summaryrefslogtreecommitdiff
path: root/macros/generic/texdimens/texdimens.tex
blob: 8103bef1cd03c8fbae3962744626c5259edf20f9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
% This is file texdimens.tex, part of texdimens package, which
% is distributed under the LPPL 1.3c. Copyright (c) 2021 Jean-François Burnol
% 2021/07/21 v0.9
% All macros from 0.9delta release have changed names: \texdimen prefix
% has replaced \texdimin.
\edef\texdimensendinput{\endlinechar\the\endlinechar\catcode`\noexpand _=\the\catcode`\_\relax\noexpand\endinput}%
\endlinechar13\relax%
\catcode`\_=11
%
% Mathematics ("down" and "up" macros)
% ===========
%
% Is T sp attainable from unit "uu"?.
% If not, what is largest dimension < Tsp which is attainable?
% Here we suppose T>0.
%
% phi>1, psi=1/phi, psi<1.
%
%     U(N,phi)=trunc(N phi) is the strictly increasing sequence,
%     indexed by non-negative integers, of attainable dimensions.
%     (in sp unit)
%
%     U(N)<= T <  U(N+1)    iff    N = ceil((T+1)psi) - 1
%     U(M)<  T <= U(M+1)    iff    M = ceil(T psi)    - 1
%
% Stumbling block
% ---------------
%
% The stumbling block is that computing "ceil((T+1)psi) - 1" without
% overflow is not obvious: yes \numexpr/\dimexpr allow so-called
% "scaling operations" but only in the "rounding up" variant.
%
% If we attempt computing the ceil(x) function via round(x+0.5),
% for example with psi=100/7227 which corresponds to the unit "in",
% this necessitates evaluating:
%
%     round((((T+1)*200)+7227)/14454)
%
% But as far as I can tell currently, for this we need to be able
% to evaluate without overflow (T+1)*200+7227 and this limits to
% T's which are (roughly) such that 100 T is less than \maxdimen.
%
% A work-around
% -------------
%
% The rest of the discussion is about an algorithm providing an
% alternative route to N, using \numexpr/\dimexpr/TeX facilities,
% and working with (almost, as we will see) the full range of allowed
% T's, 0 < T <= \maxdimen. (that the algorithm works for T=0 is to be
% checked manually after the main discussion).
%
% Let's return to the U(N)<= T < U(N+1) and U(M)< T <= U(M+1) equations.
%
% Either (recall in all of this T > 0):
%
% case1:  M = N, i.e. T is not attainable, M=N < T psi < (T+1) psi <= N+1
% case2:  M = N - 1, i.e. T is attained, T psi <= N < (T+1) psi, T = trunc(N phi)
%
% Let X = round(T psi). And let Y = trunc(X phi). We will explain later
% how X and Y can be computed using \numexpr/\dimexpr/TeX.
%
% case1: X can be N or N+1. It will be N+1 iff Y > T.
% case2: X can be N or N-1. It will be N iff trunc((X+1)phi)>T.
%
% This is not convenient: if Y < T it could be that we are in case 2
% but to decide we must check if trunc((X+1) phi) = T or not, so
% this means a second computation.
%
% If psi < 0.5
% ------------
%
% The situation then simplifies:
%
% case1: X can be N or N+1. It will be N+1 iff Y = trunc(X phi) > T.
% case2: X is necessarily N.
%
% Thus:
% a) compute X = round(T psi)
% b) compute Y = trunc(X phi) and test if Y > T. If true, we
%    were in case 1, replace X by X - 1, else we were either
%    in case 1 or case 2, and we leave X as it is.
% We have thus found N.
%
% The operation Y = trunc(X phi) can be achieved this way:
% i) use \the\dimexpr to convert X sp into D pt,
% ii) use \the\numexpr\dimexpr  to convert "D uu" into sp.
% These steps give Y.
%
% This way we find the maximal dimension at most T sp exactly
% representable in "uu" unit.
%
% The computations of X and Y can be done independently of sign of T.
% But the final test has to be changed to Y < T if T < 0 and then
% one must replace X by X+1. So we must filter out the sign of the input.
%
% If the goal is only to find a decimal D such that "D uu" is
% exactly T sp in the case this is possible, then things are simpler
% because from X = round(T psi) we get D such as X sp is same as D pt
% and "D uu" will work.
% We don't have to take sign into account for this computation.
% But if T sp was not attainable we don't know if this X will give
% a D such that D uu < T sp or D uu > T sp.
%
% If psi > 0.5
% ------------
%
% For example unit "bp" has phi=803/800.
%
% It is then not true that if T sp is attainable, the X = round(T psi)
% will always work.
%
% But it is true that R = round((T + 0.5) psi) will always work.
% Here we must use -0.5 if T < 0, though.
%
% This R=round((T+0.5) psi) can always be computed via \numexpr because 2T+1
% will not trigger arithmetic overflow.
%
% So this gives an approach to find a D such that "D uu" is exactly
% T sp when this is possible.
%
% If Tsp (positive) is not attainable, this R however can produce
% either N or N+1.
%
% But we can decide what happened by computing Z = trunc(R phi).
% If and only if Z > T this means R was N+1.
%
% It is slightly less costly to compute X = round(T psi) than
% R = round((T + 0.5) psi),
% but if we then realize that trunc(X phi) < T  we do not yet know
% if trunc((X+1) phi) = T  or is > T. So we proceed via R, not X,
% to not have to make a second computation if a dimension comparison
% test goes awry.
%
% To recapitulate: we have our algorithm for all units to find out
% maximal dimension exactly attainable in "uu" unit and at most equal
% to (positive) T sp.
%
% Unfortunately the check that Y (in case psi < 0.5) or Z (in case psi >
% 0.5) verifies or not Y > T may trigger a Dimension too large error if
% T sp was near non-attainable \maxdimen. It turns out this sad
% situation happens only for the units `dd`, `nc`, and `in`, and T sp
% very close to \maxdimen (like for all units apart from `pt`, `bp`,
% `nd`, the \maxdimen is not attainable, and by bad luck for `dd`, `nc`,
% and `in`, the X will correspond to a decimal D such that Duu>\maxdimen
% is the nearest virtually attaible dimensions from above not from
% below; see the README.md for the tabulation of the maximal usable inputs).
%
% Regarding the \texdimen<uu> macros, and units with phi > 2, I
% hesitated using either the round((T+0.5)psi) or round(T psi), but for
% Tsp = \maxdimen, both formulas turned out to give the same result for
% all such units, so I chose for these \texdimen<uu> macros and the
% units with phi>2 to use the simpler round(T psi) which does not need
% to check the sign of T.
%
% For the "up" and "down" macros, we again use the round(T psi), but do
% have to check the sign anyhow. We could also have used the
% round((T+0.5)psi) which requires a sign check too, but it costs a bit
% more. It would have allowed though to share the same codebase for all
% units, here we have to prepare some slightly different shared macros
% for the first batch bp, nd, dd and the second batch mm, pc, nc, cc,
% cm, in.
%
% Implementation
% ==============
%
\def\texdimenfirstofone#1{#1}%
{\catcode`p 12\catcode`t 12
 \csname expandafter\endcsname\gdef\csname texdimenstrippt\endcsname#1pt{#1}}%
%
% down macros:
% for units with phi < 2:
\def\texdimendown_A#1{\if-#1\texdimendown_neg\fi\texdimendown_B#1}%
\def\texdimendown_B#1;#2;{\expandafter\texdimendown_c\the\numexpr(2*#1+1)#2;#1;}%
% for units with phi > 2:
\def\texdimendown_a#1{\if-#1\texdimendown_neg\fi\texdimendown_b#1}%
\def\texdimendown_b#1;#2;{\expandafter\texdimendown_c\the\numexpr#1#2;#1;}%
% shared macros:
\def\texdimendown_c#1;{\expandafter\texdimendown_d\the\dimexpr#1sp;#1;}%
{\catcode`P 12\catcode`T 12\lowercase{\gdef\texdimendown_d#1PT};#2;#3;#4;%
   {\ifdim#1#4>#3sp \texdimendown_e{#2}\fi\texdimenfirstofone{#1}}%
}%
% this #2 will be \fi
\def\texdimendown_e#1#2#3#4{#2\expandafter\texdimenstrippt\the\dimexpr\numexpr#1-1sp\relax}%
% negative branch:
% The problem here is that if input very small, output can be 0.0, and we
% do not want -0.0 as output.
% So let's do this somewhat brutally and non-efficiently.
% Anyhow, negative inputs are not our priority.
% #1 is \fi here and #2 is \texdimendown_b or _B:
\def\texdimendown_neg#1#2-#3;#4;#5;{#1\expandafter\texdimenstrippt\the\dimexpr-#2#3;#4;#5;pt\relax}%
%
% up macros:
\def\texdimenup_A#1{\if-#1\texdimenup_neg\fi\texdimenup_B#1}%
\def\texdimenup_B#1;#2;{\expandafter\texdimenup_c\the\numexpr(2*#1+1)#2;#1;}%
\def\texdimenup_a#1{\if-#1\texdimenup_neg\fi\texdimenup_b#1}%
\def\texdimenup_b#1;#2;{\expandafter\texdimenup_c\the\numexpr#1#2;#1;}%
\def\texdimenup_c#1;{\expandafter\texdimenup_d\the\dimexpr#1sp;#1;}%
{\catcode`P 12\catcode`T 12\lowercase{\gdef\texdimenup_d#1PT};#2;#3;#4;%
   {\ifdim#1#4<#3sp \texdimenup_e{#2}\fi\texdimenfirstofone{#1}}%
}%
% this #2 will be \fi
\def\texdimenup_e#1#2#3#4{#2\expandafter\texdimenstrippt\the\dimexpr\numexpr#1+1sp\relax}%
% negative branch:
% Here we can me more expeditive than for the "down" macros.
% But this breaks f-expandability.
% #1 will be \fi and #2 is \texdimenup_b or _B:
\def\texdimenup_neg#1#2-{#1-#2}%
%
% pt
%
\def\texdimenpt#1{\expandafter\texdimenstrippt\the\dimexpr#1\relax}%
%
% bp 7227/7200 = 803/800
%
\def\texdimenbp#1{\expandafter\texdimenbp_\the\numexpr\dimexpr#1;}%
\def\texdimenbp_#1#2;{%
    \expandafter\texdimenstrippt\the\dimexpr\numexpr(2*#1#2+\if-#1-\fi1)*400/803sp\relax
}%
% \texdimenbpdown: maximal dim exactly expressible in bp and at most equal to input
\def\texdimenbpdown#1{\expandafter\texdimendown_A\the\numexpr\dimexpr#1;*400/803;bp;}%
% \texdimenbpup: minimal dim exactly expressible in bp and at least equal to input
\def\texdimenbpup#1{\expandafter\texdimenup_A\the\numexpr\dimexpr#1;*400/803;bp;}%
%
% nd 685/642
%
\def\texdimennd#1{\expandafter\texdimennd_\the\numexpr\dimexpr#1;}%
\def\texdimennd_#1#2;{%
    \expandafter\texdimenstrippt\the\dimexpr\numexpr(2*#1#2+\if-#1-\fi1)*321/685sp\relax
}%
% \texdimennddown: maximal dim exactly expressible in nd and at most equal to input
\def\texdimennddown#1{\expandafter\texdimendown_A\the\numexpr\dimexpr#1;*321/685;nd;}%
% \texdimenndup: minimal dim exactly expressible in nd and at least equal to input
\def\texdimenndup#1{\expandafter\texdimenup_A\the\numexpr\dimexpr#1;*321/685;nd;}%
%
% dd 1238/1157
%
\def\texdimendd#1{\expandafter\texdimendd_\the\numexpr\dimexpr#1;}%
\def\texdimendd_#1#2;{%
    \expandafter\texdimenstrippt\the\dimexpr\numexpr(2*#1#2+\if-#1-\fi1)*1157/2476sp\relax
}%
% \texdimendddown: maximal dim exactly expressible in dd and at most equal to input
\def\texdimendddown#1{\expandafter\texdimendown_A\the\numexpr\dimexpr#1;*1157/2476;dd;}%
% \texdimenddup: minimal dim exactly expressible in dd and at least equal to input
\def\texdimenddup#1{\expandafter\texdimenup_A\the\numexpr\dimexpr#1;*1157/2476;dd;}%
%
% mm 7227/2540 phi now >2, use from here on the simpler approach
%
\def\texdimenmm#1{\expandafter\texdimenstrippt\the\dimexpr(#1)*2540/7227\relax}%
% \texdimenmmdown: maximal dim exactly expressible in mm and at most equal to input
\def\texdimenmmdown#1{\expandafter\texdimendown_a\the\numexpr\dimexpr#1;*2540/7227;mm;}%
% \texdimenmmup: minimal dim exactly expressible in mm and at least equal to input
\def\texdimenmmup#1{\expandafter\texdimenup_a\the\numexpr\dimexpr#1;*2540/7227;mm;}%
%
% pc 12/1
%
\def\texdimenpc#1{\expandafter\texdimenstrippt\the\dimexpr(#1)/12\relax}%
% \texdimenpcdown: maximal dim exactly expressible in pc and at most equal to input
\def\texdimenpcdown#1{\expandafter\texdimendown_a\the\numexpr\dimexpr#1;/12;pc;}%
% \texdimenpcup: minimal dim exactly expressible in pc and at least equal to input
\def\texdimenpcup#1{\expandafter\texdimenup_a\the\numexpr\dimexpr#1;/12;pc;}%
%
% nc 1370/107
%
\def\texdimennc#1{\expandafter\texdimenstrippt\the\dimexpr(#1)*107/1370\relax}%
% \texdimenncdown: maximal dim exactly expressible in nc and at most equal to input
\def\texdimenncdown#1{\expandafter\texdimendown_a\the\numexpr\dimexpr#1;*107/1370;nc;}%
% \texdimenncup: minimal dim exactly expressible in nc and at least equal to input
\def\texdimenncup#1{\expandafter\texdimenup_a\the\numexpr\dimexpr#1;*107/1370;nc;}%
%
% cc 14856/1157
%
\def\texdimencc#1{\expandafter\texdimenstrippt\the\dimexpr(#1)*1157/14856\relax}%
% \texdimenccdown: maximal dim exactly expressible in cc and at most equal to input
\def\texdimenccdown#1{\expandafter\texdimendown_a\the\numexpr\dimexpr#1;*1157/14856;cc;}%
% \texdimenccup: minimal dim exactly expressible in cc and at least equal to input
\def\texdimenccup#1{\expandafter\texdimenup_a\the\numexpr\dimexpr#1;*1157/14856;cc;}%
%
% cm 7227/254
%
\def\texdimencm#1{\expandafter\texdimenstrippt\the\dimexpr(#1)*254/7227\relax}%
% \texdimencmdown: maximal dim exactly expressible in cm and at most equal to input
\def\texdimencmdown#1{\expandafter\texdimendown_a\the\numexpr\dimexpr#1;*254/7227;cm;}%
% \texdimencmup: minimal dim exactly expressible in cm and at least equal to input
\def\texdimencmup#1{\expandafter\texdimenup_a\the\numexpr\dimexpr#1;*254/7227;cm;}%
%
% in 7227/100
%
\def\texdimenin#1{\expandafter\texdimenstrippt\the\dimexpr(#1)*100/7227\relax}%
% \texdimenindown: maximal dim exactly expressible in in and at most equal to input
\def\texdimenindown#1{\expandafter\texdimendown_a\the\numexpr\dimexpr#1;*100/7227;in;}%
% \texdimeninup: minimal dim exactly expressible in in and at least equal to input
\def\texdimeninup#1{\expandafter\texdimenup_a\the\numexpr\dimexpr#1;*100/7227;in;}%
% both in and cm
% Mathematics ("both" macros)
% ===========
%
% Let a and b be two non-negative integers such that U = floor(a 7227/100) = 
% floor(b 7227/254).  It can be proven that a=50k, b=127k for some integer k.
% The proof is left to reader.  So U = floor(7227 k /2) for some k.
%
% Let's now find the largest such U <= T. So U = floor(k 7227/2)<= T which is
% equivalent (as k is integer) to k 7227/2 <= T + 1/2, i.e.
%
%     kmax = floor((2T+1)/7227)
%
% If we used for x>0 the formula floor(x)=round(x-1/2)=<x-1/2> we would end
% up basically with some 4T hence overflow problems even in \numexpr.
% Here I used <.> to denote rounding in the sense of \numexpr. It is not
% 1-periodical due to how negative inputs are handled, but here x-1/2>-1/2.
%
% The following lemma holds: let T be a non-negative integer then
%
%     floor((2T+1)/7227) = <(2T - 3612)/7227>
%
% So we can compute this k, hence get a=50k, b=127k, all within \numexpr and
% avoiding overflow.
%
% Implementation
% ==============
%
% Regarding the output in pt or sp, we seem to need floor(k 7227/2).
% The computation of floor(k 7227/2) as <(7227 k - 1)/2> would require to
% check if k==0 so we do it rather as <(7227 k + 1)/2> - 1.  No overflow
% can arise as k = 297147 for \maxdimen, and then 7227 k = 2**31 - 2279 and
% there is ample room for 7227k+1 using \numexpr.
%
% But this step, as well as initial step to get kmax will require to separate
% hangdling of negative input from positive one.
%
% Alternative
% -----------
%
% For non-negative T we can compute U = ((T+1)/7227)*7227. If U <= T keep it,
% else if U > T, replace it by U - 3614. This is alternative road to the maximal
% floor(k 7227/2) at most equal to T.
%
% There is some slight under-efficiency to share macros across the 3 end targets
% as I added one layer of parentheses.
\def\texdimenbothincm#1{\expandafter\texdimenstrippt\the\dimexpr
                        \expandafter\texdimenboth_a\the\numexpr\dimexpr#1;127);}%
\def\texdimenbothcmin#1{\expandafter\texdimenstrippt\the\dimexpr
                        \expandafter\texdimenboth_a\the\numexpr\dimexpr#1;50);}%
\def\texdimenbothincmpt#1{\expandafter\texdimenstrippt\the\dimexpr
                          \expandafter\texdimenboth_a\the\numexpr\dimexpr#1;7227+1)/2-1;}%
\let\texdimenbothcminpt\texdimenbothincmpt
\def\texdimenboth_a#1{\if-#1\texdimenboth_neg\fi\texdimenboth_b#1}%
% The opening parenthesis ( is closed in #2, it was added to share "pt" output
% with the two others
\def\texdimenboth_b#1;#2;{\numexpr(((2*#1-3612)/7227)*#2sp\relax}%
% negative branch. This is expanded in a \dimexpr so we can insert the -
% in front of the \numexpr.
% #1 is \fi here and #2 is \texdimenboth_b
\def\texdimenboth_neg#1#2-#3;#4;{#1-\numexpr(((2*#3-3612)/7227)*#4sp\relax}%
%
% \texdimenbothincmsp is done separately as I found no easy way to share
% its macros with the others; alternative would have been to make it the
% core, and derive the others from it, (\texdimencm{\texdimenbothincmsp{...}sp})
% but then they would be less efficient than their current versions.
% (it is a bit ironical to worry about not creating too many macros
% in such a small package, by the way)
\def\texdimenbothincmsp#1{\the\numexpr\expandafter\texdimenbothsp_a\the\numexpr\dimexpr#1;}%
\def\texdimenbothsp_a#1{\if-#1\texdimenbothsp_neg\fi\texdimenbothsp_b#1}%
\def\texdimenbothsp_b#1;{(((2*#1-3612)/7227)*7227+1)/2-1\relax}%
% #1 is \fi
% we need to regrab here or to add a \numexpr..\relax layer to
% \texdimenbothsp_b (parentheses could do but using 0-(...) syntax)
% finally doing the job of \texdimenbothsp_b directly
\def\texdimenbothsp_neg#1#2-#3;{#1-\numexpr(((2*#3-3612)/7227)*7227+1)/2-1\relax\relax}%
%
\let\texdimenbothcminsp\texdimenbothincmsp
\texdimensendinput