1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
|
% \iffalse meta-comment
%
%% File: l3int.dtx
%
% Copyright (C) 1990-2022 The LaTeX Project
%
% It may be distributed and/or modified under the conditions of the
% LaTeX Project Public License (LPPL), either version 1.3c of this
% license or (at your option) any later version. The latest version
% of this license is in the file
%
% https://www.latex-project.org/lppl.txt
%
% This file is part of the "l3kernel bundle" (The Work in LPPL)
% and all files in that bundle must be distributed together.
%
% -----------------------------------------------------------------------
%
% The development version of the bundle can be found at
%
% https://github.com/latex3/latex3
%
% for those people who are interested.
%
%<*driver>
\documentclass[full,kernel]{l3doc}
\begin{document}
\DocInput{\jobname.dtx}
\end{document}
%</driver>
% \fi
%
% \title{^^A
% The \pkg{l3int} package\\ Integers^^A
% }
%
% \author{^^A
% The \LaTeX{} Project\thanks
% {^^A
% E-mail:
% \href{mailto:latex-team@latex-project.org}
% {latex-team@latex-project.org}^^A
% }^^A
% }
%
% \date{Released 2022-12-17}
%
% \maketitle
%
% \begin{documentation}
%
% Calculation and comparison of integer values can be carried out
% using literal numbers, \texttt{int} registers, constants and
% integers stored in token list variables. The standard operators
% \texttt{+}, \texttt{-}, \texttt{/} and \texttt{*} and
% parentheses can be used within such expressions to carry
% arithmetic operations. This module carries out these functions
% on \emph{integer expressions} (\enquote{\texttt{intexpr}}).
%
% \section{Integer expressions}
%
% Throughout this module, (almost) all \texttt{n}-type argument allow
% for an \meta{intexpr} argument with the following syntax. The
% \meta{integer expression} should consist,
% after expansion, of \texttt{+}, \texttt{-}, \texttt{*}, \texttt{/},
% \texttt{(}, \texttt{)} and of course integer operands. The result
% is calculated by applying standard mathematical rules with the
% following peculiarities:
% \begin{itemize}
% \item \texttt{/} denotes division rounded to the closest integer with
% ties rounded away from zero;
% \item there is an error and the overall expression evaluates to zero
% whenever the absolute value of any intermediate result exceeds
% $2^{31}-1$, except in the case of scaling operations
% $a$\texttt{*}$b$\texttt{/}$c$, for which $a$\texttt{*}$b$ may be
% arbitrarily large (but the operands $a$, $b$, $c$ are still
% constrained to an absolute value at most $2^{31}-1$);
% \item parentheses may not appear after unary \texttt{+} or
% \texttt{-}, namely placing \texttt{+(} or \texttt{-(} at the start
% of an expression or after \texttt{+}, \texttt{-}, \texttt{*},
% \texttt{/} or~\texttt{(} leads to an error.
% \end{itemize}
% Each integer operand can be either an integer variable (with no need
% for \cs{int_use:N}) or an integer denotation. For example both
% \begin{verbatim}
% \int_show:n { 5 + 4 * 3 - ( 3 + 4 * 5 ) }
% \end{verbatim}
% and
% \begin{verbatim}
% \tl_new:N \l_my_tl
% \tl_set:Nn \l_my_tl { 5 }
% \int_new:N \l_my_int
% \int_set:Nn \l_my_int { 4 }
% \int_show:n { \l_my_tl + \l_my_int * 3 - ( 3 + 4 * 5 ) }
% \end{verbatim}
% show the same result $-6$ because \cs[no-index]{l_my_tl} expands to
% the integer denotation~|5| while the integer variable \cs{l_my_int}
% takes the value~$4$. As the \meta{integer expression} is fully
% expanded from left to right during evaluation, fully expandable and
% restricted-expandable functions can both be used, and \cs{exp_not:n}
% and its variants have no effect while \cs{exp_not:N} may incorrectly
% interrupt the expression.
% \begin{texnote}
% Exactly two expansions are needed to evaluate \cs{int_eval:n}.
% The result is \emph{not} an \meta{internal integer}, and therefore
% should be terminated by a space if used in \cs{int_value:w} or in
% a \TeX{}-style integer assignment.
%
% As all \TeX{} integers, integer operands can also be:
% \tn{value}\Arg{\LaTeXe{} counter}; dimension or skip variables,
% converted to integers in~\texttt{sp}; the character code of some
% character given as \texttt{`}\meta{char} or
% \texttt{`\textbackslash}\meta{char}; octal numbers given as
% \texttt{'} followed by digits from \texttt{0} to \texttt{7}; or
% hexadecimal numbers given as |"| followed by digits and upper case
% letters from \texttt{A} to~\texttt{F}.
% \end{texnote}
%
% \begin{function}[EXP]{\int_eval:n}
% \begin{syntax}
% \cs{int_eval:n} \Arg{integer expression}
% \end{syntax}
% Evaluates the \meta{integer expression} and leaves the result in the
% input stream as an integer denotation: for positive results an
% explicit sequence of decimal digits not starting with~\texttt{0},
% for negative results \texttt{-}~followed by such a sequence, and
% \texttt{0}~for zero.
% \end{function}
%
% \begin{function}[EXP, added = 2018-03-30]{\int_eval:w}
% \begin{syntax}
% \cs{int_eval:w} \meta{integer expression}
% \end{syntax}
% Evaluates the \meta{integer expression} as described for
% \cs{int_eval:n}. The end of the expression is the first token
% encountered that cannot form part of such an expression. If that
% token is \cs{scan_stop:} it is removed, otherwise not. Spaces do
% \emph{not} terminate the expression. However, spaces terminate
% explict integers, and this may terminate the expression: for
% instance, \cs{int_eval:w} \verb*|1 + 1 9| (with explicit space
% tokens inserted using |~| in a code setting) expands to \texttt{29}
% since the digit~\texttt{9} is not part of the expression.
% \end{function}
%
% \begin{function}[EXP, added = 2018-11-03]{\int_sign:n}
% \begin{syntax}
% \cs{int_sign:n} \Arg{intexpr}
% \end{syntax}
% Evaluates the \meta{integer expression} then leaves $1$ or $0$ or
% $-1$ in the input stream according to the sign of the result.
% \end{function}
%
% \begin{function}[EXP, updated = 2012-09-26]{\int_abs:n}
% \begin{syntax}
% \cs{int_abs:n} \Arg{integer expression}
% \end{syntax}
% Evaluates the \meta{integer expression} as described for
% \cs{int_eval:n} and leaves the absolute value of the result in
% the input stream as an \meta{integer denotation} after two
% expansions.
% \end{function}
%
% \begin{function}[EXP, updated = 2012-09-26]{\int_div_round:nn}
% \begin{syntax}
% \cs{int_div_round:nn} \Arg{intexpr_1} \Arg{intexpr_2}
% \end{syntax}
% Evaluates the two \meta{integer expressions} as described earlier,
% then divides the first value by the second, and rounds the result
% to the closest integer. Ties are rounded away from zero.
% Note that this is identical to using
% |/| directly in an \meta{integer expression}. The result is left in
% the input stream as an \meta{integer denotation} after two expansions.
% \end{function}
%
% \begin{function}[EXP, updated = 2012-02-09]{\int_div_truncate:nn}
% \begin{syntax}
% \cs{int_div_truncate:nn} \Arg{intexpr_1} \Arg{intexpr_2}
% \end{syntax}
% Evaluates the two \meta{integer expressions} as described earlier,
% then divides the first value by the second, and rounds the result
% towards zero. Note that division using |/|
% rounds to the closest integer instead.
% The result is left in the input stream as an
% \meta{integer denotation} after two expansions.
% \end{function}
%
% \begin{function}[EXP, updated = 2012-09-26]{\int_max:nn, \int_min:nn}
% \begin{syntax}
% \cs{int_max:nn} \Arg{intexpr_1} \Arg{intexpr_2}
% \cs{int_min:nn} \Arg{intexpr_1} \Arg{intexpr_2}
% \end{syntax}
% Evaluates the \meta{integer expressions} as described for
% \cs{int_eval:n} and leaves either the larger or smaller value
% in the input stream as an \meta{integer denotation} after two
% expansions.
% \end{function}
%
% \begin{function}[EXP, updated = 2012-09-26]{\int_mod:nn}
% \begin{syntax}
% \cs{int_mod:nn} \Arg{intexpr_1} \Arg{intexpr_2}
% \end{syntax}
% Evaluates the two \meta{integer expressions} as described earlier,
% then calculates the integer remainder of dividing the first
% expression by the second. This is obtained by subtracting
% \cs{int_div_truncate:nn} \Arg{intexpr_1} \Arg{intexpr_2} times
% \meta{intexpr_2} from \meta{intexpr_1}. Thus, the result has the
% same sign as \meta{intexpr_1} and its absolute value is strictly
% less than that of \meta{intexpr_2}. The result is left in the input
% stream as an \meta{integer denotation} after two expansions.
% \end{function}
%
% \section{Creating and initialising integers}
%
% \begin{function}{\int_new:N, \int_new:c}
% \begin{syntax}
% \cs{int_new:N} \meta{integer}
% \end{syntax}
% Creates a new \meta{integer} or raises an error if the name is
% already taken. The declaration is global. The \meta{integer} is
% initially equal to $0$.
% \end{function}
%
% \begin{function}[updated = 2011-10-22]{\int_const:Nn, \int_const:cn}
% \begin{syntax}
% \cs{int_const:Nn} \meta{integer} \Arg{integer expression}
% \end{syntax}
% Creates a new constant \meta{integer} or raises an error if the name
% is already taken. The value of the \meta{integer} is set
% globally to the \meta{integer expression}.
% \end{function}
%
% \begin{function}{\int_zero:N, \int_zero:c, \int_gzero:N, \int_gzero:c}
% \begin{syntax}
% \cs{int_zero:N} \meta{integer}
% \end{syntax}
% Sets \meta{integer} to $0$.
% \end{function}
%
% \begin{function}[added = 2011-12-13]
% {\int_zero_new:N, \int_zero_new:c, \int_gzero_new:N, \int_gzero_new:c}
% \begin{syntax}
% \cs{int_zero_new:N} \meta{integer}
% \end{syntax}
% Ensures that the \meta{integer} exists globally by applying
% \cs{int_new:N} if necessary, then applies
% \cs[index=int_zero:N]{int_(g)zero:N} to leave
% the \meta{integer} set to zero.
% \end{function}
%
% \begin{function}
% {
% \int_set_eq:NN, \int_set_eq:cN, \int_set_eq:Nc, \int_set_eq:cc,
% \int_gset_eq:NN, \int_gset_eq:cN, \int_gset_eq:Nc, \int_gset_eq:cc
% }
% \begin{syntax}
% \cs{int_set_eq:NN} \meta{integer_1} \meta{integer_2}
% \end{syntax}
% Sets the content of \meta{integer_1} equal to that of
% \meta{integer_2}.
% \end{function}
%
% \begin{function}[EXP, pTF, added=2012-03-03]
% {\int_if_exist:N, \int_if_exist:c}
% \begin{syntax}
% \cs{int_if_exist_p:N} \meta{int}
% \cs{int_if_exist:NTF} \meta{int} \Arg{true code} \Arg{false code}
% \end{syntax}
% Tests whether the \meta{int} is currently defined. This does not
% check that the \meta{int} really is an integer variable.
% \end{function}
%
% \section{Setting and incrementing integers}
%
% \begin{function}[updated = 2011-10-22]
% {\int_add:Nn, \int_add:cn, \int_gadd:Nn, \int_gadd:cn}
% \begin{syntax}
% \cs{int_add:Nn} \meta{integer} \Arg{integer expression}
% \end{syntax}
% Adds the result of the \meta{integer expression} to the current
% content of the \meta{integer}.
% \end{function}
%
% \begin{function}{\int_decr:N, \int_decr:c, \int_gdecr:N, \int_gdecr:c}
% \begin{syntax}
% \cs{int_decr:N} \meta{integer}
% \end{syntax}
% Decreases the value stored in \meta{integer} by $1$.
% \end{function}
%
% \begin{function}{\int_incr:N, \int_incr:c, \int_gincr:N, \int_gincr:c}
% \begin{syntax}
% \cs{int_incr:N} \meta{integer}
% \end{syntax}
% Increases the value stored in \meta{integer} by $1$.
% \end{function}
%
% \begin{function}[updated = 2011-10-22]
% {\int_set:Nn, \int_set:cn, \int_gset:Nn, \int_gset:cn}
% \begin{syntax}
% \cs{int_set:Nn} \meta{integer} \Arg{integer expression}
% \end{syntax}
% Sets \meta{integer} to the value of \meta{integer expression},
% which must evaluate to an integer (as described for
% \cs{int_eval:n}).
% \end{function}
%
% \begin{function}[updated = 2011-10-22]
% {\int_sub:Nn, \int_sub:cn, \int_gsub:Nn, \int_gsub:cn}
% \begin{syntax}
% \cs{int_sub:Nn} \meta{integer} \Arg{integer expression}
% \end{syntax}
% Subtracts the result of the \meta{integer expression} from the
% current content of the \meta{integer}.
% \end{function}
%
% \section{Using integers}
%
% \begin{function}[updated = 2011-10-22, EXP]{\int_use:N, \int_use:c}
% \begin{syntax}
% \cs{int_use:N} \meta{integer}
% \end{syntax}
% Recovers the content of an \meta{integer} and places it directly
% in the input stream. An error is raised if the variable does
% not exist or if it is invalid. Can be omitted in places where an
% \meta{integer} is required (such as in the first and third arguments
% of \cs{int_compare:nNnTF}).
% \begin{texnote}
% \cs{int_use:N} is the \TeX{} primitive \tn{the}: this is one of
% several \LaTeX3 names for this primitive.
% \end{texnote}
% \end{function}
%
% \section{Integer expression conditionals}
%
% \begin{function}[EXP,pTF]{\int_compare:nNn}
% \begin{syntax}
% \cs{int_compare_p:nNn} \Arg{intexpr_1} \meta{relation} \Arg{intexpr_2} \\
% \cs{int_compare:nNnTF}
% ~~\Arg{intexpr_1} \meta{relation} \Arg{intexpr_2}
% ~~\Arg{true code} \Arg{false code}
% \end{syntax}
% This function first evaluates each of the \meta{integer expressions}
% as described for \cs{int_eval:n}. The two results are then
% compared using the \meta{relation}:
% \begin{center}
% \begin{tabular}{ll}
% Equal & |=| \\
% Greater than & |>| \\
% Less than & |<| \\
% \end{tabular}
% \end{center}
% This function is less flexible than \cs{int_compare:nTF} but around
% $5$~times faster.
% \end{function}
%
% \begin{function}[updated = 2013-01-13, EXP, pTF]{\int_compare:n}
% \begin{syntax}
% \cs{int_compare_p:n} \\
% ~~\{ \\
% ~~~~\meta{intexpr_1} \meta{relation_1} \\
% ~~~~\ldots{} \\
% ~~~~\meta{intexpr_N} \meta{relation_N} \\
% ~~~~\meta{intexpr_{N+1}} \\
% ~~\} \\
% \cs{int_compare:nTF}
% ~~\{ \\
% ~~~~\meta{intexpr_1} \meta{relation_1} \\
% ~~~~\ldots{} \\
% ~~~~\meta{intexpr_N} \meta{relation_N} \\
% ~~~~\meta{intexpr_{N+1}} \\
% ~~\} \\
% ~~\Arg{true code} \Arg{false code}
% \end{syntax}
% This function evaluates the \meta{integer expressions} as described
% for \cs{int_eval:n} and compares consecutive result using the
% corresponding \meta{relation}, namely it compares \meta{intexpr_1}
% and \meta{intexpr_2} using the \meta{relation_1}, then
% \meta{intexpr_2} and \meta{intexpr_3} using the \meta{relation_2},
% until finally comparing \meta{intexpr_N} and \meta{intexpr_{N+1}}
% using the \meta{relation_N}. The test yields \texttt{true} if all
% comparisons are \texttt{true}. Each \meta{integer expression} is
% evaluated only once, and the evaluation is lazy, in the sense that
% if one comparison is \texttt{false}, then no other \meta{integer
% expression} is evaluated and no other comparison is performed.
% The \meta{relations} can be any of the following:
% \begin{center}
% \begin{tabular}{ll}
% Equal & |=| or |==| \\
% Greater than or equal to & |>=| \\
% Greater than & |>| \\
% Less than or equal to & |<=| \\
% Less than & |<| \\
% Not equal & |!=| \\
% \end{tabular}
% \end{center}
% This function is more flexible than \cs{int_compare:nNnTF} but
% around $5$~times slower.
% \end{function}
%
% \begin{function}[added = 2013-07-24, EXP, noTF]{\int_case:nn}
% \begin{syntax}
% \cs{int_case:nnTF} \Arg{test integer expression} \\
% ~~|{| \\
% ~~~~\Arg{intexpr case_1} \Arg{code case_1} \\
% ~~~~\Arg{intexpr case_2} \Arg{code case_2} \\
% ~~~~\ldots \\
% ~~~~\Arg{intexpr case_n} \Arg{code case_n} \\
% ~~|}| \\
% ~~\Arg{true code}
% ~~\Arg{false code}
% \end{syntax}
% This function evaluates the \meta{test integer expression} and
% compares this in turn to each of the
% \meta{integer expression cases}. If the two are equal then the
% associated \meta{code} is left in the input stream
% and other cases are discarded. If any of the
% cases are matched, the \meta{true code} is also inserted into the
% input stream (after the code for the appropriate case), while if none
% match then the \meta{false code} is inserted. The function
% \cs{int_case:nn}, which does nothing if there is no match, is also
% available. For example
% \begin{verbatim}
% \int_case:nnF
% { 2 * 5 }
% {
% { 5 } { Small }
% { 4 + 6 } { Medium }
% { -2 * 10 } { Negative }
% }
% { No idea! }
% \end{verbatim}
% leaves \enquote{\texttt{Medium}} in the input stream.
% \end{function}
%
% \begin{function}[EXP,pTF]{\int_if_even:n, \int_if_odd:n}
% \begin{syntax}
% \cs{int_if_odd_p:n} \Arg{integer expression}
% \cs{int_if_odd:nTF} \Arg{integer expression}
% ~~\Arg{true code} \Arg{false code}
% \end{syntax}
% This function first evaluates the \meta{integer expression}
% as described for \cs{int_eval:n}. It then evaluates if this
% is odd or even, as appropriate.
% \end{function}
%
% \section{Integer expression loops}
%
% \begin{function}[rEXP]{\int_do_until:nNnn}
% \begin{syntax}
% \cs{int_do_until:nNnn} \Arg{intexpr_1} \meta{relation} \Arg{intexpr_2} \Arg{code}
% \end{syntax}
% Places the \meta{code} in the input stream for \TeX{} to process, and
% then evaluates the relationship between the two
% \meta{integer expressions} as described for \cs{int_compare:nNnTF}.
% If the test is \texttt{false} then the \meta{code} is inserted
% into the input stream again and a loop occurs until the
% \meta{relation} is \texttt{true}.
% \end{function}
%
% \begin{function}[rEXP]{\int_do_while:nNnn}
% \begin{syntax}
% \cs{int_do_while:nNnn} \Arg{intexpr_1} \meta{relation} \Arg{intexpr_2} \Arg{code}
% \end{syntax}
% Places the \meta{code} in the input stream for \TeX{} to process, and
% then evaluates the relationship between the two
% \meta{integer expressions} as described for \cs{int_compare:nNnTF}.
% If the test is \texttt{true} then the \meta{code} is inserted
% into the input stream again and a loop occurs until the
% \meta{relation} is \texttt{false}.
% \end{function}
%
% \begin{function}[rEXP]{\int_until_do:nNnn}
% \begin{syntax}
% \cs{int_until_do:nNnn} \Arg{intexpr_1} \meta{relation} \Arg{intexpr_2} \Arg{code}
% \end{syntax}
% Evaluates the relationship between the two \meta{integer expressions}
% as described for \cs{int_compare:nNnTF}, and then places the
% \meta{code} in the input stream if the \meta{relation} is
% \texttt{false}. After the \meta{code} has been processed by \TeX{} the
% test is repeated, and a loop occurs until the test is
% \texttt{true}.
% \end{function}
%
% \begin{function}[rEXP]{\int_while_do:nNnn}
% \begin{syntax}
% \cs{int_while_do:nNnn} \Arg{intexpr_1} \meta{relation} \Arg{intexpr_2} \Arg{code}
% \end{syntax}
% Evaluates the relationship between the two \meta{integer expressions}
% as described for \cs{int_compare:nNnTF}, and then places the
% \meta{code} in the input stream if the \meta{relation} is
% \texttt{true}. After the \meta{code} has been processed by \TeX{} the
% test is repeated, and a loop occurs until the test is
% \texttt{false}.
% \end{function}
%
% \begin{function}[updated = 2013-01-13, rEXP]{\int_do_until:nn}
% \begin{syntax}
% \cs{int_do_until:nn} \Arg{integer relation} \Arg{code}
% \end{syntax}
% Places the \meta{code} in the input stream for \TeX{} to process, and
% then evaluates the \meta{integer relation}
% as described for \cs{int_compare:nTF}.
% If the test is \texttt{false} then the \meta{code} is inserted
% into the input stream again and a loop occurs until the
% \meta{relation} is \texttt{true}.
% \end{function}
%
% \begin{function}[updated = 2013-01-13, rEXP]{\int_do_while:nn}
% \begin{syntax}
% \cs{int_do_while:nn} \Arg{integer relation} \Arg{code}
% \end{syntax}
% Places the \meta{code} in the input stream for \TeX{} to process, and
% then evaluates the \meta{integer relation}
% as described for \cs{int_compare:nTF}.
% If the test is \texttt{true} then the \meta{code} is inserted
% into the input stream again and a loop occurs until the
% \meta{relation} is \texttt{false}.
% \end{function}
%
% \begin{function}[updated = 2013-01-13, rEXP]{\int_until_do:nn}
% \begin{syntax}
% \cs{int_until_do:nn} \Arg{integer relation} \Arg{code}
% \end{syntax}
% Evaluates the \meta{integer relation}
% as described for \cs{int_compare:nTF}, and then places the
% \meta{code} in the input stream if the \meta{relation} is
% \texttt{false}. After the \meta{code} has been processed by \TeX{} the
% test is repeated, and a loop occurs until the test is
% \texttt{true}.
% \end{function}
%
% \begin{function}[updated = 2013-01-13, rEXP]{\int_while_do:nn}
% \begin{syntax}
% \cs{int_while_do:nn} \Arg{integer relation} \Arg{code}
% \end{syntax}
% Evaluates the \meta{integer relation}
% as described for \cs{int_compare:nTF}, and then places the
% \meta{code} in the input stream if the \meta{relation} is
% \texttt{true}. After the \meta{code} has been processed by \TeX{} the
% test is repeated, and a loop occurs until the test is
% \texttt{false}.
% \end{function}
%
% \section{Integer step functions}
%
% \begin{function}[added = 2012-06-04, updated = 2018-04-22, rEXP]
% {\int_step_function:nN, \int_step_function:nnN, \int_step_function:nnnN}
% \begin{syntax}
% \cs{int_step_function:nN} \Arg{final value} \meta{function}
% \cs{int_step_function:nnN} \Arg{initial value} \Arg{final value} \meta{function}
% \cs{int_step_function:nnnN} \Arg{initial value} \Arg{step} \Arg{final value} \meta{function}
% \end{syntax}
% This function first evaluates the \meta{initial value}, \meta{step}
% and \meta{final value}, all of which should be integer expressions.
% The \meta{function} is then placed in front of each \meta{value}
% from the \meta{initial value} to the \meta{final value} in turn
% (using \meta{step} between each \meta{value}). The \meta{step} must
% be non-zero. If the \meta{step} is positive, the loop stops when
% the \meta{value} becomes larger than the \meta{final value}. If the
% \meta{step} is negative, the loop stops when the \meta{value}
% becomes smaller than the \meta{final value}. The \meta{function}
% should absorb one numerical argument. For example
% \begin{verbatim}
% \cs_set:Npn \my_func:n #1 { [I~saw~#1] \quad }
% \int_step_function:nnnN { 1 } { 1 } { 5 } \my_func:n
% \end{verbatim}
% would print
% \begin{quote}
% [I saw 1] \quad
% [I saw 2] \quad
% [I saw 3] \quad
% [I saw 4] \quad
% [I saw 5] \quad
% \end{quote}
%
% The functions \cs{int_step_function:nN} and \cs{int_step_function:nnN}
% both use a fixed \meta{step} of $1$, and in the case of
% \cs{int_step_function:nN} the \meta{initial value} is also fixed as
% $1$. These functions are provided as simple short-cuts for code clarity.
% \end{function}
%
% \begin{function}[added = 2012-06-04, updated = 2018-04-22]
% {\int_step_inline:nn, \int_step_inline:nnn, \int_step_inline:nnnn}
% \begin{syntax}
% \cs{int_step_inline:nn} \Arg{final value} \Arg{code}
% \cs{int_step_inline:nnn} \Arg{initial value} \Arg{final value} \Arg{code}
% \cs{int_step_inline:nnnn} \Arg{initial value} \Arg{step} \Arg{final value} \Arg{code}
% \end{syntax}
% This function first evaluates the \meta{initial value}, \meta{step}
% and \meta{final value}, all of which should be integer expressions.
% Then for each \meta{value} from the \meta{initial value} to the
% \meta{final value} in turn (using \meta{step} between each
% \meta{value}), the \meta{code} is inserted into the input stream
% with |#1| replaced by the current \meta{value}. Thus the
% \meta{code} should define a function of one argument~(|#1|).
%
% The functions \cs{int_step_inline:nn} and \cs{int_step_inline:nnn}
% both use a fixed \meta{step} of $1$, and in the case of
% \cs{int_step_inline:nn} the \meta{initial value} is also fixed as
% $1$. These functions are provided as simple short-cuts for code clarity.
% \end{function}
%
% \begin{function}[added = 2012-06-04, updated = 2018-04-22]
% {\int_step_variable:nNn, \int_step_variable:nnNn, \int_step_variable:nnnNn}
% \begin{syntax}
% \cs{int_step_variable:nNn} \Arg{final value} \meta{tl~var} \Arg{code}
% \cs{int_step_variable:nnNn} \Arg{initial value} \Arg{final value} \meta{tl~var} \Arg{code}
% \cs{int_step_variable:nnnNn} \Arg{initial value} \Arg{step} \Arg{final value} \meta{tl~var} \Arg{code}
% \end{syntax}
% This function first evaluates the \meta{initial value}, \meta{step}
% and \meta{final value}, all of which should be integer expressions.
% Then for each \meta{value} from the \meta{initial value} to the
% \meta{final value} in turn (using \meta{step} between each
% \meta{value}), the \meta{code} is inserted into the input stream,
% with the \meta{tl~var} defined as the current \meta{value}. Thus
% the \meta{code} should make use of the \meta{tl~var}.
%
% The functions \cs{int_step_variable:nNn} and \cs{int_step_variable:nnNn}
% both use a fixed \meta{step} of $1$, and in the case of
% \cs{int_step_variable:nNn} the \meta{initial value} is also fixed as
% $1$. These functions are provided as simple short-cuts for code clarity.
% \end{function}
%
% \section{Formatting integers}
%
% Integers can be placed into the output stream with formatting. These
% conversions apply to any integer expressions.
%
% \begin{function}[updated = 2011-10-22, EXP]{\int_to_arabic:n}
% \begin{syntax}
% \cs{int_to_arabic:n} \Arg{integer expression}
% \end{syntax}
% Places the value of the \meta{integer expression} in the input
% stream as digits, with category code $12$ (other).
% \end{function}
%
% \begin{function}[updated = 2011-09-17, EXP]{\int_to_alph:n, \int_to_Alph:n}
% \begin{syntax}
% \cs{int_to_alph:n} \Arg{integer expression}
% \end{syntax}
% Evaluates the \meta{integer expression} and converts the result
% into a series of letters, which are then left in the input stream.
% The conversion rule uses the $26$ letters of the English
% alphabet, in order, adding letters when necessary to increase the total
% possible range of representable numbers. Thus
% \begin{verbatim}
% \int_to_alph:n { 1 }
% \end{verbatim}
% places |a| in the input stream,
% \begin{verbatim}
% \int_to_alph:n { 26 }
% \end{verbatim}
% is represented as |z| and
% \begin{verbatim}
% \int_to_alph:n { 27 }
% \end{verbatim}
% is converted to |aa|. For conversions using other alphabets, use
% \cs{int_to_symbols:nnn} to define an alphabet-specific
% function. The basic \cs{int_to_alph:n} and \cs{int_to_Alph:n}
% functions should not be modified.
% The resulting tokens are digits with category code $12$ (other) and
% letters with category code $11$ (letter).
% \end{function}
%
% \begin{function}[updated = 2011-09-17, EXP]{\int_to_symbols:nnn}
% \begin{syntax}
% \cs{int_to_symbols:nnn}
% ~~\Arg{integer expression} \Arg{total symbols}
% ~~\Arg{value to symbol mapping}
% \end{syntax}
% This is the low-level function for conversion of an
% \meta{integer expression} into a symbolic form (often
% letters). The \meta{total symbols} available should be given
% as an integer expression. Values are actually converted to symbols
% according to the \meta{value to symbol mapping}. This should be given
% as \meta{total symbols} pairs of entries, a number and the
% appropriate symbol. Thus the \cs{int_to_alph:n} function is defined
% as
% \begin{verbatim}
% \cs_new:Npn \int_to_alph:n #1
% {
% \int_to_symbols:nnn {#1} { 26 }
% {
% { 1 } { a }
% { 2 } { b }
% ...
% { 26 } { z }
% }
% }
% \end{verbatim}
% \end{function}
%
% \begin{function}[added = 2014-02-11, EXP]{\int_to_bin:n}
% \begin{syntax}
% \cs{int_to_bin:n} \Arg{integer expression}
% \end{syntax}
% Calculates the value of the \meta{integer expression} and places
% the binary representation of the result in the input stream.
% \end{function}
%
% \begin{function}[added = 2014-02-11, EXP]{\int_to_hex:n, \int_to_Hex:n}
% \begin{syntax}
% \cs{int_to_hex:n} \Arg{integer expression}
% \end{syntax}
% Calculates the value of the \meta{integer expression} and places
% the hexadecimal (base~$16$) representation of the result in the
% input stream. Letters are used for digits beyond~$9$: lower
% case letters for \cs{int_to_hex:n} and upper case ones for
% \cs{int_to_Hex:n}.
% The resulting tokens are digits with category code $12$ (other) and
% letters with category code $11$ (letter).
% \end{function}
%
% \begin{function}[added = 2014-02-11, EXP]{\int_to_oct:n}
% \begin{syntax}
% \cs{int_to_oct:n} \Arg{integer expression}
% \end{syntax}
% Calculates the value of the \meta{integer expression} and places
% the octal (base~$8$) representation of the result in the input
% stream.
% The resulting tokens are digits with category code $12$ (other) and
% letters with category code $11$ (letter).
% \end{function}
%
% \begin{function}[updated = 2014-02-11, EXP]
% {\int_to_base:nn, \int_to_Base:nn}
% \begin{syntax}
% \cs{int_to_base:nn} \Arg{integer expression} \Arg{base}
% \end{syntax}
% Calculates the value of the \meta{integer expression} and
% converts it into the appropriate representation in the \meta{base};
% the later may be given as an integer expression. For bases greater
% than $10$ the higher \enquote{digits} are represented by
% letters from the English alphabet: lower
% case letters for \cs{int_to_base:n} and upper case ones for
% \cs{int_to_Base:n}.
% The maximum \meta{base} value is $36$.
% The resulting tokens are digits with category code $12$ (other) and
% letters with category code $11$ (letter).
% \begin{texnote}
% This is a generic version of \cs{int_to_bin:n}, \emph{etc.}
% \end{texnote}
% \end{function}
%
% \begin{function}[updated = 2011-10-22, rEXP]{\int_to_roman:n, \int_to_Roman:n}
% \begin{syntax}
% \cs{int_to_roman:n} \Arg{integer expression}
% \end{syntax}
% Places the value of the \meta{integer expression} in the input
% stream as Roman numerals, either lower case (\cs{int_to_roman:n}) or
% upper case (\cs{int_to_Roman:n}). If the value is negative or zero,
% the output is empty. The Roman numerals are letters with category
% code $11$ (letter). The letters used are |mdclxvi|, repeated as
% needed: the notation with bars (such as $\bar{\mbox{v}}$ for $5000$)
% is \emph{not} used. For instance \cs{int_to_roman:n} |{| 8249 |}|
% expands to |mmmmmmmmccxlix|.
% \end{function}
%
% \section{Converting from other formats to integers}
%
% \begin{function}[updated = 2014-08-25, EXP]{\int_from_alph:n}
% \begin{syntax}
% \cs{int_from_alph:n} \Arg{letters}
% \end{syntax}
% Converts the \meta{letters} into the integer (base~$10$)
% representation and leaves this in the input stream. The
% \meta{letters} are first converted to a string, with no expansion.
% Lower and upper case letters from the English alphabet may be used,
% with \enquote{a} equal to $1$ through to \enquote{z} equal to $26$.
% The function also accepts a leading sign, made of |+| and~|-|. This
% is the inverse function of \cs{int_to_alph:n} and
% \cs{int_to_Alph:n}.
% \end{function}
%
% \begin{function}[added = 2014-02-11, updated = 2014-08-25, EXP]
% {\int_from_bin:n}
% \begin{syntax}
% \cs{int_from_bin:n} \Arg{binary number}
% \end{syntax}
% Converts the \meta{binary number} into the integer (base~$10$)
% representation and leaves this in the input stream.
% The \meta{binary number} is first converted to a string, with no
% expansion. The function accepts a leading sign, made of |+|
% and~|-|, followed by binary digits. This is the inverse function
% of \cs{int_to_bin:n}.
% \end{function}
%
% \begin{function}[added = 2014-02-11, updated = 2014-08-25, EXP]
% {\int_from_hex:n}
% \begin{syntax}
% \cs{int_from_hex:n} \Arg{hexadecimal number}
% \end{syntax}
% Converts the \meta{hexadecimal number} into the integer (base~$10$)
% representation and leaves this in the input stream. Digits greater
% than $9$ may be represented in the \meta{hexadecimal number} by
% upper or lower case letters. The \meta{hexadecimal number} is first
% converted to a string, with no expansion. The function also accepts
% a leading sign, made of |+| and~|-|. This is the inverse function
% of \cs{int_to_hex:n} and \cs{int_to_Hex:n}.
% \end{function}
%
% \begin{function}[added = 2014-02-11, updated = 2014-08-25, EXP]
% {\int_from_oct:n}
% \begin{syntax}
% \cs{int_from_oct:n} \Arg{octal number}
% \end{syntax}
% Converts the \meta{octal number} into the integer (base~$10$)
% representation and leaves this in the input stream.
% The \meta{octal number} is first converted to a string, with no
% expansion. The function accepts a leading sign, made of |+|
% and~|-|, followed by octal digits. This is the inverse function
% of \cs{int_to_oct:n}.
% \end{function}
%
% \begin{function}[updated = 2014-08-25, updated = 2014-08-25, EXP]
% {\int_from_roman:n}
% \begin{syntax}
% \cs{int_from_roman:n} \Arg{roman numeral}
% \end{syntax}
% Converts the \meta{roman numeral} into the integer (base~$10$)
% representation and leaves this in the input stream. The \meta{roman
% numeral} is first converted to a string, with no expansion. The
% \meta{roman numeral} may be in upper or lower case; if the numeral
% contains characters besides |mdclxvi| or |MDCLXVI| then the
% resulting value is $-1$. This is the inverse function of
% \cs{int_to_roman:n} and \cs{int_to_Roman:n}.
% \end{function}
%
% \begin{function}[updated = 2014-08-25, EXP]{\int_from_base:nn}
% \begin{syntax}
% \cs{int_from_base:nn} \Arg{number} \Arg{base}
% \end{syntax}
% Converts the \meta{number} expressed in \meta{base} into the
% appropriate value in base $10$. The \meta{number} is first
% converted to a string, with no expansion. The \meta{number} should
% consist of digits and letters (either lower or upper case), plus
% optionally a leading sign. The maximum \meta{base} value is $36$.
% This is the inverse function of \cs{int_to_base:nn} and
% \cs{int_to_Base:nn}.
% \end{function}
%
% \section{Random integers}
%
% \begin{function}[EXP, added = 2016-12-06, updated = 2018-04-27]{\int_rand:nn}
% \begin{syntax}
% \cs{int_rand:nn} \Arg{intexpr_1} \Arg{intexpr_2}
% \end{syntax}
% Evaluates the two \meta{integer expressions} and produces a
% pseudo-random number between the two (with bounds included).
% This is not available in older versions of \XeTeX{}.
% \end{function}
%
% \begin{function}[EXP, added = 2018-05-05]{\int_rand:n}
% \begin{syntax}
% \cs{int_rand:n} \Arg{intexpr}
% \end{syntax}
% Evaluates the \meta{integer expression} then produces a
% pseudo-random number between $1$ and the \meta{intexpr} (included).
% This is not available in older versions of \XeTeX{}.
% \end{function}
%
% \section{Viewing integers}
%
% \begin{function}{\int_show:N, \int_show:c}
% \begin{syntax}
% \cs{int_show:N} \meta{integer}
% \end{syntax}
% Displays the value of the \meta{integer} on the terminal.
% \end{function}
%
% \begin{function}[added = 2011-11-22, updated = 2015-08-07]{\int_show:n}
% \begin{syntax}
% \cs{int_show:n} \Arg{integer expression}
% \end{syntax}
% Displays the result of evaluating the \meta{integer expression}
% on the terminal.
% \end{function}
%
% \begin{function}[added = 2014-08-22, updated = 2015-08-03]{\int_log:N, \int_log:c}
% \begin{syntax}
% \cs{int_log:N} \meta{integer}
% \end{syntax}
% Writes the value of the \meta{integer} in the log file.
% \end{function}
%
% \begin{function}[added = 2014-08-22, updated = 2015-08-07]{\int_log:n}
% \begin{syntax}
% \cs{int_log:n} \Arg{integer expression}
% \end{syntax}
% Writes the result of evaluating the \meta{integer expression}
% in the log file.
% \end{function}
%
% \section{Constant integers}
%
% \begin{variable}[added = 2018-05-07]{\c_zero_int, \c_one_int}
% Integer values used with primitive tests and assignments: their
% self-terminating nature makes these more convenient and faster than
% literal numbers.
% \end{variable}
%
% \begin{variable}[module = int]{\c_max_int}
% The maximum value that can be stored as an integer.
% \end{variable}
%
% \begin{variable}[module = int]{\c_max_register_int}
% Maximum number of registers.
% \end{variable}
%
% \begin{variable}[module = int]{\c_max_char_int}
% Maximum character code completely supported by the engine.
% \end{variable}
%
% \section{Scratch integers}
%
% \begin{variable}{\l_tmpa_int, \l_tmpb_int}
% Scratch integer for local assignment. These are never used by
% the kernel code, and so are safe for use with any \LaTeX3-defined
% function. However, they may be overwritten by other non-kernel
% code and so should only be used for short-term storage.
% \end{variable}
%
% \begin{variable}{\g_tmpa_int, \g_tmpb_int}
% Scratch integer for global assignment. These are never used by
% the kernel code, and so are safe for use with any \LaTeX3-defined
% function. However, they may be overwritten by other non-kernel
% code and so should only be used for short-term storage.
% \end{variable}
%
% \section{Direct number expansion}
%
% \begin{function}[EXP, added = 2018-03-27]{\int_value:w}
% \begin{syntax}
% \cs{int_value:w} \meta{integer}
% \cs{int_value:w} \meta{integer denotation} \meta{optional space}
% \end{syntax}
% Expands the following tokens until an \meta{integer} is formed, and
% leaves a normalized form (no leading sign except for negative
% numbers, no leading digit~|0| except for zero) in the input stream
% as category code $12$ (other) characters. The \meta{integer} can
% consist of any number of signs (with intervening spaces) followed
% by
% \begin{itemize}
% \item an integer variable (in fact, any \TeX{} register except
% \tn{toks}) or
% \item explicit digits (or by |'|\meta{octal digits} or |"|\meta{hexadecimal digits} or |`|\meta{character}).
% \end{itemize}
% In this last case expansion stops once a non-digit is found; if that is a
% space it is removed as in \texttt{f}-expansion, and so \cs{exp_stop_f:}
% may be employed as an end marker. Note that protected functions
% \emph{are} expanded by this process.
%
% This function requires exactly one expansion to produce a value, and so
% is suitable for use in cases where a number is required \enquote{directly}.
% In general, \cs{int_eval:n} is the preferred approach to generating
% numbers.
% \begin{texnote}
% This is the \TeX{} primitive \tn{number}.
% \end{texnote}
% \end{function}
%
% \section{Primitive conditionals}
%
% \begin{function}[EXP]{\if_int_compare:w}
% \begin{syntax}
% \cs{if_int_compare:w} \meta{integer_1} \meta{relation} \meta{integer_2}
% ~~\meta{true code}
% \cs{else:}
% ~~\meta{false code}
% \cs{fi:}
% \end{syntax}
% Compare two integers using \meta{relation}, which must be one of
% |=|, |<| or |>| with category code $12$.
% The \cs{else:} branch is optional.
% \begin{texnote}
% These are both names for the \TeX{} primitive \tn{ifnum}.
% \end{texnote}
% \end{function}
%
% \begin{function}[EXP]{\if_case:w, \or:}
% \begin{syntax}
% \cs{if_case:w} \meta{integer} \meta{case_0}
% ~~\cs{or:} \meta{case_1}
% ~~\cs{or:} |...|
% ~~\cs{else:} \meta{default}
% \cs{fi:}
% \end{syntax}
% Selects a case to execute based on the value of the \meta{integer}. The
% first case (\meta{case_0}) is executed if \meta{integer} is $0$, the second
% (\meta{case_1}) if the \meta{integer} is $1$, \emph{etc.} The
% \meta{integer} may be a literal, a constant or an integer
% expression (\emph{e.g.}~using \cs{int_eval:n}).
% \begin{texnote}
% These are the \TeX{} primitives \tn{ifcase} and \tn{or}.
% \end{texnote}
% \end{function}
%
% \begin{function}[EXP]{\if_int_odd:w}
% \begin{syntax}
% \cs{if_int_odd:w} \meta{tokens} \meta{optional space}
% ~~\meta{true code}
% \cs{else:}
% ~~\meta{true code}
% \cs{fi:}
% \end{syntax}
% Expands \meta{tokens} until a non-numeric token or a space is found, and
% tests whether the resulting \meta{integer} is odd. If so, \meta{true code}
% is executed. The \cs{else:} branch is optional.
% \begin{texnote}
% This is the \TeX{} primitive \tn{ifodd}.
% \end{texnote}
% \end{function}
%
% \end{documentation}
%
% \begin{implementation}
%
% \section{\pkg{l3int} implementation}
%
% \begin{macrocode}
%<*package>
% \end{macrocode}
%
% \begin{macrocode}
%<@@=int>
% \end{macrocode}
%
% \TestFiles{m3int001,m3int002,m3int03}
%
% \begin{variable}{\c_max_register_int}
% Done in \pkg{l3basics}.
% \end{variable}
%
% \begin{macro}{\@@_to_roman:w}
% \begin{macro}{\if_int_compare:w}
% Done in \pkg{l3basics}.
% \end{macro}
% \end{macro}
%
% \begin{macro}{\or:}
% Done in \pkg{l3basics}.
% \end{macro}
%
% \begin{macro}{\int_value:w}
% \begin{macro}{\@@_eval:w}
% \begin{macro}{\@@_eval_end:}
% \begin{macro}{\if_int_odd:w}
% \begin{macro}{\if_case:w}
% Here are the remaining primitives for number comparisons and
% expressions.
% \begin{macrocode}
\cs_new_eq:NN \int_value:w \tex_number:D
\cs_new_eq:NN \@@_eval:w \tex_numexpr:D
\cs_new_eq:NN \@@_eval_end: \tex_relax:D
\cs_new_eq:NN \if_int_odd:w \tex_ifodd:D
\cs_new_eq:NN \if_case:w \tex_ifcase:D
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{variable}{\s_@@_mark,\s_@@_stop}
% Scan marks used throughout the module.
% \begin{macrocode}
\scan_new:N \s_@@_mark
\scan_new:N \s_@@_stop
% \end{macrocode}
% \end{variable}
%
% \begin{macro}[EXP]{\@@_use_none_delimit_by_s_stop:w}
% Function to gobble until a scan mark.
% \begin{macrocode}
\cs_new:Npn \@@_use_none_delimit_by_s_stop:w #1 \s_@@_stop { }
% \end{macrocode}
% \end{macro}
%
% \begin{variable}{\q_@@_recursion_tail,\q_@@_recursion_stop}
% Quarks for recursion.
% \begin{macrocode}
\quark_new:N \q_@@_recursion_tail
\quark_new:N \q_@@_recursion_stop
% \end{macrocode}
% \end{variable}
%
% \begin{macro}[EXP]{\@@_if_recursion_tail_stop_do:Nn,\@@_if_recursion_tail_stop:N}
% Functions to query quarks.
% \begin{macrocode}
\__kernel_quark_new_test:N \@@_if_recursion_tail_stop_do:Nn
\__kernel_quark_new_test:N \@@_if_recursion_tail_stop:N
% \end{macrocode}
% \end{macro}
%
% \subsection{Integer expressions}
%
% \begin{macro}{\int_eval:n}
% \begin{macro}{\int_eval:w}
% Wrapper for \cs{@@_eval:w}: can be used in an integer expression or
% directly in the input stream. It is very slightly faster to use
% \tn{the} rather than \tn{number} to turn the expression to a number.
% When debugging, we introduce parentheses to catch early termination (see \pkg{l3debug}).
% \begin{macrocode}
\cs_new:Npn \int_eval:n #1
{ \tex_the:D \@@_eval:w #1 \@@_eval_end: }
\cs_new:Npn \int_eval:w { \tex_the:D \@@_eval:w }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}[EXP]{\int_sign:n, \@@_sign:Nw}
% See \cs{int_abs:n}. Evaluate the expression once (and when
% debugging is enabled, check that the expression is well-formed),
% then test the first character to determine the sign. This is
% wrapped in \cs{int_value:w} \ldots{} \cs{exp_stop_f:} to ensure a
% fixed number of expansions and to avoid dealing with closing the
% conditionals.
% \begin{macrocode}
\cs_new:Npn \int_sign:n #1
{
\int_value:w \exp_after:wN \@@_sign:Nw
\int_value:w \@@_eval:w #1 \@@_eval_end: ;
\exp_stop_f:
}
\cs_new:Npn \@@_sign:Nw #1#2 ;
{
\if_meaning:w 0 #1
0
\else:
\if_meaning:w - #1 - \fi: 1
\fi:
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[EXP]{\int_abs:n}
% \begin{macro}[EXP]{\@@_abs:N}
% \UnitTested
% \begin{macro}[EXP]{\int_max:nn}
% \begin{macro}[EXP]{\int_min:nn}
% \begin{macro}[EXP]{\@@_maxmin:wwN}
% \UnitTested
% \UnitTested
% Functions for $\min$, $\max$, and absolute value with only one
% evaluation. The absolute value is obtained by removing a leading
% sign if any. All three functions expand in two steps.
% \begin{macrocode}
\cs_new:Npn \int_abs:n #1
{
\int_value:w \exp_after:wN \@@_abs:N
\int_value:w \@@_eval:w #1 \@@_eval_end:
\exp_stop_f:
}
\cs_new:Npn \@@_abs:N #1
{ \if_meaning:w - #1 \else: \exp_after:wN #1 \fi: }
\cs_set:Npn \int_max:nn #1#2
{
\int_value:w \exp_after:wN \@@_maxmin:wwN
\int_value:w \@@_eval:w #1 \exp_after:wN ;
\int_value:w \@@_eval:w #2 ;
>
\exp_stop_f:
}
\cs_set:Npn \int_min:nn #1#2
{
\int_value:w \exp_after:wN \@@_maxmin:wwN
\int_value:w \@@_eval:w #1 \exp_after:wN ;
\int_value:w \@@_eval:w #2 ;
<
\exp_stop_f:
}
\cs_new:Npn \@@_maxmin:wwN #1 ; #2 ; #3
{
\if_int_compare:w #1 #3 #2 ~
#1
\else:
#2
\fi:
}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}[EXP]{\int_div_truncate:nn}
% \UnitTested
% \begin{macro}[EXP]{\int_div_round:nn}
% \UnitTested
% \begin{macro}[EXP]{\int_mod:nn}
% \UnitTested
% \begin{macro}[EXP]{\@@_div_truncate:NwNw}
% \begin{macro}[EXP]{\@@_mod:ww}
% As \cs{@@_eval:w} rounds the result of a division we also provide a
% version that truncates the result. We use an auxiliary to make sure
% numerator and denominator are only evaluated once: this comes in
% handy when those are more expressions are expensive to evaluate
% (\emph{e.g.}, \cs{tl_count:n}). If the numerator |#1#2| is $0$,
% then we divide $0$ by the denominator (this ensures that $0/0$ is
% correctly reported as an error). Otherwise, shift the numerator
% |#1#2| towards $0$ by $(\left\vert\texttt{\#3\#4}\right\vert-1)/2$, which we
% round away from zero. It turns out that this quantity exactly
% compensates the difference between \eTeX{}'s rounding and the
% truncating behaviour that we want. The details are thanks to Heiko
% Oberdiek: getting things right in all cases is not so easy.
% \begin{macrocode}
\cs_new:Npn \int_div_truncate:nn #1#2
{
\int_value:w \@@_eval:w
\exp_after:wN \@@_div_truncate:NwNw
\int_value:w \@@_eval:w #1 \exp_after:wN ;
\int_value:w \@@_eval:w #2 ;
\@@_eval_end:
}
\cs_new:Npn \@@_div_truncate:NwNw #1#2; #3#4;
{
\if_meaning:w 0 #1
0
\else:
(
#1#2
\if_meaning:w - #1 + \else: - \fi:
( \if_meaning:w - #3 - \fi: #3#4 - 1 ) / 2
)
\fi:
/ #3#4
}
% \end{macrocode}
% For the sake of completeness:
% \begin{macrocode}
\cs_new:Npn \int_div_round:nn #1#2
{ \int_value:w \@@_eval:w ( #1 ) / ( #2 ) \@@_eval_end: }
% \end{macrocode}
% Finally there's the modulus operation.
% \begin{macrocode}
\cs_new:Npn \int_mod:nn #1#2
{
\int_value:w \@@_eval:w \exp_after:wN \@@_mod:ww
\int_value:w \@@_eval:w #1 \exp_after:wN ;
\int_value:w \@@_eval:w #2 ;
\@@_eval_end:
}
\cs_new:Npn \@@_mod:ww #1; #2;
{ #1 - ( \@@_div_truncate:NwNw #1 ; #2 ; ) * #2 }
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}[EXP]{\__kernel_int_add:nnn}
% Equivalent to \cs{int_eval:n} |{#1+#2+#3}| except that overflow only
% occurs if the final result overflows $[-2^{31}+1,2^{31}-1]$. The
% idea is to choose the order in which the three numbers are added
% together. If |#1| and |#2| have opposite signs (one is in
% $[-2^{31}+1,-1]$ and the other in $[0,2^{31}-1]$) then |#1+#2|
% cannot overflow so we compute the result as |#1+#2+#3|. If they
% have the same sign, then either |#3| has the same sign and the order
% does not matter, or |#3| has the opposite sign and any order in
% which |#3| is not last will work. We use |#1+#3+#2|.
% \begin{macrocode}
\cs_new:Npn \__kernel_int_add:nnn #1#2#3
{
\int_value:w \@@_eval:w #1
\if_int_compare:w #2 < \c_zero_int \exp_after:wN \reverse_if:N \fi:
\if_int_compare:w #1 < \c_zero_int + #2 + #3 \else: + #3 + #2 \fi:
\@@_eval_end:
}
% \end{macrocode}
% \end{macro}
%
% \subsection{Creating and initialising integers}
%
% \begin{macro}{\int_new:N, \int_new:c}
% \UnitTested
% Two ways to do this: one for the format and one for the \LaTeXe{}
% package. In plain \TeX{}, \cs{newcount} (and other allocators) are
% \cs{outer}: to allow the code here to work in \enquote{generic} mode
% this is therefore accessed by name. (The same applies to \cs{newbox},
% \cs{newdimen} and so on.)
% \begin{macrocode}
\cs_new_protected:Npn \int_new:N #1
{
\__kernel_chk_if_free_cs:N #1
\cs:w newcount \cs_end: #1
}
\cs_generate_variant:Nn \int_new:N { c }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\int_const:Nn, \int_const:cn}
% \begin{macro}{\@@_const:nN}
% \begin{macro}{\@@_constdef:Nw}
% \begin{variable}{\c_@@_max_constdef_int}
% \UnitTested
% As stated, most constants can be defined as \tn{chardef} or
% \tn{mathchardef} but that's engine dependent. As a result, there is some
% set up code to determine what can be done. No full engine testing just yet
% so everything is a little awkward.
% We cannot use \cs{int_gset:Nn} because (when |check-declarations| is
% enabled) this runs some checks that constants would fail.
% \begin{macrocode}
\cs_new_protected:Npn \int_const:Nn #1#2
{ \exp_args:Nx \@@_const:nN { \int_eval:n {#2} } #1 }
\cs_new_protected:Npn \@@_const:nN #1#2
{
\int_compare:nNnTF {#1} < \c_zero_int
{
\int_new:N #2
\tex_global:D
}
{
\int_compare:nNnTF {#1} > \c_@@_max_constdef_int
{
\int_new:N #2
\tex_global:D
}
{
\__kernel_chk_if_free_cs:N #2
\tex_global:D \@@_constdef:Nw
}
}
#2 = \@@_eval:w #1 \@@_eval_end:
}
\cs_generate_variant:Nn \int_const:Nn { c }
\if_int_odd:w 0
\cs_if_exist:NT \tex_luatexversion:D { 1 }
\cs_if_exist:NT \tex_omathchardef:D { 1 }
\cs_if_exist:NT \tex_XeTeXversion:D { 1 } ~
\cs_if_exist:NTF \tex_omathchardef:D
{ \cs_new_eq:NN \@@_constdef:Nw \tex_omathchardef:D }
{ \cs_new_eq:NN \@@_constdef:Nw \tex_chardef:D }
\@@_constdef:Nw \c_@@_max_constdef_int 1114111 ~
\else:
\cs_new_eq:NN \@@_constdef:Nw \tex_mathchardef:D
\tex_mathchardef:D \c_@@_max_constdef_int 32767 ~
\fi:
% \end{macrocode}
% \end{variable}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\int_zero:N, \int_zero:c}
% \UnitTested
% \begin{macro}{\int_gzero:N, \int_gzero:c}
% \UnitTested
% Functions that reset an \meta{integer} register to zero.
% \begin{macrocode}
\cs_new_protected:Npn \int_zero:N #1 { #1 = \c_zero_int }
\cs_new_protected:Npn \int_gzero:N #1 { \tex_global:D #1 = \c_zero_int }
\cs_generate_variant:Nn \int_zero:N { c }
\cs_generate_variant:Nn \int_gzero:N { c }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}
% {\int_zero_new:N, \int_zero_new:c, \int_gzero_new:N, \int_gzero_new:c}
% Create a register if needed, otherwise clear it.
% \begin{macrocode}
\cs_new_protected:Npn \int_zero_new:N #1
{ \int_if_exist:NTF #1 { \int_zero:N #1 } { \int_new:N #1 } }
\cs_new_protected:Npn \int_gzero_new:N #1
{ \int_if_exist:NTF #1 { \int_gzero:N #1 } { \int_new:N #1 } }
\cs_generate_variant:Nn \int_zero_new:N { c }
\cs_generate_variant:Nn \int_gzero_new:N { c }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\int_set_eq:NN, \int_set_eq:cN, \int_set_eq:Nc, \int_set_eq:cc}
% \UnitTested
% \begin{macro}
% {\int_gset_eq:NN, \int_gset_eq:cN, \int_gset_eq:Nc, \int_gset_eq:cc}
% \UnitTested
% Setting equal means using one integer inside the set function of
% another. Check that assigned integer is local/global. No need to
% check that the other one is defined as \TeX{} does it for us.
% \begin{macrocode}
\cs_new_protected:Npn \int_set_eq:NN #1#2 { #1 = #2 }
\cs_generate_variant:Nn \int_set_eq:NN { c , Nc , cc }
\cs_new_protected:Npn \int_gset_eq:NN #1#2 { \tex_global:D #1 = #2 }
\cs_generate_variant:Nn \int_gset_eq:NN { c , Nc , cc }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}[pTF]{\int_if_exist:N, \int_if_exist:c}
% Copies of the \texttt{cs} functions defined in \pkg{l3basics}.
% \begin{macrocode}
\prg_new_eq_conditional:NNn \int_if_exist:N \cs_if_exist:N
{ TF , T , F , p }
\prg_new_eq_conditional:NNn \int_if_exist:c \cs_if_exist:c
{ TF , T , F , p }
% \end{macrocode}
% \end{macro}
%
% \subsection{Setting and incrementing integers}
%
% \begin{macro}{\int_add:Nn, \int_add:cn}
% \UnitTested
% \begin{macro}{\int_gadd:Nn, \int_gadd:cn}
% \UnitTested
% \begin{macro}{\int_sub:Nn, \int_sub:cn}
% \UnitTested
% \begin{macro}{\int_gsub:Nn, \int_gsub:cn}
% \UnitTested
% Adding and subtracting to and from a counter.
% Including here the optional |by| would slow down these operations
% by a few percent.
% \begin{macrocode}
\cs_new_protected:Npn \int_add:Nn #1#2
{ \tex_advance:D #1 \@@_eval:w #2 \@@_eval_end: }
\cs_new_protected:Npn \int_sub:Nn #1#2
{ \tex_advance:D #1 - \@@_eval:w #2 \@@_eval_end: }
\cs_new_protected:Npn \int_gadd:Nn #1#2
{ \tex_global:D \tex_advance:D #1 \@@_eval:w #2 \@@_eval_end: }
\cs_new_protected:Npn \int_gsub:Nn #1#2
{ \tex_global:D \tex_advance:D #1 - \@@_eval:w #2 \@@_eval_end: }
\cs_generate_variant:Nn \int_add:Nn { c }
\cs_generate_variant:Nn \int_gadd:Nn { c }
\cs_generate_variant:Nn \int_sub:Nn { c }
\cs_generate_variant:Nn \int_gsub:Nn { c }
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\int_incr:N, \int_incr:c}
% \UnitTested
% \begin{macro}{\int_gincr:N, \int_gincr:c}
% \UnitTested
% \begin{macro}{\int_decr:N, \int_decr:c}
% \UnitTested
% \begin{macro}{\int_gdecr:N, \int_gdecr:c}
% \UnitTested
% Incrementing and decrementing of integer registers is done with
% the following functions.
% \begin{macrocode}
\cs_new_protected:Npn \int_incr:N #1
{ \tex_advance:D #1 \c_one_int }
\cs_new_protected:Npn \int_decr:N #1
{ \tex_advance:D #1 - \c_one_int }
\cs_new_protected:Npn \int_gincr:N #1
{ \tex_global:D \tex_advance:D #1 \c_one_int }
\cs_new_protected:Npn \int_gdecr:N #1
{ \tex_global:D \tex_advance:D #1 - \c_one_int }
\cs_generate_variant:Nn \int_incr:N { c }
\cs_generate_variant:Nn \int_decr:N { c }
\cs_generate_variant:Nn \int_gincr:N { c }
\cs_generate_variant:Nn \int_gdecr:N { c }
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\int_set:Nn, \int_set:cn}
% \UnitTested
% \begin{macro}{\int_gset:Nn, \int_gset:cn}
% \UnitTested
% As integers are register-based \TeX{} issues an error
% if they are not defined. While the |=| sign is optional, this
% version with |=| is slightly quicker than without, while adding the
% optional space after |=| slows things down minutely.
% \begin{macrocode}
\cs_new_protected:Npn \int_set:Nn #1#2
{ #1 = \@@_eval:w #2 \@@_eval_end: }
\cs_new_protected:Npn \int_gset:Nn #1#2
{ \tex_global:D #1 = \@@_eval:w #2 \@@_eval_end: }
\cs_generate_variant:Nn \int_set:Nn { c }
\cs_generate_variant:Nn \int_gset:Nn { c }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \subsection{Using integers}
%
% \begin{macro}{\int_use:N, \int_use:c}
% \UnitTested
% Here is how counters are accessed.
% We hand-code the |c| variant for some speed gain.
% \begin{macrocode}
\cs_new_eq:NN \int_use:N \tex_the:D
\cs_new:Npn \int_use:c #1 { \tex_the:D \cs:w #1 \cs_end: }
% \end{macrocode}
% \end{macro}
%
% \subsection{Integer expression conditionals}
%
% \begin{macro}[EXP]{\@@_compare_error:, \@@_compare_error:Nw}
% Those functions are used for comparison tests which use a simple
% syntax where only one set of braces is required and additional
% operators such as |!=| and |>=| are supported. The tests first
% evaluate their left-hand side, with a trailing
% \cs{@@_compare_error:}. This marker is normally not expanded,
% but if the relation symbol is missing from the test's argument, then
% the marker inserts |=| (and itself) after triggering the relevant
% \TeX{} error. If the first token which appears after evaluating and
% removing the left-hand side is not a known relation symbol, then a
% judiciously placed \cs{@@_compare_error:Nw} gets expanded,
% cleaning up the end of the test and telling the user what the
% problem was.
% \begin{macrocode}
\cs_new_protected:Npn \@@_compare_error:
{
\if_int_compare:w \c_zero_int \c_zero_int \fi:
=
\@@_compare_error:
}
\cs_new:Npn \@@_compare_error:Nw
#1#2 \s_@@_stop
{
{ }
\c_zero_int \fi:
\msg_expandable_error:nnn
{ kernel } { unknown-comparison } {#1}
\prg_return_false:
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[pTF, EXP]{\int_compare:n}
% \begin{macro}[EXP]
% {\@@_compare:w, \@@_compare:Nw, \@@_compare:NNw, \@@_compare:nnN}
% \begin{macro}[EXP]
% {
% \@@_compare_end_=:NNw,
% \@@_compare_=:NNw,
% \@@_compare_<:NNw,
% \@@_compare_>:NNw,
% \@@_compare_==:NNw,
% \@@_compare_!=:NNw,
% \@@_compare_<=:NNw,
% \@@_compare_>=:NNw
% }
% Comparison tests using a simple syntax where only one set of braces
% is required, additional operators such as |!=| and |>=| are
% supported, and multiple comparisons can be performed at once, for
% instance |0 < 5 <= 1|. The idea is to loop through the argument,
% finding one operand at a time, and comparing it to the previous one.
% The looping auxiliary \cs{@@_compare:Nw} reads one \meta{operand}
% and one \meta{comparison} symbol, and leaves roughly
% \begin{quote}
% \meta{operand} \cs{prg_return_false:} \cs{fi:} \\
% \cs{reverse_if:N} \cs{if_int_compare:w} \meta{operand} \meta{comparison} \\
% \cs{@@_compare:Nw}
% \end{quote}
% in the input stream. Each call to this auxiliary provides the
% second operand of the last call's \cs{if_int_compare:w}. If one of
% the \meta{comparisons} is \texttt{false}, the \texttt{true} branch
% of the \TeX{} conditional is taken (because of \cs{reverse_if:N}),
% immediately returning \texttt{false} as the result of the test.
% There is no \TeX{} conditional waiting the first operand, so we add
% an \cs{if_false:} and expand by hand with \cs{int_value:w}, thus
% skipping \cs{prg_return_false:} on the first iteration.
%
% Before starting the loop, the first step is to make sure that there
% is at least one relation symbol. We first let \TeX{} evaluate this
% left hand side of the (in)equality using \cs{@@_eval:w}. Since the
% relation symbols |<|, |>|, |=| and |!| are not allowed in integer
% expressions, they would terminate the expression. If the argument contains no
% relation symbol, \cs{@@_compare_error:} is expanded,
% inserting~|=| and itself after an error. In all cases,
% \cs{@@_compare:w} receives as its argument an integer, a relation
% symbol, and some more tokens. We then setup the loop, which is
% ended by the two odd-looking items |e| and |{=nd_}|, with a trailing
% \cs{s_@@_stop} used to grab the entire argument when necessary.
% \begin{macrocode}
\prg_new_conditional:Npnn \int_compare:n #1 { p , T , F , TF }
{
\exp_after:wN \@@_compare:w
\int_value:w \@@_eval:w #1 \@@_compare_error:
}
\cs_new:Npn \@@_compare:w #1 \@@_compare_error:
{
\exp_after:wN \if_false: \int_value:w
\@@_compare:Nw #1 e { = nd_ } \s_@@_stop
}
% \end{macrocode}
% The goal here is to find an \meta{operand} and a \meta{comparison}.
% The \meta{operand} is already evaluated, but we cannot yet grab it
% as an argument. To access the following relation symbol, we remove
% the number by applying \cs{@@_to_roman:w}, after making sure that
% the argument becomes non-positive: its roman numeral representation
% is then empty. Then probe the first two tokens with
% \cs{@@_compare:NNw} to determine the relation symbol, building a
% control sequence from it (\cs{token_to_str:N} gives better errors if
% |#1| is not a character). All the extended forms have an extra |=|
% hence the test for that as a second token. If the relation symbol
% is unknown, then the control sequence is turned by \TeX{} into
% \cs{scan_stop:}, ignored thanks to \tn{unexpanded}, and
% \cs{@@_compare_error:Nw} raises an error.
% \begin{macrocode}
\cs_new:Npn \@@_compare:Nw #1#2 \s_@@_stop
{
\exp_after:wN \@@_compare:NNw
\@@_to_roman:w - 0 #2 \s_@@_mark
#1#2 \s_@@_stop
}
\cs_new:Npn \@@_compare:NNw #1#2#3 \s_@@_mark
{
\__kernel_exp_not:w
\use:c
{
@@_compare_ \token_to_str:N #1
\if_meaning:w = #2 = \fi:
:NNw
}
\@@_compare_error:Nw #1
}
% \end{macrocode}
% When the last \meta{operand} is seen, \cs{@@_compare:NNw} receives
% |e| and |=nd_| as arguments, hence calling
% \cs{@@_compare_end_=:NNw} to end the loop: return the result of the
% last comparison (involving the operand that we just found). When a
% normal relation is found, the appropriate auxiliary calls
% \cs{@@_compare:nnN} where |#1| is \cs{if_int_compare:w} or
% \cs{reverse_if:N} \cs{if_int_compare:w}, |#2| is the \meta{operand},
% and |#3| is one of |<|, |=|, or~|>|. As announced earlier, we leave
% the \meta{operand} for the previous conditional. If this
% conditional is true the result of the test is known, so we remove
% all tokens and return \texttt{false}. Otherwise, we apply the
% conditional |#1| to the \meta{operand} |#2| and the comparison |#3|,
% and call \cs{@@_compare:Nw} to look for additional operands, after
% evaluating the following expression.
% \begin{macrocode}
\cs_new:cpn { @@_compare_end_=:NNw } #1#2#3 e #4 \s_@@_stop
{
{#3} \exp_stop_f:
\prg_return_false: \else: \prg_return_true: \fi:
}
\cs_new:Npn \@@_compare:nnN #1#2#3
{
{#2} \exp_stop_f:
\prg_return_false: \exp_after:wN \@@_use_none_delimit_by_s_stop:w
\fi:
#1 #2 #3 \exp_after:wN \@@_compare:Nw \int_value:w \@@_eval:w
}
% \end{macrocode}
% The actual comparisons are then simple function calls, using the
% relation as delimiter for a delimited argument and discarding
% \cs{@@_compare_error:Nw} \meta{token} responsible for error
% detection.
% \begin{macrocode}
\cs_new:cpn { @@_compare_=:NNw } #1#2#3 =
{ \@@_compare:nnN { \reverse_if:N \if_int_compare:w } {#3} = }
\cs_new:cpn { @@_compare_<:NNw } #1#2#3 <
{ \@@_compare:nnN { \reverse_if:N \if_int_compare:w } {#3} < }
\cs_new:cpn { @@_compare_>:NNw } #1#2#3 >
{ \@@_compare:nnN { \reverse_if:N \if_int_compare:w } {#3} > }
\cs_new:cpn { @@_compare_==:NNw } #1#2#3 ==
{ \@@_compare:nnN { \reverse_if:N \if_int_compare:w } {#3} = }
\cs_new:cpn { @@_compare_!=:NNw } #1#2#3 !=
{ \@@_compare:nnN { \if_int_compare:w } {#3} = }
\cs_new:cpn { @@_compare_<=:NNw } #1#2#3 <=
{ \@@_compare:nnN { \if_int_compare:w } {#3} > }
\cs_new:cpn { @@_compare_>=:NNw } #1#2#3 >=
{ \@@_compare:nnN { \if_int_compare:w } {#3} < }
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}[pTF]{\int_compare:nNn}
% \UnitTested
% More efficient but less natural in typing.
% \begin{macrocode}
\prg_new_conditional:Npnn \int_compare:nNn #1#2#3 { p , T , F , TF }
{
\if_int_compare:w \@@_eval:w #1 #2 \@@_eval:w #3 \@@_eval_end:
\prg_return_true:
\else:
\prg_return_false:
\fi:
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[EXP, noTF]{\int_case:nn}
% \begin{macro}{\@@_case:nnTF}
% \begin{macro}{\@@_case:nw, \@@_case_end:nw}
% For integer cases, the first task to fully expand the check
% condition. The over all idea is then much the same as for
% \cs{tl_case:nnTF} as described in \pkg{l3tl}.
% \begin{macrocode}
\cs_new:Npn \int_case:nnTF #1
{
\exp:w
\exp_args:Nf \@@_case:nnTF { \int_eval:n {#1} }
}
\cs_new:Npn \int_case:nnT #1#2#3
{
\exp:w
\exp_args:Nf \@@_case:nnTF { \int_eval:n {#1} } {#2} {#3} { }
}
\cs_new:Npn \int_case:nnF #1#2
{
\exp:w
\exp_args:Nf \@@_case:nnTF { \int_eval:n {#1} } {#2} { }
}
\cs_new:Npn \int_case:nn #1#2
{
\exp:w
\exp_args:Nf \@@_case:nnTF { \int_eval:n {#1} } {#2} { } { }
}
\cs_new:Npn \@@_case:nnTF #1#2#3#4
{ \@@_case:nw {#1} #2 {#1} { } \s_@@_mark {#3} \s_@@_mark {#4} \s_@@_stop }
\cs_new:Npn \@@_case:nw #1#2#3
{
\int_compare:nNnTF {#1} = {#2}
{ \@@_case_end:nw {#3} }
{ \@@_case:nw {#1} }
}
\cs_new:Npn \@@_case_end:nw #1#2#3 \s_@@_mark #4#5 \s_@@_stop
{ \exp_end: #1 #4 }
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}[pTF]{\int_if_odd:n}
% \UnitTested
% \begin{macro}[pTF]{\int_if_even:n}
% \UnitTested
% A predicate function.
% \begin{macrocode}
\prg_new_conditional:Npnn \int_if_odd:n #1 { p , T , F , TF}
{
\if_int_odd:w \@@_eval:w #1 \@@_eval_end:
\prg_return_true:
\else:
\prg_return_false:
\fi:
}
\prg_new_conditional:Npnn \int_if_even:n #1 { p , T , F , TF}
{
\reverse_if:N \if_int_odd:w \@@_eval:w #1 \@@_eval_end:
\prg_return_true:
\else:
\prg_return_false:
\fi:
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \subsection{Integer expression loops}
%
% \begin{macro}{\int_while_do:nn}
% \UnitTested
% \TestMissing{Boundary cases}
% \begin{macro}{\int_until_do:nn}
% \UnitTested
% \TestMissing{Boundary cases}
% \begin{macro}{\int_do_while:nn}
% \UnitTested
% \TestMissing{Boundary cases}
% \begin{macro}{\int_do_until:nn}
% \UnitTested
% \TestMissing{Boundary cases}
% These are quite easy given the above functions. The |while| versions
% test first and then execute the body. The |do_while| does it the
% other way round.
% \begin{macrocode}
\cs_new:Npn \int_while_do:nn #1#2
{
\int_compare:nT {#1}
{
#2
\int_while_do:nn {#1} {#2}
}
}
\cs_new:Npn \int_until_do:nn #1#2
{
\int_compare:nF {#1}
{
#2
\int_until_do:nn {#1} {#2}
}
}
\cs_new:Npn \int_do_while:nn #1#2
{
#2
\int_compare:nT {#1}
{ \int_do_while:nn {#1} {#2} }
}
\cs_new:Npn \int_do_until:nn #1#2
{
#2
\int_compare:nF {#1}
{ \int_do_until:nn {#1} {#2} }
}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\int_while_do:nNnn}
% \begin{macro}{\int_until_do:nNnn}
% \begin{macro}{\int_do_while:nNnn}
% \begin{macro}{\int_do_until:nNnn}
% As above but not using the more natural syntax.
% \begin{macrocode}
\cs_new:Npn \int_while_do:nNnn #1#2#3#4
{
\int_compare:nNnT {#1} #2 {#3}
{
#4
\int_while_do:nNnn {#1} #2 {#3} {#4}
}
}
\cs_new:Npn \int_until_do:nNnn #1#2#3#4
{
\int_compare:nNnF {#1} #2 {#3}
{
#4
\int_until_do:nNnn {#1} #2 {#3} {#4}
}
}
\cs_new:Npn \int_do_while:nNnn #1#2#3#4
{
#4
\int_compare:nNnT {#1} #2 {#3}
{ \int_do_while:nNnn {#1} #2 {#3} {#4} }
}
\cs_new:Npn \int_do_until:nNnn #1#2#3#4
{
#4
\int_compare:nNnF {#1} #2 {#3}
{ \int_do_until:nNnn {#1} #2 {#3} {#4} }
}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \subsection{Integer step functions}
%
% \begin{macro}{\int_step_function:nnnN}
% \begin{macro}{\@@_step:wwwN, \@@_step:NwnnN}
% \begin{macro}{\int_step_function:nN}
% \begin{macro}{\int_step_function:nnN}
% Before all else, evaluate the initial value, step, and final value.
% Repeating a function by steps first needs a check on the direction
% of the steps. After that, do the function for the start value then
% step and loop around. It would be more symmetrical to test for a
% step size of zero before checking the sign, but we optimize for the
% most frequent case (positive step).
% \begin{macrocode}
\cs_new:Npn \int_step_function:nnnN #1#2#3
{
\exp_after:wN \@@_step:wwwN
\int_value:w \@@_eval:w #1 \exp_after:wN ;
\int_value:w \@@_eval:w #2 \exp_after:wN ;
\int_value:w \@@_eval:w #3 ;
}
\cs_new:Npn \@@_step:wwwN #1; #2; #3; #4
{
\int_compare:nNnTF {#2} > \c_zero_int
{ \@@_step:NwnnN > }
{
\int_compare:nNnTF {#2} = \c_zero_int
{
\msg_expandable_error:nnn
{ kernel } { zero-step } {#4}
\prg_break:
}
{ \@@_step:NwnnN < }
}
#1 ; {#2} {#3} #4
\prg_break_point:
}
\cs_new:Npn \@@_step:NwnnN #1#2 ; #3#4#5
{
\if_int_compare:w #2 #1 #4 \exp_stop_f:
\prg_break:n
\fi:
#5 {#2}
\exp_after:wN \@@_step:NwnnN
\exp_after:wN #1
\int_value:w \@@_eval:w #2 + #3 ; {#3} {#4} #5
}
\cs_new:Npn \int_step_function:nN
{ \int_step_function:nnnN { 1 } { 1 } }
\cs_new:Npn \int_step_function:nnN #1
{ \int_step_function:nnnN {#1} { 1 } }
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\int_step_inline:nn, \int_step_inline:nnn, \int_step_inline:nnnn}
% \begin{macro}{\int_step_variable:nNn, \int_step_variable:nnNn, \int_step_variable:nnnNn}
% \UnitTested
% \begin{macro}{\@@_step:NNnnnn}
% The approach here is to build a function, with a global integer
% required to make the nesting safe (as seen in other in line
% functions), and map that function using \cs{int_step_function:nnnN}.
% We put a \cs{prg_break_point:Nn} so that \texttt{map_break}
% functions from other modules correctly decrement \cs{g__kernel_prg_map_int}
% before looking for their own break point. The first argument is
% \cs{scan_stop:}, so that no breaking function recognizes this break
% point as its own.
% \begin{macrocode}
\cs_new_protected:Npn \int_step_inline:nn
{ \int_step_inline:nnnn { 1 } { 1 } }
\cs_new_protected:Npn \int_step_inline:nnn #1
{ \int_step_inline:nnnn {#1} { 1 } }
\cs_new_protected:Npn \int_step_inline:nnnn
{
\int_gincr:N \g__kernel_prg_map_int
\exp_args:NNc \@@_step:NNnnnn
\cs_gset_protected:Npn
{ @@_map_ \int_use:N \g__kernel_prg_map_int :w }
}
\cs_new_protected:Npn \int_step_variable:nNn
{ \int_step_variable:nnnNn { 1 } { 1 } }
\cs_new_protected:Npn \int_step_variable:nnNn #1
{ \int_step_variable:nnnNn {#1} { 1 } }
\cs_new_protected:Npn \int_step_variable:nnnNn #1#2#3#4#5
{
\int_gincr:N \g__kernel_prg_map_int
\exp_args:NNc \@@_step:NNnnnn
\cs_gset_protected:Npx
{ @@_map_ \int_use:N \g__kernel_prg_map_int :w }
{#1}{#2}{#3}
{
\tl_set:Nn \exp_not:N #4 {##1}
\exp_not:n {#5}
}
}
\cs_new_protected:Npn \@@_step:NNnnnn #1#2#3#4#5#6
{
#1 #2 ##1 {#6}
\int_step_function:nnnN {#3} {#4} {#5} #2
\prg_break_point:Nn \scan_stop: { \int_gdecr:N \g__kernel_prg_map_int }
}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \subsection{Formatting integers}
%
% \begin{macro}{\int_to_arabic:n}
% \UnitTested
% Nothing exciting here.
% \begin{macrocode}
\cs_new_eq:NN \int_to_arabic:n \int_eval:n
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\int_to_symbols:nnn}
% \UnitTested
% \begin{macro}{\@@_to_symbols:nnnn}
% For conversion of integers to arbitrary symbols the method is in
% general as follows. The input number (|#1|) is compared to the total
% number of symbols available at each place (|#2|). If the input is larger
% than the total number of symbols available then the modulus is needed,
% with one added so that the positions don't have to number from
% zero. Using an \texttt{f}-type expansion, this is done so that the system
% is recursive. The actual conversion function therefore gets a `nice'
% number at each stage. Of course, if the initial input was small enough
% then there is no problem and everything is easy.
% \begin{macrocode}
\cs_new:Npn \int_to_symbols:nnn #1#2#3
{
\int_compare:nNnTF {#1} > {#2}
{
\exp_args:NNo \exp_args:No \@@_to_symbols:nnnn
{
\int_case:nn
{ 1 + \int_mod:nn { #1 - 1 } {#2} }
{#3}
}
{#1} {#2} {#3}
}
{ \int_case:nn {#1} {#3} }
}
\cs_new:Npn \@@_to_symbols:nnnn #1#2#3#4
{
\exp_args:Nf \int_to_symbols:nnn
{ \int_div_truncate:nn { #2 - 1 } {#3} } {#3} {#4}
#1
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\int_to_alph:n, \int_to_Alph:n}
% \UnitTested
% These both use the above function with input functions that make sense
% for the alphabet in English.
% \begin{macrocode}
\cs_new:Npn \int_to_alph:n #1
{
\int_to_symbols:nnn {#1} { 26 }
{
{ 1 } { a }
{ 2 } { b }
{ 3 } { c }
{ 4 } { d }
{ 5 } { e }
{ 6 } { f }
{ 7 } { g }
{ 8 } { h }
{ 9 } { i }
{ 10 } { j }
{ 11 } { k }
{ 12 } { l }
{ 13 } { m }
{ 14 } { n }
{ 15 } { o }
{ 16 } { p }
{ 17 } { q }
{ 18 } { r }
{ 19 } { s }
{ 20 } { t }
{ 21 } { u }
{ 22 } { v }
{ 23 } { w }
{ 24 } { x }
{ 25 } { y }
{ 26 } { z }
}
}
\cs_new:Npn \int_to_Alph:n #1
{
\int_to_symbols:nnn {#1} { 26 }
{
{ 1 } { A }
{ 2 } { B }
{ 3 } { C }
{ 4 } { D }
{ 5 } { E }
{ 6 } { F }
{ 7 } { G }
{ 8 } { H }
{ 9 } { I }
{ 10 } { J }
{ 11 } { K }
{ 12 } { L }
{ 13 } { M }
{ 14 } { N }
{ 15 } { O }
{ 16 } { P }
{ 17 } { Q }
{ 18 } { R }
{ 19 } { S }
{ 20 } { T }
{ 21 } { U }
{ 22 } { V }
{ 23 } { W }
{ 24 } { X }
{ 25 } { Y }
{ 26 } { Z }
}
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\int_to_base:nn, \int_to_Base:nn}
% \UnitTested
% \begin{macro}{\@@_to_base:nn, \@@_to_Base:nn,
% \@@_to_base:nnN, \@@_to_Base:nnN, \@@_to_base:nnnN, \@@_to_Base:nnnN}
% \begin{macro}{\@@_to_letter:n, \@@_to_Letter:n}
% \UnitTested
% Converting from base ten (|#1|) to a second base (|#2|) starts with
% computing |#1|: if it is a complicated calculation, we shouldn't
% perform it twice. Then check the sign, store it, either \texttt{-}
% or \cs{c_empty_tl}, and feed the absolute value to the next auxiliary
% function.
% \begin{macrocode}
\cs_new:Npn \int_to_base:nn #1
{ \exp_args:Nf \@@_to_base:nn { \int_eval:n {#1} } }
\cs_new:Npn \int_to_Base:nn #1
{ \exp_args:Nf \@@_to_Base:nn { \int_eval:n {#1} } }
\cs_new:Npn \@@_to_base:nn #1#2
{
\int_compare:nNnTF {#1} < 0
{ \exp_args:No \@@_to_base:nnN { \use_none:n #1 } {#2} - }
{ \@@_to_base:nnN {#1} {#2} \c_empty_tl }
}
\cs_new:Npn \@@_to_Base:nn #1#2
{
\int_compare:nNnTF {#1} < 0
{ \exp_args:No \@@_to_Base:nnN { \use_none:n #1 } {#2} - }
{ \@@_to_Base:nnN {#1} {#2} \c_empty_tl }
}
% \end{macrocode}
% Here, the idea is to provide a recursive system to deal with the
% input. The output is built up after the end of the function.
% At each pass, the value in |#1| is checked to see if it is less
% than the new base (|#2|). If it is, then it is converted directly,
% putting the sign back in front.
% On the other hand, if the value to convert is greater than or equal
% to the new base then the modulus and remainder values are found. The
% modulus is converted to a symbol and put on the right,
% and the remainder is carried forward to the next round.
% \begin{macrocode}
\cs_new:Npn \@@_to_base:nnN #1#2#3
{
\int_compare:nNnTF {#1} < {#2}
{ \exp_last_unbraced:Nf #3 { \@@_to_letter:n {#1} } }
{
\exp_args:Nf \@@_to_base:nnnN
{ \@@_to_letter:n { \int_mod:nn {#1} {#2} } }
{#1}
{#2}
#3
}
}
\cs_new:Npn \@@_to_base:nnnN #1#2#3#4
{
\exp_args:Nf \@@_to_base:nnN
{ \int_div_truncate:nn {#2} {#3} }
{#3}
#4
#1
}
\cs_new:Npn \@@_to_Base:nnN #1#2#3
{
\int_compare:nNnTF {#1} < {#2}
{ \exp_last_unbraced:Nf #3 { \@@_to_Letter:n {#1} } }
{
\exp_args:Nf \@@_to_Base:nnnN
{ \@@_to_Letter:n { \int_mod:nn {#1} {#2} } }
{#1}
{#2}
#3
}
}
\cs_new:Npn \@@_to_Base:nnnN #1#2#3#4
{
\exp_args:Nf \@@_to_Base:nnN
{ \int_div_truncate:nn {#2} {#3} }
{#3}
#4
#1
}
% \end{macrocode}
% Convert to a letter only if necessary, otherwise simply return the
% value unchanged. It would be cleaner to use \cs{int_case:nn},
% but in our case, the cases are contiguous, so it is forty times faster
% to use the \cs{if_case:w} primitive. The first \cs{exp_after:wN}
% expands the conditional, jumping to the correct case, the second one
% expands after the resulting character to close the conditional.
% Since |#1| might be an expression, and not directly a single digit,
% we need to evaluate it properly, and expand the trailing \cs{fi:}.
% \begin{macrocode}
\cs_new:Npn \@@_to_letter:n #1
{
\exp_after:wN \exp_after:wN
\if_case:w \@@_eval:w #1 - 10 \@@_eval_end:
a
\or: b
\or: c
\or: d
\or: e
\or: f
\or: g
\or: h
\or: i
\or: j
\or: k
\or: l
\or: m
\or: n
\or: o
\or: p
\or: q
\or: r
\or: s
\or: t
\or: u
\or: v
\or: w
\or: x
\or: y
\or: z
\else: \int_value:w \@@_eval:w #1 \exp_after:wN \@@_eval_end:
\fi:
}
\cs_new:Npn \@@_to_Letter:n #1
{
\exp_after:wN \exp_after:wN
\if_case:w \@@_eval:w #1 - 10 \@@_eval_end:
A
\or: B
\or: C
\or: D
\or: E
\or: F
\or: G
\or: H
\or: I
\or: J
\or: K
\or: L
\or: M
\or: N
\or: O
\or: P
\or: Q
\or: R
\or: S
\or: T
\or: U
\or: V
\or: W
\or: X
\or: Y
\or: Z
\else: \int_value:w \@@_eval:w #1 \exp_after:wN \@@_eval_end:
\fi:
}
% \end{macrocode}
%\end{macro}
%\end{macro}
%\end{macro}
%
% \begin{macro}{\int_to_bin:n, \int_to_hex:n, \int_to_Hex:n, \int_to_oct:n}
% \UnitTested
% Wrappers around the generic function.
% \begin{macrocode}
\cs_new:Npn \int_to_bin:n #1
{ \int_to_base:nn {#1} { 2 } }
\cs_new:Npn \int_to_hex:n #1
{ \int_to_base:nn {#1} { 16 } }
\cs_new:Npn \int_to_Hex:n #1
{ \int_to_Base:nn {#1} { 16 } }
\cs_new:Npn \int_to_oct:n #1
{ \int_to_base:nn {#1} { 8 } }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\int_to_roman:n, \int_to_Roman:n}
% \UnitTested
% \begin{macro}{\@@_to_roman:N, \@@_to_roman:N}
% \begin{macro}
% {
% \@@_to_roman_i:w, \@@_to_roman_v:w, \@@_to_roman_x:w,
% \@@_to_roman_l:w, \@@_to_roman_c:w, \@@_to_roman_d:w,
% \@@_to_roman_m:w, \@@_to_roman_Q:w,
% \@@_to_Roman_i:w, \@@_to_Roman_v:w, \@@_to_Roman_x:w,
% \@@_to_Roman_l:w, \@@_to_Roman_c:w, \@@_to_Roman_d:w,
% \@@_to_Roman_m:w, \@@_to_Roman_Q:w,
% }
% The \cs{@@_to_roman:w} primitive creates tokens of category
% code $12$ (other). Usually, what is actually wanted is letters.
% The approach here is to convert the output of the primitive into
% letters using appropriate control sequence names. That keeps
% everything expandable. The loop is terminated by the conversion
% of the |Q|.
% \begin{macrocode}
\cs_new:Npn \int_to_roman:n #1
{
\exp_after:wN \@@_to_roman:N
\@@_to_roman:w \int_eval:n {#1} Q
}
\cs_new:Npn \@@_to_roman:N #1
{
\use:c { @@_to_roman_ #1 :w }
\@@_to_roman:N
}
\cs_new:Npn \int_to_Roman:n #1
{
\exp_after:wN \@@_to_Roman_aux:N
\@@_to_roman:w \int_eval:n {#1} Q
}
\cs_new:Npn \@@_to_Roman_aux:N #1
{
\use:c { @@_to_Roman_ #1 :w }
\@@_to_Roman_aux:N
}
\cs_new:Npn \@@_to_roman_i:w { i }
\cs_new:Npn \@@_to_roman_v:w { v }
\cs_new:Npn \@@_to_roman_x:w { x }
\cs_new:Npn \@@_to_roman_l:w { l }
\cs_new:Npn \@@_to_roman_c:w { c }
\cs_new:Npn \@@_to_roman_d:w { d }
\cs_new:Npn \@@_to_roman_m:w { m }
\cs_new:Npn \@@_to_roman_Q:w #1 { }
\cs_new:Npn \@@_to_Roman_i:w { I }
\cs_new:Npn \@@_to_Roman_v:w { V }
\cs_new:Npn \@@_to_Roman_x:w { X }
\cs_new:Npn \@@_to_Roman_l:w { L }
\cs_new:Npn \@@_to_Roman_c:w { C }
\cs_new:Npn \@@_to_Roman_d:w { D }
\cs_new:Npn \@@_to_Roman_m:w { M }
\cs_new:Npn \@@_to_Roman_Q:w #1 { }
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \subsection{Converting from other formats to integers}
%
% \begin{macro}[rEXP]{\@@_pass_signs:wn, \@@_pass_signs_end:wn}
% Called as \cs{@@_pass_signs:wn} \meta{signs and digits} \cs{s_@@_stop}
% \Arg{code}, this function leaves in the input stream any sign it
% finds, then inserts the \meta{code} before the first non-sign token
% (and removes \cs{s_@@_stop}). More precisely, it deletes any~|+| and
% passes any~|-| to the input stream, hence should be called in an
% integer expression.
% \begin{macrocode}
\cs_new:Npn \@@_pass_signs:wn #1
{
\if:w + \if:w - \exp_not:N #1 + \fi: \exp_not:N #1
\exp_after:wN \@@_pass_signs:wn
\else:
\exp_after:wN \@@_pass_signs_end:wn
\exp_after:wN #1
\fi:
}
\cs_new:Npn \@@_pass_signs_end:wn #1 \s_@@_stop #2 { #2 #1 }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\int_from_alph:n}
% \UnitTested
% \begin{macro}{\@@_from_alph:nN, \@@_from_alph:N}
% First take care of signs then loop through the input using the
% \texttt{recursion} quarks. The \cs{@@_from_alph:nN} auxiliary
% collects in its first argument the value obtained so far, and the
% auxiliary \cs{@@_from_alph:N} converts one letter to an expression
% which evaluates to the correct number.
% \begin{macrocode}
\cs_new:Npn \int_from_alph:n #1
{
\int_eval:n
{
\exp_after:wN \@@_pass_signs:wn \tl_to_str:n {#1}
\s_@@_stop { \@@_from_alph:nN { 0 } }
\q_@@_recursion_tail \q_@@_recursion_stop
}
}
\cs_new:Npn \@@_from_alph:nN #1#2
{
\@@_if_recursion_tail_stop_do:Nn #2 {#1}
\exp_args:Nf \@@_from_alph:nN
{ \int_eval:n { #1 * 26 + \@@_from_alph:N #2 } }
}
\cs_new:Npn \@@_from_alph:N #1
{ `#1 - \int_compare:nNnTF { `#1 } < { 91 } { 64 } { 96 } }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\int_from_base:nn}
% \UnitTested
% \begin{macro}{\@@_from_base:nnN, \@@_from_base:N}
% Leave the signs into the integer expression, then loop through
% characters, collecting the value found so far in the first argument
% of \cs{@@_from_base:nnN}. To convert a single character,
% \cs{@@_from_base:N} checks first for digits, then distinguishes
% lower from upper case letters, turning them into the appropriate
% number. Note that this auxiliary does not use \cs{int_eval:n},
% hence is not safe for general use.
% \begin{macrocode}
\cs_new:Npn \int_from_base:nn #1#2
{
\int_eval:n
{
\exp_after:wN \@@_pass_signs:wn \tl_to_str:n {#1}
\s_@@_stop { \@@_from_base:nnN { 0 } {#2} }
\q_@@_recursion_tail \q_@@_recursion_stop
}
}
\cs_new:Npn \@@_from_base:nnN #1#2#3
{
\@@_if_recursion_tail_stop_do:Nn #3 {#1}
\exp_args:Nf \@@_from_base:nnN
{ \int_eval:n { #1 * #2 + \@@_from_base:N #3 } }
{#2}
}
\cs_new:Npn \@@_from_base:N #1
{
\int_compare:nNnTF { `#1 } < { 58 }
{#1}
{ `#1 - \int_compare:nNnTF { `#1 } < { 91 } { 55 } { 87 } }
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\int_from_bin:n, \int_from_hex:n, \int_from_oct:n}
% \UnitTested
% Wrappers around the generic function.
% \begin{macrocode}
\cs_new:Npn \int_from_bin:n #1
{ \int_from_base:nn {#1} { 2 } }
\cs_new:Npn \int_from_hex:n #1
{ \int_from_base:nn {#1} { 16 } }
\cs_new:Npn \int_from_oct:n #1
{ \int_from_base:nn {#1} { 8 } }
% \end{macrocode}
% \end{macro}
%
% \begin{variable}
% {
% \c_@@_from_roman_i_int, \c_@@_from_roman_v_int,
% \c_@@_from_roman_x_int, \c_@@_from_roman_l_int,
% \c_@@_from_roman_c_int, \c_@@_from_roman_d_int,
% \c_@@_from_roman_m_int,
% \c_@@_from_roman_I_int, \c_@@_from_roman_V_int,
% \c_@@_from_roman_X_int, \c_@@_from_roman_L_int,
% \c_@@_from_roman_C_int, \c_@@_from_roman_D_int,
% \c_@@_from_roman_M_int
% }
% Constants used to convert from Roman numerals to integers.
% \begin{macrocode}
\int_const:cn { c_@@_from_roman_i_int } { 1 }
\int_const:cn { c_@@_from_roman_v_int } { 5 }
\int_const:cn { c_@@_from_roman_x_int } { 10 }
\int_const:cn { c_@@_from_roman_l_int } { 50 }
\int_const:cn { c_@@_from_roman_c_int } { 100 }
\int_const:cn { c_@@_from_roman_d_int } { 500 }
\int_const:cn { c_@@_from_roman_m_int } { 1000 }
\int_const:cn { c_@@_from_roman_I_int } { 1 }
\int_const:cn { c_@@_from_roman_V_int } { 5 }
\int_const:cn { c_@@_from_roman_X_int } { 10 }
\int_const:cn { c_@@_from_roman_L_int } { 50 }
\int_const:cn { c_@@_from_roman_C_int } { 100 }
\int_const:cn { c_@@_from_roman_D_int } { 500 }
\int_const:cn { c_@@_from_roman_M_int } { 1000 }
% \end{macrocode}
% \end{variable}
%
% \begin{macro}{\int_from_roman:n}
% \UnitTested
% \TestMissing{boundary cases / wrong input?}
% \begin{macro}{\@@_from_roman:NN}
% \begin{macro}{\@@_from_roman_error:w}
% The method here is to iterate through the input, finding the
% appropriate value for each letter and building up a sum. This is
% then evaluated by \TeX{}. If any unknown letter is found, skip to
% the closing parenthesis and insert |*0-1| afterwards, to replace the
% value by $-1$.
% \begin{macrocode}
\cs_new:Npn \int_from_roman:n #1
{
\int_eval:n
{
(
0
\exp_after:wN \@@_from_roman:NN \tl_to_str:n {#1}
\q_@@_recursion_tail \q_@@_recursion_tail \q_@@_recursion_stop
)
}
}
\cs_new:Npn \@@_from_roman:NN #1#2
{
\@@_if_recursion_tail_stop:N #1
\int_if_exist:cF { c_@@_from_roman_ #1 _int }
{ \@@_from_roman_error:w }
\@@_if_recursion_tail_stop_do:Nn #2
{ + \use:c { c_@@_from_roman_ #1 _int } }
\int_if_exist:cF { c_@@_from_roman_ #2 _int }
{ \@@_from_roman_error:w }
\int_compare:nNnTF
{ \use:c { c_@@_from_roman_ #1 _int } }
<
{ \use:c { c_@@_from_roman_ #2 _int } }
{
+ \use:c { c_@@_from_roman_ #2 _int }
- \use:c { c_@@_from_roman_ #1 _int }
\@@_from_roman:NN
}
{
+ \use:c { c_@@_from_roman_ #1 _int }
\@@_from_roman:NN #2
}
}
\cs_new:Npn \@@_from_roman_error:w #1 \q_@@_recursion_stop #2
{ #2 * 0 - 1 }
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \subsection{Viewing integer}
%
% \begin{macro}{\int_show:N, \int_show:c}
% \UnitTested
% \begin{macro}{\@@_show:nN}
% Diagnostics.
% \begin{macrocode}
\cs_new_eq:NN \int_show:N \__kernel_register_show:N
\cs_generate_variant:Nn \int_show:N { c }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\int_show:n}
% \UnitTested
% We don't use the \TeX{} primitive \tn{showthe} to show integer
% expressions: this gives a more unified output.
% \begin{macrocode}
\cs_new_protected:Npn \int_show:n
{ \msg_show_eval:Nn \int_eval:n }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\int_log:N, \int_log:c}
% Diagnostics.
% \begin{macrocode}
\cs_new_eq:NN \int_log:N \__kernel_register_log:N
\cs_generate_variant:Nn \int_log:N { c }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\int_log:n}
% Similar to \cs{int_show:n}.
% \begin{macrocode}
\cs_new_protected:Npn \int_log:n
{ \msg_log_eval:Nn \int_eval:n }
% \end{macrocode}
% \end{macro}
%
%\subsection{Random integers}
%
% \begin{macro}{\int_rand:nn}
% Defined in \pkg{l3fp-random}.
% \end{macro}
%
% \subsection{Constant integers}
%
% \begin{variable}{\c_zero_int, \c_one_int}
% The zero is defined in \pkg{l3basics}.
% \begin{macrocode}
\int_const:Nn \c_one_int { 1 }
% \end{macrocode}
% \end{variable}
%
% \begin{variable}{\c_max_int}
% The largest number allowed is $2^{31}-1$
% \begin{macrocode}
\int_const:Nn \c_max_int { 2 147 483 647 }
% \end{macrocode}
% \end{variable}
%
% \begin{variable}{\c_max_char_int}
% The largest character code is $1114111$ (hexadecimal |10FFFF|) in
% \XeTeX{} and \LuaTeX{} and $255$ in other engines. In many places
% \pTeX{} and \upTeX{} support larger character codes but for instance
% the values of \tn{lccode} are restricted to $[0,255]$.
% \begin{macrocode}
\int_const:Nn \c_max_char_int
{
\if_int_odd:w 0
\cs_if_exist:NT \tex_luatexversion:D { 1 }
\cs_if_exist:NT \tex_XeTeXversion:D { 1 } ~
"10FFFF
\else:
"FF
\fi:
}
% \end{macrocode}
% \end{variable}
%
% \subsection{Scratch integers}
%
% \begin{variable}{\l_tmpa_int, \l_tmpb_int}
% \begin{variable}{\g_tmpa_int, \g_tmpb_int}
% We provide two local and two global scratch counters, maybe we
% need more or less.
% \begin{macrocode}
\int_new:N \l_tmpa_int
\int_new:N \l_tmpb_int
\int_new:N \g_tmpa_int
\int_new:N \g_tmpb_int
% \end{macrocode}
% \end{variable}
% \end{variable}
%
% \subsection{Integers for earlier modules}
%
%<@@=seq>
%
% \begin{variable}{\l_@@_internal_a_int, \l_@@_internal_b_int}
% \begin{macrocode}
\int_new:N \l_@@_internal_a_int
\int_new:N \l_@@_internal_b_int
% \end{macrocode}
% \end{variable}
%
% \begin{macrocode}
%</package>
% \end{macrocode}
%
% \end{implementation}
%
% \PrintIndex
|