summaryrefslogtreecommitdiff
path: root/macros/latex/contrib/jupynotex/example/notebook.ipynb
blob: a423e9a11fad1e06c59fc0a07d98dfd3382e68cb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Non alphanums {'>', '\\t', '[', '\\r', '\\x13', '\\x1d', '<', '^', '\\x04', '\\x08', '\\x17', '\\x1b', '\\\\', '\\x19', '`', '\\x1f', '$', '\\x0b', '\\x14', '\\x12', '\\x18', ')', '=', '?', ' ', \"'\", '\\x1c', '|', ';', '/', '\\x1e', '\\n', '\\x07', '\\x10', '\\x03', '\\x02', '#', '\\x0c', '@', '\\x16', '_', '}', '.', '-', '(', '!', '+', '\\x06', ']', '{', ':', '\\x01', '\\x11', '\\x0f', '\\x05', ',', '~', '\\x15', '\\x00', '\"', '%', '\\x0e', '*', '&', '\\x1a'}\n",
      "Separators b'([\\\\>\\\\\\t\\\\[\\\\\\r\\\\\\x13\\\\\\x1d\\\\<\\\\^\\\\\\x04\\\\\\x08\\\\\\x17\\\\\\x1b\\\\\\\\\\\\\\x19\\\\`\\\\\\x1f\\\\$\\\\\\x0b\\\\\\x14\\\\\\x12\\\\\\x18\\\\)\\\\=\\\\?\\\\ \\\\\\'\\\\\\x1c\\\\|\\\\;\\\\/\\\\\\x1e\\\\\\n\\\\\\x07\\\\\\x10\\\\\\x03\\\\\\x02\\\\#\\\\\\x0c\\\\@\\\\\\x16\\\\_\\\\}\\\\.\\\\-\\\\(\\\\!\\\\+\\\\\\x06\\\\]\\\\{\\\\:\\\\\\x01\\\\\\x11\\\\\\x0f\\\\\\x05\\\\,\\\\~\\\\\\x15\\\\\\x00\\\\\"\\\\%\\\\\\x0e\\\\*\\\\&\\\\\\x1a])'\n"
     ]
    }
   ],
   "source": [
    "import string\n",
    "\n",
    "non_alphanums = set(chr(x) for x in range(127)) - set(string.ascii_letters) - set(string.digits)\n",
    "print(\"Non alphanums\", non_alphanums)\n",
    "separators = '([' + ''.join('\\\\' + x for x in non_alphanums) + '])'\n",
    "separators = separators.encode('ascii')\n",
    "print(\"Separators\", separators)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[b'dlg',\n",
       " b'=',\n",
       " b'Resource',\n",
       " b'.',\n",
       " b'loadfromresfile',\n",
       " b'(',\n",
       " b'filename',\n",
       " b',',\n",
       " b'win',\n",
       " b',',\n",
       " b'QuoteDialog',\n",
       " b'.',\n",
       " b'MyQuoteDialog',\n",
       " b',',\n",
       " b\"'\",\n",
       " b'QuoteDialog',\n",
       " b\"'\",\n",
       " b',',\n",
       " b'win',\n",
       " b')']"
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "import re\n",
    "program_line = b\"\"\"dlg = Resource.loadfromresfile(filename, win, QuoteDialog.MyQuoteDialog, 'QuoteDialog', win)\"\"\"\n",
    "tokens = [t for x in re.split(separators, program_line) if (t := x.strip())]\n",
    "tokens"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Checking base dir: HTML document\n",
      "Checking base dir: C source\n",
      "Checking base dir: C++ source\n",
      "Checking base dir: PHP script\n",
      "Checking base dir: ReStructuredText file\n",
      "Checking base dir: Python script\n",
      "Checking base dir: Ruby script\n",
      "Checking base dir: Java source\n",
      "Checking base dir: Objective-C source\n",
      "Checking base dir: Perl5 module source\n",
      "Checking base dir: XML 1.0 document\n"
     ]
    }
   ],
   "source": [
    "import os\n",
    "from collections import Counter\n",
    "\n",
    "DUMP_BASE = '/home/facundo/devel/ml/dump'\n",
    "\n",
    "# directories with 1000 files of each code type, excluding \"just text\" (ascii, utf8, etc)\n",
    "CODE_TYPES = [\n",
    "    'HTML document',\n",
    "    'C source',\n",
    "    'C++ source',\n",
    "    'PHP script',\n",
    "    'ReStructuredText file',\n",
    "    'Python script',\n",
    "    'Ruby script',\n",
    "    'Java source',\n",
    "    'Objective-C source',\n",
    "    'Perl5 module source',\n",
    "    'XML 1.0 document',\n",
    "]\n",
    "\n",
    "# let's collect ALL tokens present in all the program files\n",
    "tokens = Counter()\n",
    "for basedir in CODE_TYPES:\n",
    "    print(\"Checking base dir:\", basedir)\n",
    "    for dirpath, dirnames, filenames in os.walk(os.path.join(DUMP_BASE, basedir)):\n",
    "        for fname in filenames:\n",
    "            fpath = os.path.join(dirpath, fname)\n",
    "            with open(fpath, 'rb') as fh:\n",
    "                tokens.update(t for x in re.split(separators, fh.read()) if (t := x.strip()))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Total different tokens 213400\n",
      "  870525 b'.'\n",
      "  756849 b'_'\n",
      "  730609 b'('\n",
      "  717433 b'='\n",
      "  699725 b')'\n",
      "  688556 b'/'\n",
      "  661461 b'\"'\n",
      "  640989 b','\n",
      "  625121 b'-'\n",
      "  594091 b'>'\n"
     ]
    }
   ],
   "source": [
    "different_tokens = len(tokens)\n",
    "print(\"Total different tokens\", different_tokens)\n",
    "for name, quant in tokens.most_common(10):\n",
    "    print(\"{:8d} {}\".format(quant, name))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Total tokens found: 20101050\n",
      "Total representative: 3324\n",
      "Last ten...\n",
      "     289 b'enables'\n",
      "     289 b'smaller'\n",
      "     289 b'Creates'\n",
      "     289 b'cross'\n",
      "     289 b'GLFW'\n",
      "     289 b'Os'\n",
      "     289 b'usb'\n",
      "     288 b'stylesheets'\n",
      "     288 b'ad'\n",
      "     288 b'WIDTH'\n"
     ]
    }
   ],
   "source": [
    "import numpy as np\n",
    "\n",
    "total_tokens = sum(tokens.values())\n",
    "print(\"Total tokens found:\", total_tokens)\n",
    "\n",
    "most = total_tokens * 0.9\n",
    "tot = 0\n",
    "representative_data = []\n",
    "for name, quant in tokens.most_common():\n",
    "    representative_data.append((name, quant))\n",
    "    tot += quant\n",
    "    if tot > most:\n",
    "        break\n",
    "\n",
    "print(\"Total representative:\", len(representative_data))\n",
    "print(\"Last ten...\")\n",
    "for name, quant in representative_data[-10:]:\n",
    "    print(\"{:8d} {}\".format(quant, name))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Collecting data from base dir HTML document\n",
      "Collecting data from base dir C source\n",
      "Collecting data from base dir C++ source\n",
      "Collecting data from base dir PHP script\n",
      "Collecting data from base dir ReStructuredText file\n",
      "Collecting data from base dir Python script\n",
      "Collecting data from base dir Ruby script\n",
      "Collecting data from base dir Java source\n",
      "Collecting data from base dir Objective-C source\n",
      "Collecting data from base dir Perl5 module source\n",
      "Collecting data from base dir XML 1.0 document\n",
      "Src data samples: 11000\n"
     ]
    }
   ],
   "source": [
    "import random\n",
    "\n",
    "# real \"ML data\": a list of (code_type, features) (one pair for each file)\n",
    "#  code_type: the *position* of the code type corresponding to the file (needs to be an int)\n",
    "#  features: a list of values, each value corresponds to how many of the tokens of that position the file has\n",
    "\n",
    "representative_tokens = [name for name, _ in representative_data]\n",
    "\n",
    "all_src_data = []\n",
    "for idx, basedir in enumerate(CODE_TYPES):\n",
    "    print(\"Collecting data from base dir\", basedir)\n",
    "    for dirpath, dirnames, filenames in os.walk(os.path.join(DUMP_BASE, basedir)):\n",
    "        for fname in filenames:\n",
    "            fpath = os.path.join(dirpath, fname)\n",
    "            with open(fpath, 'rb') as fh:\n",
    "                fcontent = fh.read()\n",
    "            \n",
    "            file_tokens = Counter(t for x in re.split(separators, fcontent) if (t := x.strip()))\n",
    "            token_quantities = [file_tokens.get(t, 0) for t in representative_tokens]\n",
    "\n",
    "            all_src_data.append((idx, token_quantities))\n",
    "\n",
    "print(\"Src data samples:\", len(all_src_data))\n",
    "\n",
    "# shuffle, as currently is too much \"per directory\"\n",
    "random.shuffle(all_src_data)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "import tensorflow as tf\n",
    "from tensorflow.keras import Model, layers\n",
    "import numpy as np\n",
    "\n",
    "# representation of our model\n",
    "num_classes = len(CODE_TYPES)\n",
    "num_features = len(representative_tokens)\n",
    "\n",
    "# 1st and 2nd layer number of neurons (these numbers are just chamuyo)\n",
    "n_hidden_1 = 128  \n",
    "n_hidden_2 = 256\n",
    "\n",
    "# training parameters (more chamuyo)\n",
    "learning_rate = 0.1\n",
    "\n",
    "batch_size = 256\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Example code types: (2, 0, 4, 4, 5)\n",
      "Example token quants: [246, 786, 246, 61, 246] [32, 32, 5, 22, 5]\n",
      "Token quants shape: (11000, 3324)\n",
      "Example normalized quants: [0.3129771  1.         0.3129771  0.07760815 0.3129771 ] [0.9411765  0.9411765  0.14705883 0.64705884 0.14705883]\n"
     ]
    }
   ],
   "source": [
    "# separate the source data and into two pairing lists\n",
    "code_types, token_quantities = zip(*all_src_data)\n",
    "print(\"Example code types:\", code_types[:5])\n",
    "print(\"Example token quants:\", token_quantities[0][:5], token_quantities[117][:5])\n",
    "\n",
    "# convert features to float\n",
    "float_quantities = np.array(token_quantities, np.float32)\n",
    "print(\"Token quants shape:\", float_quantities.shape)\n",
    "\n",
    "# normalize EACH ONE to [0, 1]\n",
    "for quants in float_quantities:\n",
    "    quants /= max(quants)\n",
    "print(\"Example normalized quants:\", float_quantities[0][:5], float_quantities[117][:5])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Real training set: 89.70%\n"
     ]
    }
   ],
   "source": [
    "# let's prepare the teching sets, input and output for training first (90% of cases) and\n",
    "# then testing what's learned (the remaining 10%); \n",
    "input_training = []\n",
    "output_training = []\n",
    "input_testing = []\n",
    "output_testing = []\n",
    "for token_distribution, code_type in zip(float_quantities, code_types):\n",
    "    if random.random() < .1:\n",
    "        input_testing.append(token_distribution)\n",
    "        output_testing.append(code_type)\n",
    "    else:\n",
    "        input_training.append(token_distribution)\n",
    "        output_training.append(code_type)\n",
    "print(\"Real training set: {:.2f}%\".format(100 * len(input_training) / len(float_quantities)))        "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [],
   "source": [
    "import tensorflow as tf\n",
    "from tensorflow.keras import Model\n",
    "\n",
    "class NeuralNet(Model):\n",
    "    \"\"\"Chamuyo al cuadrado.\"\"\"\n",
    "    \n",
    "    def __init__(self):\n",
    "        super(NeuralNet, self).__init__()\n",
    "        self.fc1 = layers.Dense(n_hidden_1, activation=tf.nn.sigmoid)  # se puede cambiar a relu\n",
    "        self.fc2 = layers.Dense(n_hidden_2, activation=tf.nn.sigmoid)  # se puede cambiar a relu\n",
    "        self.out = layers.Dense(num_classes)\n",
    "\n",
    "    def call(self, x, is_training=False):\n",
    "        x = self.fc1(x)\n",
    "        x = self.fc2(x)\n",
    "        x = self.out(x)\n",
    "        if not is_training:\n",
    "            # tf cross entropy expect logits without softmax, so only\n",
    "            # apply softmax when not training.\n",
    "            x = tf.nn.softmax(x)\n",
    "        return x\n",
    "\n",
    "neural_net = NeuralNet()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Note that this will apply 'softmax' to the logits.\n",
    "def cross_entropy_loss(x, y):\n",
    "    # Convert labels to int 64 for tf cross-entropy function.\n",
    "    y = tf.cast(y, tf.int64)\n",
    "    # Apply softmax to logits and compute cross-entropy.\n",
    "    loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=x)\n",
    "    # Average loss across the batch.\n",
    "    return tf.reduce_mean(loss)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Stochastic gradient descent optimizer.\n",
    "optimizer = tf.optimizers.SGD(learning_rate)\n",
    "\n",
    "# Optimización. \n",
    "def run_optimization(x, y):\n",
    "    # Funciones para calcular el gradiente\n",
    "    with tf.GradientTape() as g:\n",
    "        # Algoritmo de forward\n",
    "        pred = neural_net(x, is_training=True)\n",
    "        # Computa la función de costo o pérdida utilizando entropía cruzada\n",
    "        loss = cross_entropy_loss(pred, y)\n",
    "        \n",
    "    # Actualiza las variables de entrenamiento.\n",
    "    trainable_variables = neural_net.trainable_variables\n",
    "\n",
    "    # Computa los gradientes\n",
    "    gradients = g.gradient(loss, trainable_variables)\n",
    "    \n",
    "    # Actualiza los nuevos parámetros W (pesos) y b (bias).\n",
    "    optimizer.apply_gradients(zip(gradients, trainable_variables))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Accuracy metric.\n",
    "def accuracy(y_pred, y_true):\n",
    "    # Predicted class is the index of highest score in prediction vector (i.e. argmax).\n",
    "    correct_prediction = tf.equal(tf.argmax(y_pred, 1), tf.cast(y_true, tf.int64))\n",
    "    return tf.reduce_mean(tf.cast(correct_prediction, tf.float32), axis=-1)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Step 100: loss=2.379924, accuracy=0.125000\n",
      "Step 200: loss=2.372284, accuracy=0.128906\n",
      "Step 300: loss=2.366430, accuracy=0.140625\n",
      "Step 400: loss=2.360768, accuracy=0.121094\n",
      "Step 500: loss=2.347394, accuracy=0.109375\n",
      "Step 600: loss=2.349795, accuracy=0.199219\n",
      "Step 700: loss=2.312950, accuracy=0.218750\n",
      "Step 800: loss=2.284508, accuracy=0.289062\n",
      "Step 900: loss=2.173395, accuracy=0.335938\n",
      "Step 1000: loss=2.115966, accuracy=0.300781\n",
      "Step 1100: loss=1.977837, accuracy=0.441406\n",
      "Step 1200: loss=1.860783, accuracy=0.425781\n",
      "Step 1300: loss=1.866206, accuracy=0.425781\n",
      "Step 1400: loss=1.773057, accuracy=0.402344\n",
      "Step 1500: loss=1.736271, accuracy=0.546875\n",
      "Step 1600: loss=1.626320, accuracy=0.578125\n",
      "Step 1700: loss=1.537970, accuracy=0.539062\n",
      "Step 1800: loss=1.369012, accuracy=0.609375\n",
      "Step 1900: loss=1.286771, accuracy=0.625000\n",
      "Step 2000: loss=1.270916, accuracy=0.640625\n"
     ]
    }
   ],
   "source": [
    "train_data = tf.data.Dataset.from_tensor_slices((input_training, output_training))\n",
    "\n",
    "# NOTE: this doesn't only selectes, it completely transform the structures\n",
    "#   from  <TensorSliceDataset shapes: ((3324,), ()), types: (tf.float32, tf.int32)>\n",
    "#     to  <PrefetchDataset shapes: ((None, 3324), (None,)), types: (tf.float32, tf.int32)>\n",
    "train_data = train_data.repeat().shuffle(5000).batch(batch_size).prefetch(1)\n",
    "\n",
    "display_step = 100\n",
    "training_steps = 2000\n",
    "\n",
    "# Run training for the given number of steps.\n",
    "for step, (input_batch, output_batch) in enumerate(train_data.take(training_steps), 1):\n",
    "    # Run the optimization to update W and b values.\n",
    "    run_optimization(input_batch, output_batch)\n",
    "    \n",
    "    if step % display_step == 0:\n",
    "        pred = neural_net(input_batch, is_training=True)\n",
    "        loss = cross_entropy_loss(pred, output_batch)\n",
    "        acc = accuracy(pred, output_batch)\n",
    "        print(\"Step {}: loss={:f}, accuracy={:f}\".format(step, loss, acc))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Test Accuracy: 0.578994\n"
     ]
    }
   ],
   "source": [
    "# Test model on validation set\n",
    "input_testing = np.array(input_testing)\n",
    "pred = neural_net(input_testing, is_training=False)\n",
    "print(\"Test Accuracy: {:f}\".format(accuracy(pred, output_testing)))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {},
   "outputs": [],
   "source": [
    "# If we consider the \"more probable\" prediction on each item, how well it goes?\n",
    "all_guesses = neural_net(input_testing, is_training=False)\n",
    "guesses_ok = [0] * len(CODE_TYPES)\n",
    "guesses_bad = [0] * len(CODE_TYPES)\n",
    "\n",
    "for guess, real in zip(all_guesses, output_testing):\n",
    "    # guess is an array of len(CODE_TYPES) with a float in each position showing\n",
    "    # which one is the most probable to be real, so we need to get position \n",
    "    # for the max one and check if it matches with the real real :)\n",
    "    position_for_max = np.where(guess == np.amax(guess))[0][0]\n",
    "    if position_for_max == real:\n",
    "        guesses_ok[real] += 1\n",
    "    else:\n",
    "        guesses_bad[real] += 1"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAFmCAYAAACC84ZkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAABBB0lEQVR4nO3debyc4/3/8dc7mwSJWPJNEZHUEiUbkqC2iLWqltb6pYKiliLftrZuWt+26LdVxY9GLaGUoLbqYkkT+5KECEFsDUIQscUSJD6/P65r5txnMnPOnGSue87yeT4e8zhz3/fM/bnuOTNzzbXLzHDOOecAOtU7Ac4551oPzxScc84VeabgnHOuyDMF55xzRZ4pOOecK/JMwTnnXJFnCq4RSQdLurPe6XCBpG0lzc4p1hxJOyU6dw9JD0jarYnHjJY0N7M9S9LoFOlxlXmm0M5JmiLpXUkrVPN4M7vGzHZZjngTJP1yWZ/f0UkySesXts3sPjMbVM801ch44Hdm9q9qn2Bmm5jZlHRJcuV4ptCOSRoAbAsYsGcO8TqnjtFeSOpS7zTkycwONbOb6p0O1zzPFNq3Q4GHgQnA2OwBSetIuknSfEkLJF0Y9x8m6f7M4zaSdJekdyTNlrR/5tgESRdL+oekj4DvAAcDp0j6UNLf4uO+Ekss78UqgT0z59hd0tOSFkp6TdIPy12IpE6SfiLpZUlvSbpK0ioVHjta0lxJP4iPnSfp8MzxVeLz58fz/URSVZ+FeB1nSXpU0geSbpW0Wub4nvEa34uP/Urm2BxJp0qaCXxUmjFIujfefSK+fgeUqVKZI+n0+Jq9K+kKSd0zx4+S9EL8f90maa0mruXb8foXSPpxybFOkk6T9GI8fn32Osucay9JM+Jr8mKhmkjSWjEd78R0HZV5To/4HnpX0tPAyJJzFquz4mOvjI99RtIpJa9LxfeYayEz81s7vQEvAMcBmwOfA33j/s7AE8DvgZWA7sA28dhhwP3x/krAq8DhQBdgU+BtYON4fALwPrA14QdG97jvl5k0dI3p+BHQDRgDLAQGxePzgG3j/VWBzSpcyxHxPF8GVgZuAv5c4bGjgcXAmTH+7sDHwKrx+FXArUBPYADwHPCdKl/TKcBrwOD4+vwVuDoe2xD4CNg5xj0lprlbPD4HmAGsA/SocH4D1i+5lrmZ7TnAU/EcqwEPFF7v+Nq+DWwGrABcANxbIc7GwIfAdvGx58bXbKd4/CTCD4p+8fh44NoK5xoV3wc7x/fB2sBG8di9wEXxvTEcmA+MicfOBu6L17FOvK7Sa90p89h74nukHzCz8FiaeY/5rYXfG/VOgN8S/WNhG0JGsEbcfhb4n3h/q/jh7FLmeYfRkCkcANxXcnw8cEa8PwG4quT4BBpnCtsCbwCdMvuuBX4e778CfBfo1cz1TAKOy2wPitdX7hpGA59kjwFvAVsSMsTPiBlbPPZdYEqVr+sU4OzM9sbxfJ2BnwLXZ451ImQgo+P2HOCIZs5fTaZwTGZ7d+DFeP8y4DeZYyvH12hAmTg/A67LbK8Ur6PwJfwMsGPm+JpNvN7jgd+X2b8OsATomdl3FjAh3n8J2C1z7Ogy17pT5rG7Zo4dSUOm0OR7zG8tu3n1Ufs1FrjTzN6O23+hoQppHeBlM1vczDnWBbaIRfL3JL1HqB76UuYxrzZzjrWAV83si8y+lwm/JgG+Rfhie1nSPZK2auI8L5ecowvQt8LjF5Rc38eEL8k1CL8sS8+1NtXLXvPL8XxrlKYxXvOrJedu7vValviFKqLS+B8CCyh/bWtlz2NmH8XHFqwL3Jz5vz9D+IIv93qvA7xYIcY7ZrawJL1rZ46XXkslpY99tfRYE+8x1wIdqrGro5DUA9gf6Czpjbh7BaC3pGGED1R/SV2ayRheBe4xs52beEzpNLul268D60jqlPnQ9idU2WBmU4G9JHUFvgdcT/iSKfU64YuqoD+huuPNJtJWztuEX7zrAk9nzvVaC86RTV//eL63YxqHFA5IUnxs9ty1mJa4NP7r8X6j10jSSsDqlL+2eUC2vWPF+NiCVwmlmgeqSM+rwHpl9r8OrCapZyZjyL7W8+K1zMocq2Qeodqo8D/LvgZNvsdcy3hJoX3am/CrbmNCPe5wwhfAfYTG50cJH7KzJa0kqbukrcuc53Zgw9gg2TXeRmYbT8t4k1DvX/AI4Vf6KfH5o4FvANdJ6qYwLmIVM/sc+AD4ovSE0bXA/0gaKGll4NfAxCpKO42Y2RJCxvMrST0lrQt8H7gaQo8thW6hA5o4zSGSNo5fpGcCN2bO+3VJO8ZM7gfAp8CDLUhi6etXzvGS+sWG3x8DE+P+a4HDJQ1X6IL8a+ARM5tT5hw3AntI2kZSt3gd2e+DPxJeo3UBJPWRtFeF9FwW4+4YG6jXlrSRmb1KuPaz4ntsKKEzwtXxedcDp0taVVI/4IQmrjn72LUJPyAKKr7Hmjifq6Te9Vd+q/0N+BehT3jp/v0Jda9dCL+kbiFUGbwNnB8fcxixTSFuDwL+TmiDWAD8Gxgej00g034Q921AaEx9D7gl7tuE0Ej4PuGX3j5xf7eY1ncJGcJUYoN3mbR3ItSDvxrTcjWx4bjMY0eTqZuO++bQUD+9anz+/Hi+nxHrown103OArhXOPYVQL/5oTPPfiO028fg+8Rrfj9e8Sbk0NPG/O4aQYb8X/1+NriWe4/QY4z3gSmDFkue/CLxDyNT7NRFrLKFNZwEhc8m+Rp0ImeVsQqPti8CvmzjXPoTG34WERt9d4/5+MR3vxHNk20NWJDT6vxev5+Qy11pIz0rAn+NjnwF+QmxLaeo95reW3xRfUOccIOknwHwzG1/h+BRCb6NLc01YQ/w5wJFmdnc94rcWko4FDjSz7eudlvbG2xScyzAzH43dCklak1Ct9hChNPoD4MK6Jqqd8kzBOdcWdCN0fR1IqEK6jjD+wdWYVx8555wr8t5Hzjnnitp89dEaa6xhAwYMqHcynHOuTZk+ffrbZtandH+bzxQGDBjAtGnT6p0M55xrUySVHUHu1UfOOeeKPFNwzjlX5JmCc865ojbfpuA6ls8//5y5c+eyaNGieiel3ejevTv9+vWja9eu9U6KawU8U3Btyty5c+nZsycDBgwgTELqloeZsWDBAubOncvAgQPrnRzXCnj1kWtTFi1axOqrr+4ZQo1IYvXVV/eSlytKmilIulxhjdynMvv+T9KzkmZKullS78yx0+M6rrMl7Zoyba7t8gyhtvz1dFmpSwoTgN1K9t0FDDazoYRFME4HkLQxcCBhCtzdgIskdU6cPueccxlJ2xTM7N7SxUrM7M7M5sPAvvH+XoQ1Yz8F/iPpBcKC4A+lTKNr2wac9veanm/O2V+v6nFvvPEG48aNY+rUqfTu3Zu+ffty3nnnseGGG9Y0PeVMmDCBXXbZhbXWWqv5BzvXQvVuaD6ChlWj1iZkEgVzqbDGqqSjCYt8079/Uyv4OVd7ZsY+++zD2LFjue66sLjXE088wZtvvtlsprB48WK6dOlScbsaEyZMYPDgwe0jU/j5KgnP/X66c7djdWtolvRjwhq717T0uWZ2iZmNMLMRffosNXWHc0lNnjyZrl27cswxxxT3DRs2jG222YaTTz6ZwYMHM2TIECZODL93pkyZwrbbbsuee+7JxhtvvNT2kiVLOPnkkxk5ciRDhw5l/PiG9X3OOecchgwZwrBhwzjttNO48cYbmTZtGgcffDDDhw/nk08+YdKkSWy66aYMGTKEI444gk8//TT318S1H3UpKUg6DNgD2NEa5u5+jcaLcfejZYupO5eLp556is0333yp/TfddBMzZszgiSee4O2332bkyJFst912ADz22GM89dRTDBw4kClTpjTavuSSS1hllVWYOnUqn376KVtvvTW77LILzz77LLfeeiuPPPIIK664Iu+88w6rrbYaF154Ib/97W8ZMWIEixYt4rDDDmPSpElsuOGGHHrooVx88cWMGzcu51fFtRe5lxQk7QacAuxpZh9nDt0GHChpBUkDCasrPZp3+pxbVvfffz8HHXQQnTt3pm/fvmy//fZMnToVgFGjRjUaB5DdvvPOO7nqqqsYPnw4W2yxBQsWLOD555/n7rvv5vDDD2fFFVcEYLXVVlsq5uzZsxk4cGCx2mrs2LHce++9qS/VtWNJSwqSriUsPL6GpLnAGYTeRisAd8WucA+b2TFmNkvS9YRFtxcDx5vZkpTpc25ZbLLJJtx4440tes5KK61UcdvMuOCCC9h118a9sO+4445lT6RzyyhpScHMDjKzNc2sq5n1M7PLzGx9M1vHzIbH2zGZx//KzNYzs0Fm9s+UaXNuWY0ZM4ZPP/2USy65pLhv5syZ9O7dm4kTJ7JkyRLmz5/Pvffey6hRo5o936677srFF1/M559/DsBzzz3HRx99xM4778wVV1zBxx+HAvU777wDQM+ePVm4cCEAgwYNYs6cObzwwgsA/PnPf2b77X0te7fs6t37yLnlUm0X0lqSxM0338y4ceM455xz6N69OwMGDOC8887jww8/ZNiwYUjiN7/5DV/60pd49tlnmzzfkUceyZw5c9hss80wM/r06cMtt9zCbrvtxowZMxgxYgTdunVj991359e//jWHHXYYxxxzDD169OChhx7iiiuuYL/99mPx4sWMHDmyUQO4cy3V5tdoHjFihPkiOx3HM888w1e+8pV6J6Pdqdvr6l1S60bSdDMbUbq/Y5cUUr0h/c3onGujfEI855xzRZ4pOOecK/JMwTnnXJFnCs4554o8U3DOOVfUsXsfubav1j3Iqug5tvLKK/Phhx/WNm4NnXfeeRx99NHF6TGcawkvKTjXiixevLjJ7Wqcd955xVHQzrWUZwrOLaMpU6YwevRo9t13XzbaaCMOPvhgCoNBp06dyle/+lWGDRvGqFGjWLhwIYsWLeLwww9nyJAhbLrppkyePBkI6yPsueeejBkzhh133HGp7Y8++ogjjjiCUaNGsemmm3LrrbcCsGTJEn74wx8yePBghg4dygUXXMD555/P66+/zg477MAOO+wAwLXXXsuQIUMYPHgwp556an1eLNdmePWRc8vh8ccfZ9asWay11lpsvfXWPPDAA4waNYoDDjiAiRMnMnLkSD744AN69OjBH/7wByTx5JNP8uyzz7LLLrvw3HPPAWFq7ZkzZ7LaaqsxYcKERts/+tGPGDNmDJdffjnvvfceo0aNYqedduKqq65izpw5zJgxgy5duhSn1j733HOZPHkya6yxBq+//jqnnnoq06dPZ9VVV2WXXXbhlltuYe+9967vC+daLS8pOLccRo0aRb9+/ejUqRPDhw9nzpw5zJ49mzXXXJORI0cC0KtXL7p06cL999/PIYccAsBGG23EuuuuW8wUdt5550ZTY2e377zzTs4++2yGDx/O6NGjWbRoEa+88gp333033/3ud4srt5WbWnvq1KmMHj2aPn360KVLFw4++GCfWts1yUsKzi2HFVZYoXi/c+fOy9QGAM1Prf3Xv/6VQYMGLVsinWsBLyk4V2ODBg1i3rx5xQV2Fi5cyOLFi9l222255pqw+uxzzz3HK6+8UtUX/a677soFF1xQbK94/PHHgVCaGD9+fDEjKje19qhRo7jnnnt4++23WbJkCddee61Pre2a5CUF17a1wskHu3XrxsSJEznhhBP45JNP6NGjB3fffTfHHXccxx57LEOGDKFLly5MmDChUUmjkp/+9KeMGzeOoUOH8sUXXzBw4EBuv/12jjzySJ577jmGDh1K165dOeqoo/je977H0UcfzW677cZaa63F5MmTOfvss9lhhx0wM77+9a+z11575fAquLaqY0+d7bOktjk+dXYaPnV2x1Np6myvPnLOOVfk1UeudvxXn3NtnpcUXJvT1qs8Wxt/PV2WZwquTenevTsLFizwL7IaMTMWLFhA9+7d650U10p49ZFrU/r168fcuXOZP39+vZPSbnTv3p1+/frVOxntVxvr0OKZgmtTunbtysCBA+udDOfaLa8+cs45V+SZgnPOuaKk1UeSLgf2AN4ys8Fx32rARGAAMAfY38zelSTgD8DuwMfAYWb2WMr05c67bLrWzt+jHV7qksIEYLeSfacBk8xsA2BS3Ab4GrBBvB0NXJw4bc4550okzRTM7F7gnZLdewFXxvtXAntn9l9lwcNAb0lrpkyfc865xurR+6ivmc2L998A+sb7awOvZh43N+6bRwlJRxNKE/Tv3z9dSl3r18a6+znX2tW1odnCCKQWj0Iys0vMbISZjejTp0+ClDnnXMdUj5LCm5LWNLN5sXrorbj/NWCdzOP6xX3OdVze8Ft7XrpsUj1KCrcBY+P9scCtmf2HKtgSeD9TzeSccy4HqbukXguMBtaQNBc4AzgbuF7Sd4CXgf3jw/9B6I76AqFL6uEp0+acc25pSTMFMzuowqEdyzzWgONTpsc551zTfESzc865Is8UnHPOFXmm4Jxzrsinzm7PvDujc66FvKTgnHOuyDMF55xzRZ4pOOecK/JMwTnnXJE3NDvnXEIDFv0lyXnnJDmrlxScc85leEnBuZbwGTZdO+clBeecc0WeKTjnnCvy6iNXM6ka1CBdo5pzrjEvKTjnnCvykoJzrshLe85LCs4554o8U3DOOVfkmYJzzrkizxScc84VeabgnHOuyDMF55xzRZ4pOOecK6p6nIKkbsCGcXO2mX2eJknOOefqpapMQdJo4ErC+BMB60gaa2b3JkuZc8653FVbUvgdsIuZzQaQtCFwLbB5qoQ555zLX7VtCl0LGQKAmT0HdF2ewJL+R9IsSU9JulZSd0kDJT0i6QVJE2OVlXPOuZxUmylMk3SppNHx9idg2rIGlbQ2cCIwwswGA52BA4FzgN+b2frAu8B3ljWGc865lqs2UzgWeJrwRX5ivH/scsbuAvSQ1AVYEZgHjAFujMevBPZezhjOOedaoKo2BTP7FDg33pabmb0m6bfAK8AnwJ3AdOA9M1scHzYXWLvc8yUdDRwN0L9//1okyTnXQaSaCXZOkrPmr9reR08CVrL7fUIV0i/NbEFLgkpaFdgLGAi8B9wA7Fbt883sEuASgBEjRpSmyznn3DKqtvfRP4ElQCGLPZBQ5fMGMAH4Rgvj7gT8x8zmA0i6Cdga6C2pSywt9ANea+F5nXPOLYdqM4WdzGyzzPaTkh4zs80kHbIMcV8BtpS0IqH6aEdCqWMysC9wHTAWuHUZzu2cc24ZVdvQ3FnSqMKGpJGEHkMAi8s/pTIze4TQoPwY8GRMxyXAqcD3Jb0ArA5c1tJzO+ecW3bVlhSOBC6XtDJhRPMHwJGSVgLOWpbAZnYGcEbJ7peAUWUe7pxzLgfV9j6aCgyRtErcfj9z+PoUCXPOOZe/JjMFSYeY2dWSvl+yHwAzq0kXVeecc61DcyWFleLfnqkT4pxzrv6azBTMbHz8+4t8kuOcc66emqs+Or+p42Z2Ym2T41zr5qNhXXvXXJfU6fHWHdgMeD7ehgM+g6lzzrUzzVUfXQkg6Vhgm8K8RJL+CNyXPnnOOefyVO3gtVWBXpntleM+55xz7Ui1g9fOBh6XNJkweG074OepEuWcc64+qh28doWkfwJbEGZLPdXM3kiaMuecc7mrtqQAYfqJbeN9A/5W++Q455yrp4qZgqTtgIfM7HNJZwMjgWvi4RMlbWVmP8ojkc5V4l1EnautphqaFwF/jPd3B3Y2s8vN7HLCgjh7pE6cc865fFUsKZjZo5I+yuzqDbwT76+SMlHOOefqo7lxCrPi3bNYuvfRaYnT5pxzLmfV9j66VtIUQrsCeO8j55xrl6oavCZpH+BjM7vNzG4DFknaO2nKnHPO5a7aEc1nZBfWMbP3WHrVNOecc21cteMUymUeLRnj4JxzS0nVpRi8W/GyqrakME3SuZLWi7dzCbOnOueca0eqzRROAD4DJgLXEcYwHJ8qUc455+qj2t5HH+FdUJ1zrt2rtqTgnHOuA/BMwTnnXJFnCs4554qqHby2oaRJkp6K20Ml/WR5AkvqLelGSc9KekbSVpJWk3SXpOfjX1/dzTnnclRtSeFPwOnA5wBmNhM4cDlj/wH4l5ltBAwDniE0Zk8ysw2ASXjjtnPO5araTGFFM3u0ZN/iZQ0qaRXCpHqXAZjZZ3GU9F7AlfFhVwJ7L2sM55xzLVdtpvC2pPUIK64haV9g3nLEHQjMB66Q9LikSyWtBPQ1s8J53wD6lnuypKMlTZM0bf78+cuRDOecc1nVZgrHA+OBjSS9BowDjl2OuF2AzYCLzWxTYKlxEGZmxEyolJldYmYjzGxEnz59liMZzjnnsqodvPYSsFP8Nd/JzBYuZ9y5wFwzeyRu30jIFN6UtKaZzZO0JvDWcsZxzjnXAk1mCpK+X2E/AGZ27rIENbM3JL0qaZCZzQZ2BJ6Ot7HA2fHvrctyfuecc8umuZJCz/h3EGGBndvi9jeA0obnljoBuEZSN+Al4HBCddb1kr4DvAzsv5wxnHPOtUBzy3H+AkDSvcBmhWojST8H/r48gc1sBjCizKEdl+e8zjnnll21Dc19CbOkFnxGhZ5Bzjnn2q5qF8q5CnhU0s1xe29gQooEOeca+CI0Lm/V9j76laR/AtvGXYeb2ePpkuWcc64eql5S08weAx5LmBbnnHN15rOkOuecK/JMwTnnXFHV1UeS+hLGKgA8amY+2tg559qZatdT2J8wWG0/woCyR+KkeM4559qRaksKPwZGFkoHkvoAdxPmLHLOOddOVNum0KmkumhBC57rnHOujai2pPAvSXcA18btA4B/pEmSc865eql28NrJkr4JbBN3XWJmNzf1HOecc21P1b2PgAeBJcAXwNQ0yXHOOVdP1fY+OpLQ+2gfYF/gYUlHpEyYc865/FVbUjgZ2NTMFgBIWp1Qcrg8VcKcc87lr9oeRAuA7BKcC+M+55xz7Ui1JYUXCAPWbgUM2AuYWViuc1mX5XTOOde6VJspvBhvBYW1k3uWeaxzzrk2qtouqb9InRDnnHP112SmIOlCM/uepL8Rqo0aMbM9k6XMOedc7porKRwKfA/4bQ5pcc45V2fNZQovApjZPTmkxTnnXJ01lyn0KfQwKsd7HTnnXPvSXKbQGVgZUA5pcc45V2fNZQrzzOzMXFLinHOu7pob0ewlBOec60CayxR2TBlcUmdJj0u6PW4PlPSIpBckTZTULWV855xzjTWZKZjZO4njnwQ8k9k+B/i9ma0PvAt8J3F855xzGXVbUlNSP+DrwKVxW8AYGtZ9vhLYuy6Jc865Dqqe6yyfB5xCWLQHYHXgPTNbHLfnAmuXe6KkoyVNkzRt/vz5yRPqnHMdRV0yBUl7AG+Z2fRleb6ZXWJmI8xsRJ8+fWqcOuec67hashxnLW0N7Clpd6A70Av4A9BbUpdYWugHvFan9DnnXIdUl5KCmZ1uZv3MbABwIPBvMzsYmExY7hNgLA1TdDvnnMtBPdsUyjkV+L6kFwhtDJfVOT3OOdeh1Kv6qMjMpgBT4v2XgFH1TI9zznVkra2k4Jxzro48U3DOOVfkmYJzzrkizxScc84VeabgnHOuyDMF55xzRZ4pOOecK/JMwTnnXJFnCs4554o8U3DOOVfkmYJzzrkizxScc84VeabgnHOuyDMF55xzRZ4pOOecK/JMwTnnXJFnCs4554o8U3DOOVfkmYJzzrkizxScc84Vdal3AjqSAYv+kuzcc5Kd2TnXkXhJwTnnXJFnCs4554o8U3DOOVfkmYJzzrmiumQKktaRNFnS05JmSTop7l9N0l2Sno9/V61H+pxzrqOqV0lhMfADM9sY2BI4XtLGwGnAJDPbAJgUt51zzuWkLpmCmc0zs8fi/YXAM8DawF7AlfFhVwJ71yN9zjnXUdW9TUHSAGBT4BGgr5nNi4feAPpWeM7RkqZJmjZ//vx8Euqccx1AXTMFSSsDfwXGmdkH2WNmZoCVe56ZXWJmI8xsRJ8+fXJIqXPOdQx1yxQkdSVkCNeY2U1x95uS1ozH1wTeqlf6nHOuI6pX7yMBlwHPmNm5mUO3AWPj/bHArXmnzTnnOrJ6zX20NfBt4ElJM+K+HwFnA9dL+g7wMrB/fZLnnHMdU10yBTO7H1CFwzvmmRbnnHMN6t77yDnnXOvRoafOTjWV9ZwkZ3XOufS8pOCcc67IMwXnnHNFnik455wr8kzBOedckWcKzjnnijxTcM45V+SZgnPOuSLPFJxzzhV5puCcc67IMwXnnHNFnik455wr8kzBOedckWcKzjnnijxTcM45V+SZgnPOuSLPFJxzzhV5puCcc67IMwXnnHNFnik455wr8kzBOedckWcKzjnnijxTcM45V+SZgnPOuSLPFJxzzhW1ukxB0m6SZkt6QdJp9U6Pc851JK0qU5DUGfh/wNeAjYGDJG1c31Q551zH0aoyBWAU8IKZvWRmnwHXAXvVOU3OOddhyMzqnYYiSfsCu5nZkXH728AWZva9kscdDRwdNwcBs3NI3hrA2znEqVe8esT0eB6vtcdsz/HWNbM+pTu75BS8pszsEuCSPGNKmmZmI9prvHrE9Hger7XHbO/xymlt1UevAetktvvFfc4553LQ2jKFqcAGkgZK6gYcCNxW5zQ551yH0aqqj8xssaTvAXcAnYHLzWxWnZNVkGt1VR3i1SOmx/N4rT1me4+3lFbV0Oycc66+Wlv1kXPOuTryTME551yRZwouN5K2rmZfW9Xer8/VnqSB1ezLk2cKFUj6czX7ahhPkg6R9LO43V/SqFTxMnHXlbRTvN9DUs+E4S6ocl/NtOfrk3RONftqGG9FST+V9Ke4vYGkPVLFy8TdRtLh8X6f1F+aOb9n/lpm340J4zWrVfU+amU2yW7EeZk2TxjvIuALYAxwJrCQ8IYZmSqgpKMII8NXA9YjjAv5I7BjjeNsBXwV6CPp+5lDvQi9zJJo79cH7AycWrLva2X21coVwHRgq7j9GnADcHuieEg6AxhBmLngCqArcDWQpASW43tmI8J3zCqSvpk51AvoXstYLeWZQglJpwM/AnpI+qCwG/iMtN3FtjCzzSQ9DmBm78axGikdT5hv6pEY83lJ/5UgTjdgZcL7Lfur6wNg3wTxCtrl9Uk6FjgO+LKkmZlDPYEHah0vYz0zO0DSQQBm9rEkJYwHsA+wKfBYjPl64l/ueb1nBgF7AL2Bb2T2LwSOShCvap4plDCzs4CzJJ1lZqfnGPrzWBoxCMVkQskhpU/N7LPC51pSl0L8WjKze4B7JE0ws5cl9Qq7bWGtY5Vor9f3F+CfwFlAdnr5hWb2TqKYAJ9J6kHDe3Q94NOE8QA+MzOTVIi5UuJ4eb1nbgVulbSVmT1U6/MvD88UKjCz0yWtDaxL5nUys3sThTwfuBn4L0m/IvzC/EmiWAX3SCqUinYm/Pr8W8J4fSTdTvw1Lel94Agzm54oXru8PjN7H3ifMLX8ZsA2hC+uB4CUmcIZwL+AdSRdQ6jCOSxhPIDrJY0HeseqnSOAPyWMl/d75oUYbwCNv2eOSBizST54rQJJZxOm2XgaWBJ3m5ntmTDmRoS6SwGTzOyZVLFivE7Ad4BdYsw7gEst0ZsiVnUcb2b3xe1tgIvMbGiieO39+n4K7A/cFHftDdxgZr9MES/GXB3YkvB6PmxmyWf0jF/Oxf+hmd2VMFbe75kHgfsIbTWF7xnMrFwDdC48U6hA0mxgqJmlLh4X4m0JzCpUOcQqiK+Y2SMJY64ELDKzJXG7M7CCmX2cKN7jZrZpyb7HzGyzFPHylvf1xffoMDNbFLd7ADPMbFCiePsA/44lFST1Bkab2S0p4sUYA4F5JdfY18zmJIqX92dihpkNT3HuZeVdUit7idDTIS8XAx9mtj+M+1KaBPTIbPcA7k4Y7x5J4yWNlrS9pIuAKZI2i9UgNSHpSUkzK91qFaeMXK4v43Ua91RZgbSzCp9RyBAAzOw9QpVSSjfQuG1tSdyXSt6fidsl7Z7w/C3mbQqVfQzMkDSJTGOamZ2YKJ6yRVQz+yI2cqXU3cyKGZGZfShpxYTxhsW/pV8kmxLqxMfUKE7yvvMV5HV9Be8DsyTdFc+/M/CopPMhyXu13I/I1O/RLnEVRgBiI3DKXnl5fyZOAn4k6TNCD0eFsNYrYcwmeaZQ2W3kO233S5JOpKF0cByhtJLSR5I2M7PHACRtDnySKpiZ7ZDq3CVxXs4jTpm4uVxfxs3xVjAlcbxpks4lrKMOoftmqk4CBfMl7WlmtwFI2ou0K5Pl/ZlI2b12mXibQhNi/WV/M0u+3GfsC30+4dekEYqx48zsrYQxRwATCdUQAr4EHFDr3jKSDjGzq9V4YFeRmZ1b43j3m9k2khbSuDthkl9heV9fvcT69p8COxFe17uAX5nZRwljrgdcA6wVd80Fvm1mLyaKl8tnIhNPwMHAQDP7X0nrAGua2aMp4lXDSwoVSPoG8FvCwKSBkoYDZ6bofRQbs35vZgfW+tzNxNwW2IgwkAZgtpl9niBcoW95Xr+KDoVcf4Xlen2Srjez/SU9SZk+9Cl6O8X3y+15loZizGPNbEtJK0OozkkcL6/PREF2JoP/JbQl/j8SzmTQHC8pVCBpOuEfNaXQo0TSU2Y2OFG8+4Ex2frT1CQ9ambJ51eKsToDJ5rZ73OINd3MNpc0ycxqOj1BEzHzvL41zWyepHXLHU9VfRbb176ZbWxOTdLDZrZljvFy+0zEeI9ZnMkg8z3zhJkNa+65qXhJobLPzex9NR7Fn3KE8UvAA5JuA4rF8cRVDw9IupBQXM7GfKzWgcxsicL0CMm/NIFOcUDQhuWqdFK8pnleX8wQOgMTcm7H+BB4MjZsZ98vqTpfADwePxM3lMS8qfJTlktun4moHjMZNMkzhcpmSfpvoLOkDYATgQcTxnsx3jqRXzXL8Pj3zMy+FL1kCvL6wB1IGMhVOhdRanlnsl9IWiXHX+430TBQLi/dgQU0fk9awnQMj3/z+kzUYyaDJnn1UQWxG9qPaTyy8X8Lg2hcy0maXGa3mVmSD5ykr5nZP1Ocu0K8vK/vVkJ31zx/ubsaU84zGTSbHs8UWof4hVKu0TDVLxQU124oE/PMcvtd6yJpbLn9ZnZlonj/ofx79Msp4sWYV1SImWRuoHp8JiStCqxD47mPUlVXNcurjyqIXdPKTVSVZB4b4IeZ+92BbwGLE8UqyHYl7E4Y9JXsV4qkXwO/iSNhCx+GH5hZXYvLtVKH67uRMlMyJIoFYV2Dgu7AfoR1B1LKrtXQnTCV9usJ4+X9mfhfwqSCL9KQ+aWsrmo+TV5SKE9hXpmTgSfJNPzkOTCqDj0hViBMODY60fnznhtoBSuZu6rcvhrGy/v6HgZ2KnTTjN027zSzr6aIVyEN080s5eJTpfE6AffndY05fCZmA0Py7HXYHC8pVDa/MIoyD5Kyv7g6EVZ5WyWv+NGKhJWmUumc/VKOgwNT/rJ9CCj9Qi63r1byvr5cp2Qomb+pE6HkkPd3yAZAikVvKkn9mXiKsNBOskGqLeWZQmVnSLqUMLI4O/dRql4P0wnFRhGqjf5DmMI3mZLBT52BPjTudVFr1wCTYj0xwOFAzeu/JX0JWJswJ/6mhNcUwlKHKeexyeX6MnKdkgH4Xeb+YmAOYeruZDKj0hX/vkG65Ubr8Zk4i9Dt9ikaf88km6K/OV59VIGkqwkjG2fRUH1kqRq46qFk8NNi4E0zS9qOIWk3wjQJAHeZ2R0JYowl1NOOAKbSkCl8AFyZMGPP5foysUYC15HTlAwdQd6fCUmzgPEsXU19T6qYzabJM4XyJM22RPPSV4jXFTgW2C7umgKMTzzEHknDCEP7Ae41s2RTS8e5cz6xMAPsIMJUAv9MdY2SvmU5LlaS9/XFmF3JaUoGSasQZoAtvEfvIUz9knSchKQ9MzGnmNntTT2+BvHy/ExMNbO6TWlRjq+nUNmDkjbOMd7FhHaEi+JtcxKvpyDpJEKVx3/F2zWSTkgY8l6gu8Iyp/8Cvg1MSBhv7/hFBoRfgXGqhlRyvT5J+xHaFZ4iDNabqDTrNhRcTlhYfv94+wC4oslnLCeFFRBPIqyA+DRwUuzllSpe3p+J+ySdJWkrxXU3Ev8Pm2dmfitzI3RD+wyYDcwkFO9mJoz3RDX7ahxzJrBSZnulxNf4WPx7AnBKvD8jYbzvAs8CuwNHAc8B32hH1zcz/t0GmAx8HXgkYbylriXl9RWuEeiU2e6c+D2a92dicpnbv1O+ps3dvKG5st1yjrdE0noWpwSW9GUya7YmopIYS2iof08ST9JWhKmCC43onVMFM7Pxsc52MmEO/k3N7I1U8cj5+mj4330d+JOZ/V1SsvWZgU8kbWNm9wNI2pq0DdsFvYF34v3UPfJy/UxY/mtwNMszhcrybmw5GZgs6SXCm3BdQu+VlK4AHpF0c4y5F3BZwngnAacDN5vZrJjxlZsaoiYkfZsw//+hwFDgH5ION7MnEoXM9fqA1ySNJ6y4dk7sU5+ySvhY4MpYJSfCF/VhCeNBQ++cyTHmdsBpCePl+plojbMKeENzBZmuaSKMbBxIaMjbJGHMFWjcaJhkkFVJzM0I1Q8A95nZ46lj5kXSLcDRFhcqkjQKuMRa2ULpyyqOSdgNeNLMnpe0JmEg1J2J4/YCMLMPUsbJxFuThvUFHk1c2sv1MyHpB5nN4ghqq2MvR88UqhTfKMeZ2ZGJzr8f8C8zWyjpJ4QBVr+0hHOgKKxqNdfMPpW0AzAEuMriNA3thaQVzezjeL+btaLRo21JbIS9gtDY/CfCe/S0lJlQrKKaYWYfSTokxvyDpVszoq6fidQjqKvhvY+qFL+ct0gY4qcxQ9iGMGPiZSTufQT8ldCWsT7wR8KkXH9JHDM3sUfH04TG5kJXw/Pqmqi27YhYOtgFWJ3Qu+rsxDEvBj6O/7vvE+YIuiphvHp/JlKPoG6WtylUoMaLs3Qi/EJJORFX3o2GAF+Y2WJJ3wQuNLMLJKUsKq9hZikXXS91HrArcBuAmT0habsmn+GaUmhw3Z3w63mWpJQdEwAWm5lJ2gv4f2Z2maSUI/3z/kzkPYK6WZ4pVJZdnGUx8HfCr4hU8m40hLDq00GEhthvxH1dax1EYb3ry4HFkpYA+5tZygWLiszs1ZLvrWQ9uhRWzTqKpWfWTTXN8wnA1Wb2borzlzFd0p2E9rXTJfUk/SphCyWdDhwCbKcwIV7N36MZuXwmMvbI3M9lVoHmeKZQgZn9IueQ+xMaDX9rZu/FxrWTE8c8HDgG+JWZ/UfSQODPCeL8CtjWzJ6VtAXwG2D7BHEAkLSlmT0MvCrpq4DFkb8nkXAaZOBW4D7gbtJ3JwboC0yV9Bgh073D0jYSfoewMtlLZvaxpNVJ30PuAOC/ge+Y2RuS+gP/lzBeXp+JgjWBWWa2EEBST0kbm9kjCWM2yRuaK1BYh3Y/azw3/nVmtmtdE9YGqWT66NLtVPEkrQH8gTAXkYA7gZPMbEGiuDPy7tkUq292IXyZjQCuBy4rjHdxrVusmtqskJnHktC0lJ+P5nhJobI+2R4HZvaupDyn7G1P/qukjabRtpmdmyJobL84OMW5K7hd0u5m9o+8Asb69jcIs4cuBlYFbpR0l5mdklc63DJTtnRnYd6sun4ve6ZQ2RJJ/c3sFSjOnujFqmXzJxq30ZRu19qXJVVcC8PSTUt8EvAjSZ8BhYnpzMx6pQgWu4geShitfSlwspl9Hn9tPg94ptD6vSTpRBp6Gh4HvFTH9Him0IQfA/dLuodQ9bAtcHStg8Sub33N7IGS/VsDb7SHaoA6tM/Mp/Hc/7kws5QZXTmrAd8s7bMff23uUeE5yy2WmLtn4r2SIEYfQmn96ZL9GxMWwJpf65glcYpjWxI7BjgfKCzZejcJvmdawtsUmhDrpLeMmw+n6E4p6XbgdDN7smT/EODXZvaN8s+saRpON7OzEp7//KaOm9mJNY73uJUsi5kX5T/Nc2H0rQEPJB7suCchs12LsFLYuoTRtzUf5S/pOuAiM7u3ZP+2wLFm9t+1jhnP/1VCqWtlM+sfx0d818yOSxGvNfLBa037KjA63rZs8pHLrm9phgAQ9w1IFLPUfonPPz1z27NkO8WCMP9JcM5mqfw0zykz258SVnZbHVgDuCKOhk/lfwmfg+fMbCBhkOXDiWKtX5ohAJjZfYR5rFL5PWFsy4IY7wkaMvmak9RP0s2S3oq3v0qq6+A1LylUED/gIwlzqwMcBEw1sx/VOM7zZrZBhWMvmNn6tYxXIU7S3kAlsZL/ipf0LZpo/7FEK69JmgkMN7Mv4nZn4HEzS/IlprDo+zAzWxS3exCmhEiyOJSkaWY2QtIThBlnv5D0hJkNSxCr4iJXTR2rQdxHzGyL7Ps01TXGc99FGDFd6PZ6CHCwme2cIl41vE2hst1p/AG/EngcqGmmAEyTdJSZ/Sm7U9KRpPkVXTj/f2iY8G9NNczOamb25VRxyaexvlCf/l+E0t6/4/YOwINAsuU4yXea59cJdfuL4vYKwGsJ470naWXCYkLXSHoL+ChRrBfK9eSS9DXSNsTmPbalj5llFyqaIGlcwnjN8kyhab1J/wEfB9ws6WAaMoERQDdgn0QxicV/oL518CmY2eEAcfTtxmY2L26vSdqV3nKZ5lnSBYTM9X1gVvy1aYTR8I/WOl7GXoT1E/6H0NV3FdJNyTAO+Luk/Wn8udiKxqOAa+0YwtiWtQkZ7J3A8QnjLVCY6O/auH0QseqqXrz6qII41P1swnz4xQ+4mU1MFG8HYHDcnGVm/27q8TWOnTRTkLSQhlJJD6DQq6NQMknVZfMZM/tKZrsT4bX9ShNPW96Yyad5ljS2qeNmdmWtY8a43wcmmlnK0kg23gqE0czFzwXwl0J1WXsQu7pfQMjsjFCSPTFFj66q0+SZQmV5fMBbA0kXmtn36p2OWpN0IbABDb/CDgBeMLNka+4qrM+8Lo3nPlqqwbQtknQGYTqWd4CJwA1m9maO8fdI1ZsrU/oqq9Y95FozzxRKqJlFs1N2+WuvJHUnFMvXJ6yBe7nlNOmXpH1o6D1yr5ndnDDWOYSMZxYNE8VZqsFymXahRhK3CSFpKOE6v0VYe2CnlPEycZN1iMi79NWaMyFvU1haYdBTd0Id5hOEao6hwDRCMa9dkbSJmc1KGOJKwgjf+wgN+JsQGvDy8Biw0MzulrSipJ4WJx9LYG9gkOWwYl40InO/O6Fr8Wo5xH2LMK3GAkJjfl5SrpWcpMqtCdPi362BjQklLwj/w6fLPiMnXlKoQNJNwBmFMQSSBgM/N7N965uy2sthgronzWxIvN+FUBWXvAuspKMIo0NXM7P1JG0A/NHMdkwU75+ESRQ/THH+KtMw3cw2T3Tu4wjVR32AG4DrS0ccpyRplJmlbEgndhIoV/oakyjew8A2hZJz7PF0n5mlGhfVLC8pVDYoO6jMzJ6SlKyBss5SL5RSmAcICwuYJA5XdDwwCngkxn5eCSY1zFQFfAzMkDQJKJYWUlUFlFR1diKUHFJ+ptcBxpnZjIQxGlFYh/oHQH8zOypm7IMSjhT/YeZ+d0IVWcqqzlWBXjT0clw57qsbzxQqmynpUuDquH0woT68XYiNhoUeQX0l/axwzMxq3c1wmKTCIu8CesTtpL2PgE/N7LNCJhRLKSmKxoWqgOnEVd4yUhbFs/M7LQbmkHB0upmdDvnMfZRxBeF1LVTbvkYopSTJFMysdGzQA5JSlk7OZuluzD9PGK9ZnilUdjhwLA113/eSfs3kPM3J3P8cSLIQOoCZdU517mbcI+lHhExoZ8IMlH+rdZBCfbSkk8zsD9ljCjOZJmFmO5TE6gwcCDyXIp7CCnrnUjL3EaGNKJX1zOyA2EUcC4v7JCtqSsq2yXQCNifhIEQzuyJWOxbWfz+13r0cvU3B5TrNRZ7il8eRhEVoBNwBXGqJ3vTlXscUY0Ak9SJUja1NWO3t7rj9A2Cmme1Vy3iZuE8AY4C7zWzTOLbmEDNLtmaypAcJcyw9YGHhpPWAa81sVKJ42ZH+iwnzaJ1pZveniNcaeUnBQfo2hdzFX82zzGwjwvoNKWMdRBhkNVCN13HoSUNdcS39GXgXeIiwJvSPCf/DfRLX939uZgskdZLUycwmSzovYTwIVSn/AtaRdA2ht85hqYJlR/p3VJ4pOAi/xNoVM1siabYyCyUl9CAwjzBTabaefyFp2qG+nOnNdWmM3T+Hkb6FuY/uI/3cRwCY2Z2SphNmZxVhOdUUU9h/s5l0pJwvq1XxTKEFJP3WzH7Y/CNbN5Us7GNm78T97WZhn2hVwtxAj5L58qr1YDILi9y8LOlaQvXNu7U8fxnZ3lxLJM3NaeqHPQmT751EmM2zF5B0ASVJfyPMInqbmaXMgArrluQ2iWKs3hxFqAaE0Ij+aKrqzWp5m0ILSHrFzPrXOx3LS61gYZ88SNq+3H4zuydRvF8SGnofAy4H7kjxAZe0hIZMLjufVJLeXJm5qxrtjn8XAS8CPzazSbWMG2NvTxg9/XVgKnAdcHuqTDBOojjWSiZRNLNdaxxnF+AiwrKphbmk+hFG/R9nZnfWMl6L0uaZQvUkvWpm69Q7HctL0lQzG1nhWHGgmWu5+OtvF0LvtRHA9cBl7aj01UhsuxkMXGNmg5t7/HLGGUNoQ9ktVTfmvCZRlPQM8DUzm1OyfyDwj1rHawmvPipR0iWt0SHaT4Ns7yaO9cgrEamV/MLtBnQFPko4LgIzM0lvEKaBWEyowrpR0l1mdkqquPViZkuAJ+IAviQUFg/6BqHEsBlh2pRUJkm6g8aTKN6dIE4XYG6Z/a8R3qd145nC0qbT0CWt1Odl9rVFdVnYJ29m1rNwP/6C34t0y6oWxiQcCrxNWOf3ZDP7PP7afB5od5lCgZmNT3FeSdcT6t3/BVwI3GNx4asUzOx7JZMoXpJoEsXLgakKa1G/GvetQ6h+vCxBvKp59VEHJKkvcDPwGWUW9qn34JmUUowbyJz7F4QZYJcaCCjpK2aWcgWvdknSroRxEUtyjNmXkBEZoeH3rURxvkL4oZJtaL4tz/mkyvFMoYQ60NTZquPCPnko6WZYmBtoezOr6Uy3ajw1+JOENoRcpgZvrySNMbN/V+oqmqqLqMJKb/8HTCHUFmxLKPHdmCJea+SZQglJXwBPEaoAoHE1kqWaLdHVnqTs2reFuYH+VOtffpIm0jA1+NeAl80sr6nB2yVJvzCzM0r+hwVmZkckivsEsHPhPSKpD6GkMixFvApp+LmZ/TyveKW8TWFp3wf2JaxFex1ws9VxKmS3XC4tjMUoiGMxal0dsHFmMNllpF0nuUMwszPi3TPN7D/ZY7GHTiqdSn40LCCUMvNU13a9vC+21TOz88xsG+AEQsPPJEnXSxpe35S5ZVCuR0yKXjKNpgZPcP6O7K9l9qWsyvmXpDskHSbpMODvwD8TxluKmdV80saW8JJCBWb2kqRbCV00vw1sCMyoa6JcVSRtRRiV2kdhsfmCXkCKGVvrNTV4uyVpI8Lsq6uUtCv0IjNtd62Z2cmSvkWYYwnS9T6qSNLPrPbT11fNM4USkr5M6Ba2F6Gr2HWEUb6f1DVhriW6ERYr6UKYlK7gA0LVYE1Z/aYGb88GAXsQxtRkR9gvJAxgS8bM/irpLuL3o6TVClPB5ORIoG6Zgjc0l4gNzTMJUxJ/QMnwfjM7tx7pci0nad1y3UNd2yFpKzN7KMd43yXM57QI+IKG0t6Xaxzng0qHgB5mVrcf7N6msLRfEPrwf0H4tdmz5Obajksl9S5sSFo1jlZ1bccxZf6HlyeM90NgsJkNMLMvm9nAWmcI0XvABmbWq+TWkzDrbd149dHSFpjZhfVOhKuJNczsvcKGmb2rBGs0u6SGlvkfJhl8GL1ImFwwtasIK9e9WebYX3KIX5FnCks7gjCc3rV9X2TXU5C0LmnXTHa110nSqoXpyOPcZCm/t04HHpT0CPBpYaeZnVjLIGb2kyaOnVrLWC3lmYJrz34M3C/pHhpGpx5d3yS5Fvod8JCkG+L2fsCvEsYbT1hL4UlCFXKH4w3NJSQtpnzx0bsXtkGS1qBhEryHLcGqXS4tSRsTps0G+HfKuYFSzo3VVnimUMLfFO2HpO3K7Teze/NOi1t2krYhNMpeEaedWLl0lHMNY/2aMB3K32hcfZRnl9S68kyhhGcK7UdcyrGgO2Hmy+k+f1XbIekMwkSGg8xsQ0lrATeY2dbNPHVZ45XLbGreJbWZNNR1hUdvU1jaDc0/xLUFVrKsqKR1gPPqkxq3jPYBNiUscYqZvS4pWddwM0s5r1K16rqYl2cKS1tT0vmVDta6F4LL1VygbsscumXyWVzNzgAkrVTvBOWgrtU3niksbVrm/i+AMyo90LVucYnIwgesEzCc+IvTtRnXSxoP9JZ0FKHL+J+aeU6rVzInV6NDhEGzdeNtCk3w9oW2TdLYzOZiYE7pVNqu9ZO0M7AL4QvzDjO7q85JWm6xraQiM/tFXmkp5ZlCEyQ9ZmZNrsTmWidJnYGrzOzgeqfFtT2SVibMjPxSdkR1R+DVR65dMrMlktaV1M3MPqt3elzLSLrfzLaRtJDydewLgP8zs4tqFO8iMzsu3t+GMNXEi8D6kr5rZv+oRZxMvIrtllDftksvKZQoeROuSMNANh+81sZIuorQsHwb8FFhv8902/ZJWh140MwG1eh8xVoBSZOBH5jZY3Eq/evNbEQt4mTifUZY9vd64HVKehyZ2ZW1jNcSXlIoEWcpdO3Di/HWiYYZbv1XUBsjaTNgG8L/7n4ze9zMFkganShkLzMrdIF9SVKK2aTXJEzZcQChvWsicGNrqKrykoJrtyTtZ2Y3NLfPtV6Sfkb48rwp7tqbMHjtlzWO8zHwAuEX+wCgf5yRtRMw08wG1zJeSex+hIW9vg+camZ/ThWrqvR4puDaq3IdBbzzQNsiaTYwzMwWxe0ewIxaVRtl4qxbsmuemX0W587azsxuKve8GsTdDDgI2BmYDvwu5dxO1fDqI9fuSPoasDuwdkmDXi9CUd21Ha8TpihZFLdXAF6rdZBKK/TFCRRrniFIOhP4OvAMYcnf082sVbw3vaTg2h1JwwgD1c4EfpY5tBCYXJib37VemYGH/YGRwF1xe2fgUTP7Zo3jPUn59qZCB5OhNY73BfAfGjqyFGInidcSnim4dktSVzP7XFJXYDDwmpm9Ve90ueaVDDxcSq1755SpPiqNV9O1vvOO1xKeKbh2R9IfgQvMbJakVYCHgCXAasAPzezauibQVU1Sd2D9uPlCoW0hUazOwN1mtkOqGJlYxRUByxzb1szuS52GSlJ0tXKu3rY1s1nx/uHAc2Y2BNgcOKV+yXLVktRF0m8IkxheSVjT+FVJv4klv5ozsyWEJVxXSXH+ElMknRIzIgAk9ZV0NfD7HOJX5JmCa4+yI5h3Bm4BMLM36pIatyz+j1CyG2hmm8ceY+sBvYHfJoz7IfCkpMsknV+4JYizOeF6ZkgaI+kk4FFCqXZUgnhV8+oj1+7EEam/I/RSmQxsZGZvSOoCPGVmG9U1ga5Zkp4HNrSSL6j4y/pZM9sgUdyybRmpRhjHzOD3hF5WW5rZ3BRxWsK7pLr26LvA+cCXgHGZEsKOwN/rlirXElaaIcSdSwprKyQKemUcC9HfzGaniiOpN3AOsAWwG6EL9T8lnWRm/04Vt6q0eUnBOdfaSLoFuMnMrirZfwiwv5ntmSjuNwjVU93MbKCk4cCZtY4n6SXgIuC8wviEGOsi4GUzO6iW8VqUNs8UXHslaUPgYqCvmQ2WNBTYs9ZTJLjak7Q2YdDYJ4SRvhDWau4B7GNmNR/AFuNOB8YAUwprqUh6qtbTXEjqV6mqSNJRZla3hYQ8U3DtlqR7gJOB8Sk/4C4dSWOATeLm02Y2KXG8h81sy+wCW5Jm1nMwWd68TcG1Zyua2aNSo1mJW8VUAq46sX49zzr2WZL+G+gsaQPgRODBHOPXnXdJde3Z25LWI04hIGlfYF59k+RauRMIJZNPCQvtvA+Mq2eC8uYlBdeeHQ9cAmwk6TXCXDO+PKdbShw5fQxh9PSTwFatZYK6vHmbgmv3JK1EKBV/DBxoZtfUOUmulZE0EfgcuA/4GjDHzMbVNVF14pmCa3ck9SKUEtYGbgXujts/ICyYslcdk+daIUlPxqlQiIMcH+2o62549ZFrj/4MvEuYMuAo4MeEKYn3MbMZdUyXa70+L9wxs8UlnRM6FC8puHan5FdfZ0Ljcv+UM2y6tk3SEuCjwiZhPMTHNKxv0KteacublxRce5T91bdE0lzPEFxTzKxz84/qGLyk4Nod/9Xn3LLzTME551yRD15zzjlX5JmCc865Is8UnHPOFXmm4JxzrsgzBeecc0X/H9sRjZFUhN64AAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "import numpy as np\n",
    "import matplotlib.pyplot as plt\n",
    "\n",
    "values_ok = [guesses_ok[i] for i in range(len(CODE_TYPES))]\n",
    "values_bad = [guesses_bad[i] for i in range(len(CODE_TYPES))]\n",
    "x_positions = np.arange(len(CODE_TYPES))\n",
    "\n",
    "p1 = plt.bar(x_positions, guesses_ok)\n",
    "p2 = plt.bar(x_positions, guesses_bad, bottom=guesses_ok)\n",
    "\n",
    "plt.ylabel('Tipo de código')\n",
    "plt.title('Aciertos o no, por tipo de código')\n",
    "plt.xticks(x_positions, CODE_TYPES, rotation=90)\n",
    "#plt.yticks(np.arange(0, 81, 10))\n",
    "plt.legend((p1[0], p2[0]), ('Correcto', 'Incorrecto'))\n",
    "\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}