1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
|
% ---------------------------------------------------------------------------
% The chrysanteme curve is defined by the equation:
% r=5(1+sin(11a/5)-4sin^4(17a/3)*sin^8(2cos(3a)-14a)).
% ---------------------------------------------------------------------------
\input preamble.tex
\Defnum(\n,0)
\newcount\m
\newdimen\a
\newdimen\x
\newdimen\y
\newdimen\z
% ---------------------------------------------------------------------------
\begin{document}
\unitlength0.88cm
\begin{center}
{\Huge \bf{The Chrysanteme Curve}}
\bigskip
\begin{lapdf}(18,20)(-9,-10)
\def\Px(#1,#2){\Dset(\a,#1) \x=2.2\a \y=5.667\a \z=3\a \a=14\a
\Sin(\Np\x,#2) \Dadd(#2,1) #2=1.25#2 \Sin(\Np\y,\y)
\Cos(\Np\z,\z) \Sub(\z,\a) \Add(\z,\z) \Sin(\Np\z,\z)
\Dmul(\z,\z) \Dmul(\y,\z) \Pot(\Np\y,4,\y) \Sub(#2,\y) #2=4#2}
\Whilenum{\n<24}{%
\m=\n \Add(\m,1) \Nextcol(0, 23) \Pplot(100)(\n,\m) \Stroke \Add(\n,1)}
\end{lapdf}
$r(\phi)=5(1+\sin(11\phi/5)-4\sin^4(17\phi/3)\sin^8(2\cos(3\phi)-14\phi))$
\end{center}
\end{document}
|