1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
|
%
% Copyright (C) 2018, 2019, 2020 by
% Anna Capietto, Sandro Coriasco, Boris Doubrov, Alexander Koslovski,
% Tiziana Armano, Nadir Murru, Dragan Ahmetovic, Cristian Bernareggi
%
% Based on accsupp and tagpdf
%
% This work consists of the main source files axessibility.dtx and axessibility.lua,
% and the derived files
% axessibility.ins, axessibility.sty, axessibility.pdf, README,
% axessibilityExampleSingleLineT.tex, axessibilityExampleSingleLineA.tex,
%. axessibilityExampleAlignT.tex, axessibilityExampleAlignA.tex
%
% This work may be distributed and/or modified under the
% conditions of the LaTeX Project Public License, either version 1.3
% of this license or (at your option) any later version.
% The latest version of this license is in
% http://www.latex-project.org/lppl.txt
% and version 1.3 or later is part of all distributions of LaTeX
% version 2005/12/01 or later.
%
% This work has the LPPL maintenance status `maintained'.
%
% The Current Maintainer of this work is
% Sandro Coriasco
%
\documentclass[a4paper,11pt]{article}
\usepackage[accsupp]{axessibility}
\title{Algebraic equations of second degree:\\
relation between roots and coefficients}
\author{}
\date{}
\begin{document}
\maketitle
Given the equation \( a x^2 + bx + c= 0, a\not=0 \),
we have the following relations between its roots
\( x_{1,2} \):
\begin{align*}
x_1+x_2 & = -\frac{b}{a},\\
x_1\cdot x_2 &= \phantom{-}\frac{c}{a}.
\end{align*}
\end{document}
|