summaryrefslogtreecommitdiff
path: root/macros/latex/contrib/jeopardy/example/game2.tex
blob: c9589b5cb311a95a5f03217794aa11e9905fa1e6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
\pdfoutput=1

\documentclass{article}

\usepackage{color}

\usepackage{amsmath}
\DeclareMathOperator{\arctg}{arctg}
\everymath{\displaystyle}

\usepackage[pdftex,designi]{web}
\usepackage[noxcolor,pdftex]{exerquiz}
\usepackage[ImplMulti]{dljslib}

\parindent 0pt
\def\correctColor{color.green}
\def\wrongColor{color.red}

\usepackage[twoplayers]{jeopardy}
\pagestyle{empty}
\everyCategoryHead{\color{darkgreen}\tiny}

\def\logoB{\rotatebox{90}{%
    \vbox{\normalsize\hbox{\color{red}{Robert Ma\v{r}\'{i}k}}
      \hbox{\color{green}Jeopardy game}}}
  \vfill}

\let\rmdefault\sfdefault
\hypersetup{pdfpagemode=Window, pdfnewwindow=true, pdfmenubar=true,%
  pdftoolbar=true,colorlinks,  pdfwindowui=false,
  pdfpagemode=Window}


\begin{document}
%\CellHeight=24bp
\SetGameHeight{0.4\textheight}
\ScoreCellHeight=0.5\CellHeight

\everyRadioButton{%\BG{1 1 1}
\BC{1 1 0} \textColor{0 1 0 rg}
}

\Playertoks{\BC{1 0 0}\textColor{0 1 0 rg}}


\MakeGameBoard

\begin{category}{Precalculus}

\begin{question}
$\ln \frac xy=$
\Ans0 $\ln x+\ln y$
\Ans1 $\ln x-\ln y$
\Ans0 $x\ln y$
\Ans0 $y\ln x$
\Ans0 none of them
\end{question}

\begin{question}
The function $y=x^2\cdot \sin x$ is
\Ans1 odd
\Ans0 even
\Ans0 neither odd nor even
\end{question}

\begin{question}
$\arctan 1=$
\Ans0 $\infty$ 
\Ans0 $\frac \pi3$
\Ans1 $\frac \pi4$
\Ans0 $\frac \pi6$
\Ans0 none of them
\end{question}

\begin{question}
The equivalence "$a<b$ if and only if $f(a)<f(b)$" is the property of
\Ans0 even functions
\Ans0 one-to-one functions
\Ans0 continuous functions
\Ans1 increasing functions
\Ans0 none of them
\end{question}

\end{category}


\begin{category}{Functions}

\begin{question}
How many points of inflection is on the graph of the function $y=\sin x$ in
the open interval $(0,2\pi)$
\Ans0 none
\Ans1 one
\Ans0 two
\Ans0 three
\Ans0 none of them
\end{question}

\begin{question}
Find points of discontinuity of the function $y=\frac {x-4}{(x-2)\ln x}$
\Ans0 none
\Ans0 $0$
\Ans0 $0$, $1$
\Ans1 $0$, $1$, $2$
\Ans0 $0$, $2$
\Ans0 $0$, $1$, $4$
\Ans0 $0$, $4$
\Ans0 none of them
\end{question}

\begin{question}
Let $f$ be a function and $f^{-1}$ be its inverse. Then $f^{-1}\bigl(f(x)\bigr)=$
\Ans0 $0$
\Ans0 $1$
\Ans1 $x$
\Ans0 $f(x)$
\Ans0 $f^{-1}(x)$
\Ans0 none of them
\end{question}

\begin{question}
$\arcsin(\sin x)=x$ for every $x\in\mathbf{R}$
\Ans0 Yes
\Ans1 No
\end{question}

\end{category}


\begin{category}{Limits}

\begin{question}
$\lim_{x\to-\infty} \arctg x=$
\Ans0 $0$
\Ans0 $\frac\pi2$
\Ans1 $-\frac\pi2$
\Ans0 $\infty$
\Ans0 $-\infty$
\Ans0 none of them
\end{question}

\begin{question}
$\lim_{x\to\infty}\sin x=$
\Ans0 $1$
\Ans0 $-1$
\Ans1 does not exist
\Ans0 none of them
\end{question}

\begin{question}
$\lim_{x\to\infty}\frac{2x^3+x^2+4}{x^2-x+2}=$
\Ans1 $\infty$
\Ans0 $2$
\Ans0 $0$
\Ans0 none of them
\end{question}

\begin{question}
$\lim_{x\to 0^+}\frac{e^{1/x}(x-1)}{x}$
\Ans0 $0$
\Ans0 $1$
\Ans0 $e$
\Ans0 $\infty$
\Ans0 $-1$
\Ans0 $-e$
\Ans1 $-\infty$
\Ans0 none of them
\end{question}

\end{category}

\begin{category}{Derivative}


\begin{question}
$\left(\frac 1{\sqrt[3]x}\right)'=$
\Ans0 $\frac 13 x^{-2/3}$
\Ans0 $-\frac 13 x^{-2/3}$
%\Ans0 $\frac 13 x^{1/3}$
\Ans0 $-\frac 13 x^{1/3}$
\Ans0 $\frac 13 x^{-4/3}$
\Ans1 $-\frac 13 x^{-4/3}$
\Ans0 none of them
\end{question}


\begin{question}
$(x-x\ln x)'=$
\Ans0 $\ln x$
\Ans1 $-\ln x$
\Ans0 $1+\ln x$
\Ans0 $1-\ln x$
\Ans0 $0$
\Ans0 $1-\frac 1x$
\Ans0 none of them
\end{question}

\begin{question}
$\left(x^2e^{x^2}\right)'$
\Ans0 $2xe^{2x}$
\Ans0 $2xe^{x^2}2x$
\Ans0 $2xe^{x^2}+x^2e^{x^2}$
\Ans1 $2xe^{x^2}+x^2e^{x^2}2x$
\Ans0 $2xe^{x^2}2x+x^2e^{x^2}2x$
\Ans0 none of them
\end{question}

\begin{question}
The definition of the derivative of the function $f$ at the point $a$ is
\Ans0 $\lim_{h\to 0}\frac{f(x+h)+f(x)}{h}$
\Ans0 $\lim_{h\to 0}\frac{f(x+h)}{h}$
\Ans1 $\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}$
\Ans0 $\lim_{h\to 0}\frac{f(x)-f(x+h)}{h}$
\Ans0 $\lim_{h\to 0}\frac{f(x-h)-f(x)}{h}$
\Ans0 none of them
\end{question}

\end{category}

\everyRespBoxMath{\BG{1 1 1}}
\begin{category}{Evaluation of derivatives}
  \begin{question}$(x^2+1)'=$
    \RespBoxMath{2x}{3}{0.001}{[1,5]}
  \end{question}
  \begin{question}$(xe^x)'=$
    \RespBoxMath{(x+1)e^x}{3}{0.001}{[1,5]}
  \end{question}
  \begin{question}$\ln(\sin x)=$
    \RespBoxMath{cos(x)/sin(x)}{3}{0.001}{[1,2]} 
  \end{question}
  \begin{question}$(xe^{-x})'=$
    \RespBoxMath{(1-x)e^{-x}}{3}{0.001}{[1,5]}  
  \end{question}
\end{category}



\begin{category}{Theory}

\begin{question} By theorem of Bolzano, the polynomial $y=x^3+2x+4$ has zero on
\Ans0 $(0,1)$
\Ans0 $(1,2)$
\Ans0 $(2,3)$
\Ans0 $(-1,0)$
\Ans1 $(-2,-1)$
\Ans0 $(-3,-2)$
\Ans0 none of them
\end{question}


\begin{question}
Let $a\in Im(f)$. Then the solution of the equation $f(x)=a$ exists. This
solution is unique if and only if
\Ans1 $f$ is one-to-one
\Ans0 $f$ is increasing
\Ans0 $f$ continuous
\Ans0 $f$ differentiable
\Ans0 none of them
\end{question}


\begin{question}
If the function has a derivative at the point $x=a$, then it is
\Ans0 increasing at $a$.
\Ans0 decreasing at $a$.
\Ans0 one-to-one at $a$.
\Ans1 continuous at $a$.
\Ans0 undefined at $a$.
\end{question}

\begin{question}
If both $y(a)=y'(a)=y''(a)=0$, then the function
\Ans0 has local maximum at $a$.
\Ans0 has local minimum at $a$.
\Ans0 has point of inflection at $a$.
\Ans1 any of these possibilites may be true, we need more informations.
\end{question}

\end{category}


\end{document}
%%% Local Variables: 
%%% mode: latex
%%% TeX-master: t
%%% End: