Vdraw}{\relax}}
 \gdef\@Vdraw(#1,#2){\@ifnextchar ({\@Vcoord(#1,#2)}{\relax}}
 \gdef\@Vcoord(#1,#2)(#3,#4){\Vect(#1,#2)(#3,#4) \Vpolygon(#3,#4)}

% -------------------------------------------------------------------------
% Draws a sequence of quadratic bezier curves.
% You have to provide m points with m=2*i+1 (i=1,2,..).
%     \Quadratic(x1,y1)(x2,y2)(x3,y3)...(xm,ym)
% -------------------------------------------------------------------------
\gdef\Quadratic{\@ifnextchar ({\@Qdraw}{\relax}}
\gdef\@Qdraw(#1,#2){\@ifnextchar ({\@Qcoord(#1,#2)}{\relax}}
\gdef\@Qcoord(#1,#2)(#3,#4)(#5,#6){%
 \Dset(\@ax,#1) \Dset(\@ay,#2)
 \Dset(\@bx,#3) \Dset(\@by,#4)
 \Dset(\@cx,#5) \Dset(\@cy,#6)
 \Mul(\@bx,2)   \Mul(\@by,2)
 \Add(\@ax,\@bx)\Div(\@ax,3)
 \Add(\@ay,\@by)\Div(\@ay,3)
 \Add(\@cx,\@bx)\Div(\@cx,3)
 \Add(\@cy,\@by)\Div(\@cy,3)
 \Moveto(#1,#2) \Bezier(\Np\@ax,\Np\@ay,\Np\@cx,\Np\@cy,#5,#6)
 \Quadratic(#5,#6)}

% -------------------------------------------------------------------------
% Draws a sequence of n cubic bezier curves.
% You have to provide m points with m=3*i+1 (i=1,2,..).
%     \Cubic(x1,y1)(x2,y2)(x3,y3)(x4,y4)...(xm,ym)
% -------------------------------------------------------------------------
\gdef\Cubic{\@ifnextchar ({\@Cdraw}{\relax}}
\gdef\@Cdraw(#1,#2){\@ifnextchar ({\@Ccoord(#1,#2)}{\relax}}
\gdef\@Ccoord(#1,#2)(#3,#4)(#5,#6)(#7,#8){%
 \Moveto(#1,#2) \Bezier(#3,#4,#5,#6,#7,#8)
 \Cubic(#7,#8)}

% -------------------------------------------------------------------------
% This is the general macro for drawing integral bezier curves. It draws
% bezier curves of degree 1..7. The degree depends on the number of
% coordinates. If \@ce is zero, the curve is drawn, depending on the
% counter \@ci. If \@ce is not zero, the coordinates are read until no
% more open cordinates are found. \Curveto needs \Moveto in front to
% draw from the current point.
%     \Curve(n)(x0,y0)...,   \Curveto(n)(x1,y1)...
% -------------------------------------------------------------------------
\gdef\Curve{\@cg=0\@ce=1\@ifnextchar ({\@Draw}{\@Draw(0)}}
\gdef\Curveto{\@cg=0\@ce=0\@ifnextchar ({\@Draw}{\@Draw(0)}}

\gdef\@Draw(#1){\@ifnextchar ({\@Coord(#1)}{%
 \@ci=0  \ifcase\@cf\or\@Acurve\or
 \@Bcurve\or\@Ccurve\or\@Dcurve\or
 \@Ecurve\or\@Fcurve\or\@Gcurve\fi}}

\gdef\@Coord(#1)(#2,#3){%
 \ifnum#1=0
  \Add(\@cf,1)  \Euclid(#2,#3)
 \else
  \@cf=0 \@ca=#1
  \@cb=\@ca \Add(\@cb,1)
  \ifnum\@ce=1
   \Dset(\@ax,#2)\Dset(\@ay,#3)
   \Moveto(\Np\@ax,\Np\@ay)
  \else
   \Add(\@cf,1)
   \@ax=\@xx \@ay=\@xy
   \Dset(\@bx,#2)\Dset(\@by,#3)
  \fi\fi \Curve(0)}

% -------------------------------------------------------------------------
% This sets the points in euclidean (affine) coordinate space
% -------------------------------------------------------------------------
\gdef\Euclid(#1,#2){%
 \ifcase\@cf\or
  \Dset(\@bx,#1)\Dset(\@by,#2)\or
  \Dset(\@cx,#1)\Dset(\@cy,#2)\or
  \Dset(\@dx,#1)\Dset(\@dy,#2)\or
  \Dset(\@ex,#1)\Dset(\@ey,#2)\or
  \Dset(\@fx,#1)\Dset(\@fy,#2)\or
  \Dset(\@gx,#1)\Dset(\@gy,#2)\or
  \Dset(\@hx,#1)\Dset(\@hy,#2)\fi}

% -------------------------------------------------------------------------
% This is the general macro to draw rational bezier curves. It draws
% bezier curves of degree 1..7. The degree depends on the number of
% coordinates. If \@ce is zero, the curve is drawn, depending on the
% counter \@ci. If \@ci is not zero, the coordinates are read until no
% more open cordinates are found. \Rcurveto needs \Rmoveto in front to
% draw from the current point.
%      \Rcurve(n)(x0,y0,z0)...,   \Rcurveto(n)(x1,y1,z1)...
% -------------------------------------------------------------------------
\gdef\Rcurve{\@cg=1\@ce=1\@ifnextchar ({\@Rdraw}{\@Rdraw(0)}}
\gdef\Rcurveto{\@cg=1\@ce=0\@ifnextchar ({\@Rdraw}{\@Rdraw(0)}}

\gdef\@Rdraw(#1){\@ifnextchar ({\@Rcoord(#1)}{%
 \@ci=0  \ifcase\@cf\or\@Acurve\or
 \@Bcurve\or\@Ccurve\or\@Dcurve\or
 \@Ecurve\or\@Fcurve\or\@Gcurve\fi}}

\gdef\@Rcoord(#1)(#2,#3,#4){%
 \ifnum#1=0
  \Add(\@cf,1)  \Homogen(#2,#3,#4)
 \else
  \@cf=0 \@ca=#1
  \@cb=\@ca \Add(\@cb,1)
  \ifnum\@ce=1
   \Dset(\@ax,#2)\Dset(\@ay,#3)\Dset(\@az,#4)
   \Rmoveto(\Np\@ax,\Np\@ay,\Np\@az)
   \Dmul(\@ax,\@az)\Dmul(\@ay,\@az)
  \else
   \Add(\@cf,1)
   \@ax=\@xx \@ay=\@xy \@az=\@xz
   \Dmul(\@ax,\@az)\Dmul(\@ay,\@az)
   \Dset(\@bx,#2)\Dset(\@by,#3)\Dset(\@bz,#4)
   \Dmul(\@bx,\@bz)\Dmul(\@by,\@bz)
  \fi\fi \Rcurve(0)}

% -------------------------------------------------------------------------
% For rational bezier curves, this adds a weight component to the points
% and multiplies the components by the weights. Now, we can treat the
% curve as integral bezier curve with 3 components (homogen coordinates)
% px=px*w, py=py*w, pz=w. \Homogen(px,py,w)
% -------------------------------------------------------------------------
\gdef\Homogen(#1,#2,#3){%
 \ifcase\@cf\or
  \Dset(\@bx,#1)\Dset(\@by,#2)\Dset(\@bz,#3)\Dmul(\@bx,\@bz)\Dmul(\@by,\@bz)
 \or
  \Dset(\@cx,#1)\Dset(\@cy,#2)\Dset(\@cz,#3)\Dmul(\@cx,\@cz)\Dmul(\@cy,\@cz)
 \or
  \Dset(\@dx,#1)\Dset(\@dy,#2)\Dset(\@dz,#3)\Dmul(\@dx,\@dz)\Dmul(\@dy,\@dz)
 \or
  \Dset(\@ex,#1)\Dset(\@ey,#2)\Dset(\@ez,#3)\Dmul(\@ex,\@ez)\Dmul(\@ey,\@ez)
 \or
  \Dset(\@fx,#1)\Dset(\@fy,#2)\Dset(\@fz,#3)\Dmul(\@fx,\@fz)\Dmul(\@fy,\@fz)
 \or
  \Dset(\@gx,#1)\Dset(\@gy,#2)\Dset(\@gz,#3)\Dmul(\@gx,\@gz)\Dmul(\@gy,\@gz)
 \or
  \Dset(\@hx,#1)\Dset(\@hy,#2)\Dset(\@hz,#3)\Dmul(\@hx,\@hz)\Dmul(\@hy,\@hz)
 \fi}

% -------------------------------------------------------------------------
% For rational bezier curves, this projects homogeneous coordinates into
% affine space by dividing each component through the interpolated weight
% if pz=0 px=py=0 else px=px/pz, py=py/pz. \Affine
% -------------------------------------------------------------------------
\gdef\Affine{%
 \ifdim\@zz=\z@ \Dset(\@zx,0) \Dset(\@zy,0)
 \else \Ddiv(\@zx,\@zz) \Ddiv(\@zy,\@zz)\fi}

% -------------------------------------------------------------------------
% Linear interpolation between two coordinates. We have to take care, not
% to change the contents of #1 and #2, because these are fixed bezier
% coordinates. The interpolation value is returned in register #3.
% b0=a0+i*(a1-a0)/n
% -------------------------------------------------------------------------
\gdef\@One(#1,#2,#3){#3=#2
 \Sub(#3,#1) \Mul(#3,\@ci)
 \Div(#3,\@ca) \Add(#3,#1)}

% -------------------------------------------------------------------------
% Two degree interpolation between three coordinates.
% c0=b0+i*(b1-b0)/n, c1=b1+i*(b2-b1)/n, c=c0+i*(c1-c0)/n
% -------------------------------------------------------------------------
\gdef\@Two(#1,#2,#3,#4){%
 \@One(#1,#2,\@sx)
 \@One(#2,#3,\@sy)
 \@One(\@sx,\@sy,#4)}

% -------------------------------------------------------------------------
% Three degree interpolation between four coordinates.
% d0=c0+i*(c1-c0)/n, d1=c1+i*(c2-c1)/n, d=d0+i*(d1-d0)/n
% -------------------------------------------------------------------------
\gdef\@Three(#1,#2,#3,#4,#5){%
 \@Two(#1,#2,#3,\@tx)
 \@Two(#2,#3,#4,\@ty)
 \@One(\@tx,\@ty,#5)}

% -------------------------------------------------------------------------
% Four degree interpolation between five coordinates.
% e0=d0+i*(d1-d0)/n, e1=d1+i*(d2-d1)/n, e=e0+i*(e1-e0)/n
% -------------------------------------------------------------------------
\gdef\@Four(#1,#2,#3,#4,#5,#6){%
 \@Three(#1,#2,#3,#4,\@ux)
 \@Three(#2,#3,#4,#5,\@uy)
 \@One(\@ux,\@uy,#6)}

% -------------------------------------------------------------------------
% Five degree interpolation between six coordinates.
% f0=e0+i*(e1-e0)/n, f1=e1+i*(e2-e1)/n, f=f0+i*(f1-f0)/n
% -------------------------------------------------------------------------
\gdef\@Five(#1,#2,#3,#4,#5,#6,#7){%
 \@Four(#1,#2,#3,#4,#5,\@vx)
 \@Four(#2,#3,#4,#5,#6,\@vy)
 \@One(\@vx,\@vy,#7)}

% -------------------------------------------------------------------------
% Six degree interpolation between seven coordinates.
% g0=f0+i*(f1-f0)/n, g1=f1+i*(f2-f1)/n, g=g0+i*(g1-g0)/n
% -------------------------------------------------------------------------
\gdef\@Six(#1,#2,#3,#4,#5,#6,#7,#8){%
 \@Five(#1,#2,#3,#4,#5,#6,\@wx)
 \@Five(#2,#3,#4,#5,#6,#7,\@wy)
 \@One(\@wx,\@wy,#8)}

% -------------------------------------------------------------------------
% Seven degree interpolation between eight coordinates.
% h0=g0+i*(g1-g0)/n, h1=g1+i*(g2-g1)/n, h=h0+i*(h1-h0)/n
% -------------------------------------------------------------------------
\gdef\@Seven(#1,#2,#3,#4,#5,#6,#7,#8,#9){%
 \@Six(#1,#2,#3,#4,#5,#6,#7,\@yx)
 \@Six(#2,#3,#4,#5,#6,#7,#8,\@yy)
 \@One(\@yx,\@yy,#9)}

% -------------------------------------------------------------------------
% Draws a one degree bezier curve (integral or rational).
% -------------------------------------------------------------------------
\gdef\@Acurve{%
 \@whilenum{\@ci<\@cb}\do{%
  \@One(\@ax,\@bx,\@zx)
  \@One(\@ay,\@by,\@zy)
  \ifnum\@cg=1
   \@One(\@az,\@bz,\@zz)\Affine\fi
  \Lineto(\Np\@zx,\Np\@zy) \Add(\@ci,1)}}

% -------------------------------------------------------------------------
% Draws a two degree bezier curve (integral or rational).
% -------------------------------------------------------------------------
\gdef\@Bcurve{%
 \@whilenum{\@ci<\@cb}\do{%
  \@Two(\@ax,\@bx,\@cx,\@zx)
  \@Two(\@ay,\@by,\@cy,\@zy)
  \ifnum\@cg=1
   \@Two(\@az,\@bz,\@cz,\@zz)\Affine\fi
  \Lineto(\Np\@zx,\Np\@zy) \Add(\@ci,1)}}

% -------------------------------------------------------------------------
% Draws a three degree bezier curve (integral or rational).
% -------------------------------------------------------------------------
\gdef\@Ccurve{%
 \@whilenum{\@ci<\@cb}\do{%
  \@Three(\@ax,\@bx,\@cx,\@dx,\@zx)
  \@Three(\@ay,\@by,\@cy,\@dy,\@zy)
  \ifnum\@cg=1
   \@Three(\@az,\@bz,\@cz,\@dz,\@zz)\Affine\fi
  \Lineto(\Np\@zx,\Np\@zy) \Add(\@ci,1)}}

% -------------------------------------------------------------------------
% Draws a four degree bezier curve (integral or rational).
% -------------------------------------------------------------------------
\gdef\@Dcurve{%
 \@whilenum{\@ci<\@cb}\do{%
  \@Four(\@ax,\@bx,\@cx,\@dx,\@ex,\@zx)
  \@Four(\@ay,\@by,\@cy,\@dy,\@ey,\@zy)
  \ifnum\@cg=1
   \@Four(\@az,\@bz,\@cz,\@dz,\@ez,\@zz)\Affine\fi
  \Lineto(\Np\@zx,\Np\@zy) \Add(\@ci,1)}}

% -------------------------------------------------------------------------
% Draws a five degree bezier curve (integral or rational).
% -------------------------------------------------------------------------
\gdef\@Ecurve{%
 \@whilenum{\@ci<\@cb}\do{%
  \@Five(\@ax,\@bx,\@cx,\@dx,\@ex,\@fx,\@zx)
  \@Five(\@ay,\@by,\@cy,\@dy,\@ey,\@fy,\@zy)
  \ifnum\@cg=1
   \@Five(\@az,\@bz,\@cz,\@dz,\@ez,\@fz,\@zz)\Affine\fi
  \Lineto(\Np\@zx,\Np\@zy) \Add(\@ci,1)}}

% -------------------------------------------------------------------------
% Draws a six degree bezier curve (integral or rational).
% -------------------------------------------------------------------------
\gdef\@Fcurve{%
 \@whilenum{\@ci<\@cb}\do{%
  \@Six(\@ax,\@bx,\@cx,\@dx,\@ex,\@fx,\@gx,\@zx)
  \@Six(\@ay,\@by,\@cy,\@dy,\@ey,\@fy,\@gy,\@zy)
  \ifnum\@cg=1
   \@Six(\@az,\@bz,\@cz,\@dz,\@ez,\@fz,\@gz,\@zz)\Affine\fi
  \Lineto(\Np\@zx,\Np\@zy) \Add(\@ci,1)}}

% -------------------------------------------------------------------------
% Draws a seven degree bezier curve (integral or rational).
% -------------------------------------------------------------------------
\gdef\@Gcurve{%
 \@whilenum{\@ci<\@cb}\do{%
  \@Seven(\@ax,\@bx,\@cx,\@dx,\@ex,\@fx,\@gx,\@hx,\@zx)
  \@Seven(\@ay,\@by,\@cy,\@dy,\@ey,\@fy,\@gy,\@hy,\@zy)
  \ifnum\@cg=1
   \@Seven(\@az,\@bz,\@cz,\@dz,\@ez,\@fz,\@gz,\@hz,\@zz)\Affine\fi
  \Lineto(\Np\@zx,\Np\@zy) \Add(\@ci,1)}}

% -------------------------------------------------------------------------
\endinput

%% End of file `lapdf.sty'.