1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
|
%% poormanlog.tex 0.07, 2022/05/25
%% (macros not modified since 0.05, 2019/04/22)
%% Copyright (C) 2019-2022, Jean-Francois Burnol
%%
%% This Work may be distributed and/or modified under the
%% conditions of the LaTeX Project Public License version 1.3c.
%%
%% This Work has the LPPL maintenance status `author-maintained`.
%%
%% The Author of this Work is Jean-Francois Burnol (jfbu AT free DOT fr)
%%
%% This Work consists of files poormanlog.tex, poormanlog.sty and the
%% README
%%
%
% Package macro private prefix: \PML@
%
% SEE README FOR USER DOCUMENTATION
%
\ifx\numexpr\JFBUundefined
\message{**** poormanlog requires e-TeX **** LOADING ABORTED ****}%
\endinput\fi
%
% CATCODES (AND AUXILIARIES FOR PLAIN TEX)
%
\expandafter\edef\csname @tempa\endcsname
{%
\catcode0 \the\catcode0 %
\catcode`\noexpand\_ \the\catcode`\_ %
\catcode`\noexpand\^ \the\catcode`\^ %
\catcode`\noexpand\: \the\catcode`\: %
\catcode`\noexpand\* \the\catcode`\* %
\catcode`\noexpand\@ \the\catcode`\@\relax
}%
\catcode`\@ 11 %
\if1\ifx\@namedef\JFBUundefined1\else\ifx\@namedef\relax1\else0\fi\fi
\def\@namedef#1{\expandafter\def\csname #1\endcsname}%
\def\@nameuse#1{\csname #1\endcsname}%
\fi
\long\def\@gobble#1{}%
%
% TABLES
%
% The algorithm for \PMLogZ is the reverse engineering of the one I did
% for \PMPowTen. I had an other approach for log10 initially but it was
% less accurate than what testings of \PMPowTen showed. The same accuracy, even
% slightly better, was then obtain with \PMLogZ by imitating the latter
% algorithm (the original was faster but achieved only about 6ulp max error,
% although most of the time the result was correct up to +2 or -2,
% the present one appears to achieve not much worse than 1ulp maximal error).
%
% method of CORDIX type combined with usage of \numexpr "scaling" operations
%
\@namedef{PML@1@10}{}%
\@namedef{PML@1@9}{*1349157701/1071674055}%
\@namedef{PML@1@8}{*946017331/596896583}%
\@namedef{PML@1@7}{*495834591/248505967}%
\@namedef{PML@1@6}{*870020383/346361353}%
\@namedef{PML@1@5}{*1499219281/474094764}%
\@namedef{PML@1@4}{*1978893117/497075477}%
\@namedef{PML@1@3}{*368683859/73562101}%
\@namedef{PML@1@2}{*1295603161/205339263}%
\@namedef{PML@1@1}{*1268797901/159732192}%
\@namedef{PML@1@0}{*10}%
%
\@namedef{PML@P1@10}{}%
\@namedef{PML@P1@9}{*1071674055/1349157701}%
\@namedef{PML@P1@8}{*596896583/946017331}%
\@namedef{PML@P1@7}{*248505967/495834591}%
\@namedef{PML@P1@6}{*346361353/870020383}%
\@namedef{PML@P1@5}{*474094764/1499219281}%
\@namedef{PML@P1@4}{*497075477/1978893117}%
\@namedef{PML@P1@3}{*73562101/368683859}%
\@namedef{PML@P1@2}{*205339263/1295603161}%
\@namedef{PML@P1@1}{*159732192/1268797901}%
\@namedef{PML@P1@0}{/10}%
%
\@namedef{PML@2@12}{*1759219355/1983514284}%
\@namedef{PML@2@11}{*1038555297/1159316503}%
\@namedef{PML@2@10}{*1446048050/1598130251}%
\@namedef{PML@2@9}{*200795995/219705814}%
\@namedef{PML@2@8}{*19701438/21342313}%
\@namedef{PML@2@7}{*699035545/749721341}%
\@namedef{PML@2@6}{*342419462/363593499}%
\@namedef{PML@2@5}{*262151601/275592401}%
\@namedef{PML@2@4}{*643237001/669488001}%
\@namedef{PML@2@3}{*909207215/936896697}%
\@namedef{PML@2@2}{*14850599/15150601}%
\@namedef{PML@2@1}{*119401199/120601201}%
\@namedef{PML@2@0}{}%
\@namedef{PML@2@-1}{*120601201/119401199}%
\@namedef{PML@2@-2}{*15150601/14850599}%
\@namedef{PML@2@-3}{*936896697/909207215}%
\@namedef{PML@2@-4}{*669488001/643237001}%
\@namedef{PML@2@-5}{*275592401/262151601}%
\@namedef{PML@2@-6}{*363593499/342419462}%
\@namedef{PML@2@-7}{*749721341/699035545}%
\@namedef{PML@2@-8}{*21342313/19701438}%
\@namedef{PML@2@-9}{*219705814/200795995}%
\@namedef{PML@2@-10}{*1598130251/1446048050}%
\@namedef{PML@2@-11}{*1159316503/1038555297}%
\@namedef{PML@2@-12}{*1983514284/1759219355}%
%
%\@namedef{PML@3@9}{*166909427/168418392}%
%\@namedef{PML@3@8}{*233438999/235314001}%
%\@namedef{PML@3@7}{*921380630/927852921}%
\@namedef{PML@3@6}{*92333611/92889278}%
\@namedef{PML@3@5}{*957602399/962402401}%
\@namedef{PML@3@4}{*1871252999/1878753001}%
\@namedef{PML@3@3}{*739112555/741333222}%
\@namedef{PML@3@2}{*2997001/3003001}%
\@namedef{PML@3@1}{*11994001/12006001}%
\@namedef{PML@3@0}{}%
\@namedef{PML@3@-1}{*12006001/11994001}%
\@namedef{PML@3@-2}{*3003001/2997001}%
\@namedef{PML@3@-3}{*741333222/739112555}%
\@namedef{PML@3@-4}{*1878753001/1871252999}%
\@namedef{PML@3@-5}{*962402401/957602399}%
\@namedef{PML@3@-6}{*92889278/92333611}%
%\@namedef{PML@3@-7}{*927852921/921380630}%
%\@namedef{PML@3@-8}{*235314001/233438999}%
%\@namedef{PML@3@-9}{*168418392/166909427}%
%
\@namedef{PML@4@5}{*47988001/48012001}%
\@namedef{PML@4@4}{*74985001/75015001}%
\@namedef{PML@4@3}{*399940003/400060003}%
\@namedef{PML@4@2}{*299970001/300030001}%
\@namedef{PML@4@1}{*1199940001/1200060001}%
\@namedef{PML@4@0}{}%
\@namedef{PML@4@-1}{*1200060001/1199940001}%
\@namedef{PML@4@-2}{*300030001/299970001}%
\@namedef{PML@4@-3}{*400060003/399940003}%
\@namedef{PML@4@-4}{*75015001/74985001}%
\@namedef{PML@4@-5}{*48012001/47988001}%
%%
%%
%% LOG IN BASE 10 : \the\numexpr\PML@ ddddddddd.\relax
%%
%% Exactly 9 digits representing d.dddddddd, first one at least 1.
%% Goal is to compute log10(d.dddddddd) with 9 digits
%%
\def\PML@#1.{\expandafter\PML@a\the\numexpr#1/100000.#1.}%
\def\PML@a#1.{\expandafter\PML@ai
\the\numexpr
\ifnum#1>2817 %
\ifnum#1>5622 %
\ifnum#1>7078 \ifnum#1>8912 10\else 9\fi
\else 8%
\fi
\else
\ifnum#1>3547 \ifnum#1>4466 7\else 6\fi
\else 5%
\fi
\fi
\else
\ifnum#1>1412 %
\ifnum#1>1777 \ifnum#1>2238 4\else 3\fi
\else 2%
\fi
\else
\ifnum#1>1121 1\else 0\fi
\fi
\fi
.%
}%
\def\PML@ai #1.#2.%
{\expandafter\PML@b\the\numexpr#2\@nameuse{PML@1@#1}.%
)*774923109/1784326399+#100000000}%
%
\def\PML@b#1.{\expandafter\PML@bi\the\numexpr#1/1000000.#1.}%
\def\PML@bi#1.{\expandafter\PML@bii
\the\numexpr
\ifnum#1>994 %
\ifnum#1>1056 %
\ifnum#1>1088 %
\ifnum#1>1110 \ifnum#1>1121 12\else 11\fi
\else \ifnum#1>1099 10\else 9\fi
\fi
\else
\ifnum#1>1066 \ifnum#1>1077 8\else 7\fi
\else 6%
\fi
\fi
\else
\ifnum#1>1024 %
\ifnum#1>1035 \ifnum#1>1045 5\else 4\fi
\else 3%
\fi
\else
\ifnum#1>1004 \ifnum#1>1014 2\else 1\fi
\else 0%
\fi
\fi
\fi
\else
\ifnum#1>936 %
\ifnum#1>965 %
\ifnum#1>974 \ifnum#1>984 -1\else -2\fi
\else -3%
\fi
\else
\ifnum#1>945 \ifnum#1>955 -4\else -5\fi
\else -6%
\fi
\fi
\else
\ifnum#1>908 %
\ifnum#1>918 \ifnum#1>927 -7\else -8\fi
\else -9%
\fi
\else
\ifnum#1>890 \ifnum#1>899 -10\else -11\fi
\else -12%
\fi
\fi
\fi
\fi
.%
}%
\def\PML@bii#1.#2.%
{\expandafter\PML@c\the\numexpr#2\@nameuse{PML@2@#1}.+#10000000}%
%
\def\PML@c#1.%
{\expandafter\PML@ci\the\numexpr#1/1000000-1000.#1.}%
\def\PML@ci#1.#2.%
{\expandafter\PML@d\the\numexpr#2\@nameuse{PML@3@#1}.+#1000000}%
%
\def\PML@d#1.%
{\expandafter\PML@di\the\numexpr#1/100000-10000.#1.}%
\def\PML@di#1.#2.%
{\expandafter\PML@e\the\numexpr#2\@nameuse{PML@4@#1}-1000000000.+#100000}%
% we have reached
% x = 1 + t/10^9 represented by t
% log(x) represented by 10^9 times (t/10^9 (2.10^9 - t)/2.10^9)
\def\PML@e #1.{(#1*(2000000000-#1)/2000000000+}%
%%
%%
%% POWER OF TEN : \the\numexpr\PML@Pa ddddddddd.\relax
%%
%% Exactly 9 digits in input representing number 0.ddddddddd
%% Goal is to compute 10^0.ddddddddd with 9 digits.
%%
\def\PML@Pa#1#2{\expandafter\PML@Pai\the\numexpr#1#2/10.#1#2}%
\def\PML@Pai#1.#2.{%
\expandafter\PML@Pb\the\numexpr(#2-#100000000)*2079839159/90326267.%
\@nameuse{PML@P1@#1}%
}%
% problem with minus sign interfering with token count so simply fetch all
% the -#1 is to re-use constants already defined for log
\def\PML@Pb#1.{\expandafter\PML@Pbi\the\numexpr-#1/100000000.#1.}%
\def\PML@Pbi#1.#2.%
{\expandafter\PML@Pc\the\numexpr#2+#100000000.\@nameuse{PML@2@#1}}%
% \pm 0.00d, d at most 5, 8 digits integer N for N/10^10
\def\PML@Pc#1.{\expandafter\PML@Pci\the\numexpr-#1/10000000.#1.}%
\def\PML@Pci#1.#2.%
{\expandafter\PML@Pd\the\numexpr#2+#10000000.\@nameuse{PML@3@#1}}%
% \pm 0.000d, d at most 5, 7 digits
\def\PML@Pd#1.{\expandafter\PML@Pdi\the\numexpr-#1/1000000.#1.}%
\def\PML@Pdi#1.#2.%
{\expandafter\PML@Pe\the\numexpr#2+#1000000.\@nameuse{PML@4@#1}}%
% \pm 0.0000d, d at most 5, 6 digits integer N for N/10^10
% exp of that must fit in 10 digits, and there will be leading 1, hence
% only 9 digits available for fitting x + x^2/2, x = Ne-10
% so we must compute via numexpr
% 10^9*x*(1+x/2) = 10^9*N/10^10*(2.10^10+ N)/2.10^10
% with N in absolute value at most 500000.
% N*(2.10^9+N/10)/2.10^10 which is about N/10
\def\PML@Pe#1.{(1000000000+#1*(200000000+#1/100)/2000000000)}%
%%
%%
%% BASIC USER INTERFACE : \PMLogZ, \PMPowTen
%%
% Another way of inserting leading zeros is found in xint source code,
% maybe faster. "Z" is for reminding that output has leading zeros.
\def\PMLogZ#1%
{%
\romannumeral-`0\expandafter\@gobble
% \PML@ never gives something negative, hopefully...
\the\numexpr1000000000+\expandafter\PML@\romannumeral-`0#1.\relax
}%
\def\PMPowTen#1{\the\numexpr\expandafter\PML@Pa\romannumeral-`0#1.\relax}%
\@tempa
\endinput
|