1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
|
% author: Jean-François Burnol
% License: LPPL 1.3c (author-maintained)
% Usage: \input polexpr.sty (Plain or other macro formats)
% or \usepackage{polexpr} (LaTeX macro format)
% Release 0.8.7a (2022/05/19) of polexpr.sty. This file inputs
% polexprcore.tex
% polexprexpr.tex
% polexprsturm.tex
\begingroup\catcode61\catcode48\catcode32=10\relax%
\catcode13=5 % ^^M
\endlinechar=13 %
\catcode123=1 % {
\catcode125=2 % }
\catcode64=11 % @
\catcode35=6 % #
\catcode44=12 % ,
\catcode45=12 % -
\catcode46=12 % .
\catcode58=12 % :
\def\z {\endgroup}%
\expandafter\let\expandafter\x\csname ver@polexpr.sty\endcsname
\expandafter\let\expandafter\w\csname ver@xintexpr.sty\endcsname
\expandafter
\ifx\csname PackageInfo\endcsname\relax
\def\y#1#2{\immediate\write-1{Package #1 Info: #2.}}%
\else
\def\y#1#2{\PackageInfo{#1}{#2}}%
\fi
\expandafter
% I don't think engine exists providing \expanded but not \numexpr
\ifx\csname expanded\endcsname\relax
\y{polexpr}{\expanded not available, aborting input}%
\aftergroup\endinput
\else
\ifx\x\relax % plain-TeX, first loading of polexpr.sty
\ifx\w\relax % but xintexpr.sty not yet loaded.
\expandafter\def\expandafter\z\expandafter
{\z\input xintexpr.sty\relax}%
\fi
\else
\def\empty {}%
\ifx\x\empty % LaTeX, first loading,
% variable is initialized, but \ProvidesPackage not yet seen
\ifx\w\relax % xintexpr.sty not yet loaded.
\expandafter\def\expandafter\z\expandafter
{\z\RequirePackage{xintexpr}[2021/03/29]}%
\fi
\else
\aftergroup\endinput % polexpr already loaded.
\fi
\fi
\fi
\z%
\XINTsetupcatcodes% (does \endlinechar13 in particular)
\XINT_providespackage
\ProvidesPackage{polexpr}%
[2022/05/19 v0.8.7a Polynomial expressions with rational coefficients (JFB)]%
\begingroup
\def\x#1/#2/#3 #4\xint:{#1#2#3}%
\ifnum\expandafter\x\expanded{\csname ver@xintexpr.sty\endcsname}\xint:
<20210527 % xint 1.4h
\errmessage{Package polexpr error: xintexpr too old, aborting input}%
\else\expandafter\xint_gobble_i
\fi
\endinput\endgroup
\let\PolDecToString\xintDecToString
\long\def\POL@ifstar#1#2%
{%
\begingroup\def\@tempa{#1}\def\@tempb{#2}%
\futurelet\@let@token\POL@@ifstar
}%
\def\POL@@ifstar
{%
\xint_firstofone{\ifx} \@let@token\def\next{\POL@@again\POL@@ifstar}\else
\ifx*\@let@token\def\next##1{\expandafter\endgroup\@tempa}\else
\def\next{\expandafter\endgroup\@tempb}\fi\fi\next
}%
\xint_firstofone{\def\POL@@again#1} {\futurelet\@let@token#1}%
\long\def\POL@chkopt#1[#2]%
{%
\begingroup\def\@tempa{#1}\def\@tempb{#1[#2]}%
\futurelet\@let@token\POL@@ifopt
}%
\def\POL@@ifopt
{%
\xint_firstofone{\ifx} \@let@token\def\next{\POL@@again\POL@@ifopt}\else
\ifx[\@let@token\def\next{\expandafter\endgroup\@tempa}\else %]
\def\next{\expandafter\endgroup\@tempb}\fi\fi\next
}%
% \polexprsetup added at 0.7
\catcode`! 3 %
\def\polexprsetup#1{\POL@setup_parsekeys #1,=!,\xint_bye}%
\def\POL@setup_parsekeys #1=#2#3,{%
\ifx!#2\expandafter\xint_bye\fi
\csname POL@setup_setkey_\xint_zapspaces #1 \xint_gobble_i\endcsname
\xint_firstoftwo
{\PackageWarning{polexpr}{The \detokenize{#1} key is unknown! ignoring}}%
{\xintZapLastSpaces{#2#3}}%
\POL@setup_parsekeys
}%
\def\POL@setup_setkey_norr #1#2{\edef\POL@norr}%
\def\POL@setup_setkey_sqfnorr #1#2{\edef\POL@sqfnorr}%
\polexprsetup{norr=_norr, sqfnorr=_sqf_norr}%
\catcode`! 11 % special catcode for ! as used in xintexpr.sty
%
\newif\ifxintveryverbose
\newif\ifpolnewpolverbose
\newif\ifpoltypesetall
\newif\ifpoltoexprall
%%
%% Main data format for non-expandable manipulations
%%
%% The main exchange structure is:
%% N.\empty{coeff0}{coeff1}....{coeffN}
%% It is stored in macros \POLuserpol@<name of polynomial>
%% The \empty is basically there to avoid brace-stripping
%% in some grabbing contexts (maybe I should revisit this)
%%
%% The zero polynomial is stored as -1.\empty{0/1[0]}
%% Degree zero polynomials are 0.\empty{numeric value}
%%
%% Depending on input path the numeric values coeff0, coeff1, ...., coeffN
%% may have been or not already converted into A/B[n] format.
%% As a rule, computations are not followed with reducing the fractions
%% to smallest terms; the innocent may be unaware that computing
%% with fractions quickly give gigantic numbers. There is \PolReduceCoeffs
%% to do that.
%%
%% This base structure is maintained at 0.8 for legacy reasons but perhaps I
%% need to revisit this. A characteristic of the package so far is that it
%% thus stores and manipulate polynomials basically as the complete sequence
%% of coefficients, (using the xintfrac "zero" for missing coefficients) which
%% means that it will handle poorly polynomials of high degrees such as X^500.
%%
%% Test if zero
\def\POL@ifZero#1{\expandafter\POL@ifZero@aux#1;}%
\def\POL@ifZero@aux #1#2;{\if-#1\expandafter\xint_firstoftwo
\else\expandafter\xint_secondoftwo
\fi}%
%% Split into degree and coefficients
% The \expandafter chain removes the \empty token
\def\POL@split#1.#2;#3#4%
{\def#3{#1}\expandafter\def\expandafter#4\expandafter{#2}}%
%% Define from values stored in a "macros-array"
\def\POL@resultfromarray #1{%
\edef\POL@result{\ifnum\count@>\z@
\the\numexpr\count@-\@ne.\noexpand\empty
\xintiloop [1+1]%
\expandafter\POL@braceit\csname POL@array#1\xintiloopindex\endcsname
\ifnum\xintiloopindex<\count@
\repeat
\else-1.\noexpand\empty{0/1[0]}\fi}%
}%
\def\POL@braceit#1{{#1}}% needed as \xintiloopindex can not "see" through braces
%%
%% Conversion between legacy data storage and the one used for the
%% the novel polexpr 0.8 notion of \xintexpr polynomial variables
%%
%% The 0.8 expandable implementation of core algebra is also manipulating
%% the complete list of coefficients. The internal data structure is
%% (this is the numeric leaf in xintexpr ople terminology) currently:
%% PN.{coeff0}{coeff1}....{coeffN}
%% where the P letter identifies the polynomial type.
%% Here the degree N is *always* at least 1: if some evaluation ends
%% up in a constant polynomial it will always be output as a genuine
%% scalar numeric variable, as a rule in in A/B[n] format
%%
%% This is not definitive and I need to think about it more (in particular
%% in the distant perspective of supporting multi-variable polynomials).
%% However modifying this will be costly labor at this stage.
%%
\input polexprcore.tex\relax % load expandable algebra
\def\POL@vartolegacy #1% \romannumeral\POL@vartolegacy ... \xint:
{%
\if 0#1\xint_dothis\POL@vartolegacy@zero\fi
\if P#1\xint_dothis\POL@vartolegacy@pol\fi
\xint_orthat\POL@vartolegacy@scalar #1%
}%
\def\POL@vartolegacy@zero #1\xint:{\xint_c_ -1.\empty{0/1[0]}}%
\def\POL@vartolegacy@scalar #1\xint:{\xint_c_ 0.\empty{#1}}%
\def\POL@vartolegacy@pol P#1.#2\xint:{\xint_c_ #1.\empty#2}%
%
\def\POL@tovar#1{\romannumeral\expandafter\expandafter\expandafter
\POL@legacytovar\csname POLuserpol@#1\endcsname}%
\def\POL@legacytovar #1.% \romannumeral\POL@legacytovar N.\empty{c0}...
{%
\ifnum #1<\xint_c_i\xint_dothis\POL@legacytovar@scalar\fi
\xint_orthat\POL@legacytovar@pol #1.%
}%
\def\POL@legacytovar@scalar #1.\empty#2{\xint_c_ #2}%
\def\POL@legacytovar@pol #1.\empty{\xint_c_ P#1.}%
%%
%% Extend \xintexpr (\xintdefvar, \xintdeffunc) to recognize the new
%% polynomial type
%%
%% **** It does NOT apply to \xintfloatexpr context
%%
\input polexprexpr.tex\relax
%%
%% \poldef
%%
%% Ever since 1.0, catcode sanitisation was minimal and only handled
%% the semicolon. At last 0.8.7 uses \xintexprSafeCatcodes to enhance
%% compatibility with hostile contexts such as babel+french. This
%% adds overhead but at least is coherent with \xintdefvar/\xintdeffunc
\def\PolDef{\xintexprSafeCatcodes\POL@chkopt\POL@oPolDef[x]}%
\def\POL@oPolDef[#1]#2#3{\POL@defpol #2(#1):={#3};}%
\def\poldef{\xintexprSafeCatcodes\POL@defpol}%
\def\POL@defpol #1(#2)#3=#4;{%
\xintexprRestoreCatcodes
\edef\POL@polname{\xint_zapspaces #1 \xint_gobble_i}%
\begingroup
\unless\ifxintveryverbose\xintverbosefalse\fi
%% RADICAL CHANGE AT 0.8:
%% we define a **variable** not a **function**
%% ever since polexpr initial version, a function was defined and
%% the associated macros was then deconstructed in further analysis
%% via non-expandable approach. At 0.8 the polynomial algebra has
%% been implemented expandably allowing direct plug-in into \xintexpr
\xintdefvar_a __pol = subs(#4,#2=qraw({{P1.{0/1[0]}{1/1[0]}}}));%
\expandafter
\endgroup
\expandafter\def\expandafter\POL@result\expandafter
{\romannumeral0\expandafter\xint_stop_atfirstofone
\romannumeral0\csname XINT_expr_varvalue___pol\endcsname}%
\XINT_global\expandafter\def\csname POLuserpol@\POL@polname\expandafter\endcsname
\expandafter{\romannumeral\expandafter\POL@vartolegacy\POL@result\xint:}%
\expandafter\POL@newpol\expandafter{\POL@polname}%
}%
\def\POL@newpol#1{%
% 0.7.5 had some complicated special handling of constant
% polynomials, but these are complications of the past
% First a variable usable in \poldef but not in \xintexpr for arithmetic
% only for special dedicated functions such as coeff(), deg()
% (when they will be implemented). In \poldef, composition of polynomials
% in P(Q) syntax will be more efficient than P(Q(x)).
% This will use \XINT_global and obey \xintverbose... setting
\XINT_expr_defvar_one{#1}{{\POL@tovar{#1}}}%
% Second a function usable not only in \poldef but also in \xintexpr
% Will use \XINT_global
\POL@newpolhorner{#1}%
\POL@defpolfunc{#1}{expr}%
\XINT_global\expandafter\let\csname XINT_flexpr_func_#1\endcsname\@undefined
\ifpolnewpolverbose\POL@info{#1}\fi
}%
\def\POL@newfloatpol#1{%
\POL@newfloatpolhorner{#1}%
\POL@defpolfunc{#1}{flexpr}%
\ifpolnewpolverbose\POL@floatinfo{#1}%
\else
\ifxintverbose\POL@floatinfo{#1}\fi
\fi
}%
\def\POL@info #1{%
\xintMessage {polexpr}{Info}%
{Function #1 for the \string\xintexpr\space parser is
\ifxintglobaldefs(globally) \fi
associated to \string\XINT_expr_polfunc_#1\space
with meaning:
\expandafter\meaning
\csname XINT_expr_polfunc_#1\endcsname}%
}%
\def\POL@floatinfo #1{%
\xintMessage {polexpr}{Info}%
{Function #1 for the \string\xintfloatexpr\space parser is
\ifxintglobaldefs(globally) \fi
associated to \string\XINT_flexpr_polfunc_#1\space
with meaning:
\expandafter\meaning
\csname XINT_flexpr_polfunc_#1\endcsname}%
}%
%
\def\POL@newpolhorner#1{%
\expandafter\expandafter\expandafter\POL@split
\csname POLuserpol@#1\endcsname;\POL@var@deg\POL@var@coeffs
\edef\POL@var@coeffs{\xintRevWithBraces{\POL@var@coeffs}}%
\begingroup
\expandafter\POL@newpol@horner\POL@var@coeffs\relax
\expandafter
\endgroup
\expandafter\XINT_global
\expandafter\def\csname XINT_expr_polfunc_#1\expandafter\endcsname
\expandafter##\expandafter1\expandafter{\POL@tmp{##1}}%
}%
\def\POL@newfloatpolhorner#1{%
%% redefine function to expand by Horner scheme. Is this useful?
%% perhaps bad idea for numerical evaluation of thing such as (1+x)^10?
% note: I added {0/1[0]} item to zero polynomial also to facilitate this
\expandafter\expandafter\expandafter\POL@split
\csname POLuserpol@#1\endcsname;\POL@var@deg\POL@var@coeffs
\edef\POL@var@coeffs{\xintRevWithBraces{\POL@var@coeffs}}%
\begingroup
\expandafter\POL@newpol@floathorner\POL@var@coeffs\relax
\expandafter
\endgroup
\expandafter\def\csname XINT_flexpr_polfunc_#1\expandafter\endcsname
\expandafter##\expandafter1\expandafter{\POL@tmp{##1}}%
}%
\def\POL@newpol@horner#1{\let\xintPolAdd\relax\let\xintPolMul\relax
\def\POL@tmp##1{#1}\POL@newpol@horner@loop.}%
\def\POL@newpol@horner@loop.#1{%
\if\relax#1\expandafter\xint_gob_til_dot\fi
\edef\POL@tmp##1{\xintiiifZero{#1}
{\xint_firstofone}{\xintPolAdd{#1}}%
{\xintPolMul{##1}{\POL@tmp{##1}}}}%
\POL@newpol@horner@loop.%
}%
\def\POL@newpol@floathorner#1{\let\XINTinFloatAdd\relax\let\XINTinFloatMul\relax
\edef\POL@tmp##1{\XINTinFloatdigits{#1}}%
\POL@newpol@floathorner@loop.}%
\def\POL@newpol@floathorner@loop.#1{%
\if\relax#1\expandafter\xint_gob_til_dot\fi
\edef\POL@tmp##1{\xintiiifZero{#1}
{\xint_firstofone}{\XINTinFloatAdd{\XINTinFloatdigits{#1}}}%
{\XINTinFloatMul{##1}{\POL@tmp{##1}}}}%
\POL@newpol@floathorner@loop.%
}%
%%
%% Non-expandable polynomial manipulations
%%
\def\PolGenFloatVariant#1{\POL@newfloatpol{#1}}%
%
\def\PolLet#1#2{\if=\noexpand#2\expandafter\xint_firstoftwo
\else\expandafter\xint_secondoftwo\fi
\POL@@let\POL@let{#1}{#2}}%
\def\POL@@let#1#2#3{\POL@let{#1}{#3}}%
\def\POL@let#1#2{%
\XINT_global
\expandafter\let\csname POLuserpol@#1\expandafter\endcsname
\csname POLuserpol@#2\endcsname
\XINT_expr_defvar_one{#1}{{\POL@tovar{#1}}}%
\XINT_global
\expandafter\let\csname XINT_expr_polfunc_#1\expandafter\endcsname
\csname XINT_expr_polfunc_#2\endcsname
\POL@defpolfunc{#1}{expr}%
\ifpolnewpolverbose\POL@info{#1}\fi
}%
\def\PolGlobalLet#1#2{\begingroup\xintglobaldefstrue\PolLet{#1}{#2}\endgroup}%
%
\def\PolAssign#1{\def\POL@polname{#1}\POL@assign}% zap spaces in #1?
\def\POL@assign#1\toarray#2{%
\expandafter\expandafter\expandafter\POL@split
\csname POLuserpol@\POL@polname\endcsname;\POL@var@deg\POL@var@coeffs
\xintAssignArray\POL@var@coeffs\to#2%
% modify \#200 macro to return 0/1[0] for out of range indices
\@namedef{\xint_arrayname00}##1##2##3{%
\@namedef{\xint_arrayname00}####1{%
\ifnum####1>##1 \xint_dothis{ 0/1[0]}\fi
\ifnum####1>\m@ne \xint_dothis
{\expandafter\expandafter\expandafter##3%
\csname##2####1\endcsname}\fi
\unless\ifnum-####1>##1 \xint_dothis
{\expandafter\expandafter\expandafter##3%
\csname##2\the\numexpr##1+####1+\@ne\endcsname}\fi
\xint_orthat{ 0/1[0]}}% space stops a \romannumeral0
}%
\csname\xint_arrayname00\expandafter\expandafter\expandafter\endcsname
\expandafter\expandafter\expandafter
{\csname\xint_arrayname0\expandafter\endcsname\expandafter}\expandafter
{\xint_arrayname}{ }%
}%
\def\PolGet{}%
\def\PolGet#1#2\fromarray#3{%
\begingroup % closed in \POL@getfromarray
\POL@getfromarray{#1}{#3}%
\POL@newpol{#1}%
}%
\def\POL@getfromarray#1#2{%
\count@=#2{0} %<- intentional space
\ifnum\count@=\z@
\def\POL@result{-1.\empty{0/1[0]}}% 0.5 fix for empty array
\else
\xintloop
\edef\POL@tmp{#2{\count@}}%
\edef\POL@tmp{\xintRaw{\POL@tmp}}%
% sadly xinttools (current 1.3a) arrays have no setters for individual items...
\expandafter\let\csname POL@tmparray\the\count@\endcsname\POL@tmp
\if0\xintiiSgn{\POL@tmp}%
\advance\count@\m@ne
\repeat
\count\tw@\count@
\xintloop
\ifnum\count@>\@ne
\advance\count@\m@ne
\edef\POL@tmp{#2{\count@}}%
\edef\POL@tmp{\xintRaw{\POL@tmp}}%
\expandafter\let\csname POL@tmparray\the\count@\endcsname\POL@tmp
\repeat
\count@\count\tw@
\def\POL@tmp##1.{{\csname POL@tmparray##1\endcsname}}%
\edef\POL@result{\the\numexpr\count@-\@ne.\noexpand\empty
\xintiloop[1+1]%
\expandafter\POL@tmp\xintiloopindex.%
\ifnum\xintiloopindex<\count@
\repeat}%
\fi
\expandafter
\endgroup
\expandafter
\XINT_global
\expandafter
\def\csname POLuserpol@#1\expandafter\endcsname
\expandafter{\POL@result}%
}%
%
\def\PolFromCSV#1#2{%
\begingroup % closed in \POL@getfromarray
\xintAssignArray\xintCSVtoList{#2}\to\POL@arrayA
\POL@getfromarray{#1}\POL@arrayA
\POL@newpol{#1}%
}%
%
\def\PolMapCoeffs#1#2{% #1 = macro, #2 = name
\POL@mapcoeffs{#1}{#2}%
\POL@newpol{#2}%
}%
\def\POL@mapcoeffs#1#2{%
\begingroup
\def\POL@mapcoeffs@macro{#1}%
\expandafter\expandafter\expandafter\POL@split
\csname POLuserpol@#2\endcsname;\POL@mapcoeffs@deg\POL@mapcoeffs@coeffs
% ATTENTION à ne pas faire un \expandafter ici, car brace removal si 1 item
\xintAssignArray\POL@mapcoeffs@coeffs\to\POL@arrayA
\def\index{0}%
\count@\z@
\expandafter\POL@map@loop\expandafter.\POL@mapcoeffs@coeffs\relax
\xintloop
% this abuses that \POL@arrayA0 is never 0.
\xintiiifZero{\csname POL@arrayA\the\count@\endcsname}%
{\iftrue}%
{\iffalse}%
\advance\count@\m@ne
\repeat
% donc en sortie \count@ est 0 ssi pol nul.
\POL@resultfromarray A%
\expandafter
\endgroup
\expandafter
\XINT_global
\expandafter
\def\csname POLuserpol@#2\expandafter\endcsname\expandafter{\POL@result}%
}%
\def\POL@map@loop.#1{\if\relax#1\expandafter\xint_gob_til_dot\fi
\advance\count@\@ne
\edef\POL@map@coeff{\POL@mapcoeffs@macro{#1}}%
\expandafter
\let\csname POL@arrayA\the\count@\endcsname\POL@map@coeff
\edef\index{\the\numexpr\index+\@ne}%
\POL@map@loop.}%
%
\def\POL@xintIrr#1{\xintIrr{#1}[0]}%
\def\PolReduceCoeffs{\POL@ifstar\POL@sreducecoeffs\POL@reducecoeffs}%
\def\POL@reducecoeffs#1{\PolMapCoeffs{\POL@xintIrr}{#1}}%
\def\POL@sreducecoeffs#1{\PolMapCoeffs{\xintPIrr}{#1}}%
%
\def\PolMakeMonic#1{%
\edef\POL@leadingcoeff{\PolLeadingCoeff{#1}}%
\edef\POL@leadingcoeff@inverse{\xintDiv{1/1[0]}{\POL@leadingcoeff}}%
\PolMapCoeffs{\xintMul{\POL@leadingcoeff@inverse}}{#1}%
}%
%
%% \PolMakePrimitive (0.5)
% This uses expandable \PolIContent
% Note: the integer coefficients stored in A/1[n] form with
% A not having trailing zeroes, due to usage of \xintREZ here.
\def\POL@makeprim@macro#1%
{\xintREZ{\xintNum{\xintDiv{#1}{\POL@makeprim@icontent}}}}%
\def\PolMakePrimitive#1{%
% This does not need a full user declared polynomial on input, only
% a \POLuserpol@name macro, but on output it is fully declared
\edef\POL@makeprim@icontent{\PolIContent{#1}}%
\PolMapCoeffs\POL@makeprim@macro{#1}%
}%
\def\POL@makeprimitive#1{%
% Avoids declaring the polynomial, internal usage in \PolToSturm
\edef\POL@makeprim@icontent{\PolIContent{#1}}%
\POL@mapcoeffs\POL@makeprim@macro{#1}%
}%
%
%% Euclidean division
% since 0.8 based on the expandable routine from polexprcore.tex
%
\def\PolDivide#1#2#3#4{% #3=quotient, #4=remainder of #1 by #2
\POL@divide{#1}{#2}%
\XINT_global\expandafter\let\csname POLuserpol@#3\endcsname\POL@Q
\POL@newpol{#3}%
\XINT_global\expandafter\let\csname POLuserpol@#4\endcsname\POL@R
\POL@newpol{#4}%
}%
\def\PolQuo#1#2#3{% #3=quotient of #1 by #2
\POL@divide{#1}{#2}%
\XINT_global\expandafter\let\csname POLuserpol@#3\endcsname\POL@Q
\POL@newpol{#3}%
}%
\def\PolRem#1#2#3{% #3=remainder of #1 by #2
\POL@divide{#1}{#2}%
\XINT_global\expandafter\let\csname POLuserpol@#3\endcsname\POL@R
\POL@newpol{#3}%
}%
\def\POL@divide#1#2{%
% much simpler at 0.8 thanks to our expandable macros
\xintAssign\xintPolQuoRem{\POL@tovar{#1}}{\POL@tovar{#2}}\to\POL@Q\POL@R
\odef\POL@Q{\romannumeral\expandafter\POL@vartolegacy\POL@Q\xint:}%
\odef\POL@R{\romannumeral\expandafter\POL@vartolegacy\POL@R\xint:}%
}%
%% Euclidean special pseudo-remainder
\def\POL@getprem#1#2{%
\let\POL@Q\undefined % trap errors in Sturm code update to use \POL@prem
% this was simpler before I converted \xintPolPRem into returning a tuple...
\odef\POL@R{\romannumeral\expandafter\POL@vartolegacy
\romannumeral0\expandafter\xint_stop_atsecondoftwo
\romannumeral`&&@\xintPolPRem{\POL@tovar{#1}}{\POL@tovar{#2}}%
\xint:}%
}%
%
%%%%%%%%%%%%
%%
%% Things are currenly implemented twice : here the legacy macros
%% such as GCD or Diff, and in polexprcore.tex the expandable
%% support macros for the \xinteval interface.
%%
%% Soon, I will probably remove all legacy code (like I did already
%% for division) and make the user macros simple wrappers to the
%% expandable code.
%%
%% But for 0.8 release, I preferred not to yet, as I did not have
%% really the time to compare speed. Usage of the "special
%% pseudo euclidean remainder" (expandable) code in Sturm chain
%% construction proved very beneficial as it divided by 3 the
%% \PolToSturm execution time on the Wilkinson perturbed type 1
%% example in the documentation.
%%
%%%%%%%%%%%%
%
%% GCD
%
% It seems I didn't even use here the (now deleted) macros implementing
% division, and I redid here what was needed: this code, which I leave
% standing as I have other priorities, does not use the \POL@divide !
%
\def\PolGCD#1#2#3{% sets #3 to the (unitary) G.C.D. of #1 and #2
\POL@GCD{#1}{#2}{#3}%
\POL@newpol{#3}%
}%
\def\POL@GCD #1#2#3{%
\begingroup
\expandafter\let\expandafter\POL@A\csname POLuserpol@#1\endcsname
\expandafter\let\expandafter\POL@B\csname POLuserpol@#2\endcsname
\expandafter\POL@split\POL@A;\POL@degA\POL@polA
\expandafter\POL@split\POL@B;\POL@degB\POL@polB
\ifnum\POL@degA<\z@
\expandafter\xint_firstoftwo\else\expandafter\xint_secondoftwo
\fi
{\ifnum\POL@degB<\z@
\expandafter\xint_firstoftwo\else\expandafter\xint_secondoftwo
\fi
{\def\POL@result{-1.\empty{0/1[0]}}}%
{\xintAssignArray\POL@polB\to\POL@arrayB
\POL@normalize{B}%
\POL@gcd@exit BA}}%
{\ifnum\POL@degB<\z@
\expandafter\xint_firstoftwo\else\expandafter\xint_secondoftwo
\fi
{\xintAssignArray\POL@polA\to\POL@arrayA
\POL@normalize{A}%
\POL@gcd@exit AB}%
{\ifnum\POL@degA<\POL@degB\space
\let\POL@tmp\POL@B\let\POL@B\POL@A\let\POL@A\POL@tmp
\let\POL@tmp\POL@degB\let\POL@degB\POL@degA\let\POL@degA\POL@tmp
\let\POL@tmp\POL@polB\let\POL@polB\POL@polA\let\POL@polA\POL@tmp
\fi
\xintAssignArray\POL@polA\to\POL@arrayA
\xintAssignArray\POL@polB\to\POL@arrayB
\POL@gcd AB%
}}%
\expandafter
\endgroup
\expandafter
\XINT_global
\expandafter\def\csname POLuserpol@#3\expandafter\endcsname
\expandafter{\POL@result}%
}%
\def\POL@normalize#1{%
\expandafter\def\expandafter\POL@tmp\expandafter
{\csname POL@array#1\csname POL@array#10\endcsname\endcsname}%
\edef\POL@normalize@leading{\POL@tmp}%
\expandafter\def\POL@tmp{1/1[0]}%
\count@\csname POL@deg#1\endcsname\space
\xintloop
\ifnum\count@>\z@
\expandafter\edef\csname POL@array#1\the\count@\endcsname
{\xintIrr{\xintDiv
{\csname POL@array#1\the\count@\endcsname}%
{\POL@normalize@leading}}[0]}%
\advance\count@\m@ne
\repeat
}%
\def\POL@gcd#1#2{%
\POL@normalize{#2}%
\edef\POL@degQ{\the\numexpr\csname POL@deg#1\endcsname
-\csname POL@deg#2\endcsname}%
\count@\numexpr\csname POL@deg#1\endcsname+\@ne\relax
\count\tw@\numexpr\POL@degQ+\@ne\relax
\xintloop
\POL@gcd@getremainder@loopbody#1#2%
\ifnum\count\tw@>\z@
\repeat
\expandafter\def\csname POL@array#10\endcsname{1}%
\xintloop
\xintiiifZero{\csname POL@array#1\the\count@\endcsname}%
{\iftrue}%
{\iffalse}%
\advance\count@\m@ne
\repeat
\expandafter\edef\csname POL@deg#1\endcsname{\the\numexpr\count@-\@ne}%
\ifnum\count@<\@ne
\expandafter\POL@gcd@exit
\else
\expandafter\edef\csname POL@array#10\endcsname{\the\count@}%
\expandafter\POL@gcd
\fi{#2}{#1}%
}%
\def\POL@gcd@getremainder@loopbody#1#2{%
\edef\POL@gcd@ratio{\csname POL@array#1\the\count@\endcsname}%
\advance\count@\m@ne
\advance\count\tw@\m@ne
\count4 \count@
\count6 \csname POL@deg#2\endcsname\space
\xintloop
\ifnum\count6>\z@
\expandafter\edef\csname POL@array#1\the\count4\endcsname
{\xintSub
{\csname POL@array#1\the\count4\endcsname}%
{\xintMul
{\POL@gcd@ratio}%
{\csname POL@array#2\the\count6\endcsname}}}%
\advance\count4 \m@ne
\advance\count6 \m@ne
\repeat
}%
\def\POL@gcd@exit#1#2{%
\count@\numexpr\csname POL@deg#1\endcsname+\@ne\relax
\POL@resultfromarray #1%
}%
%
%% DIFFERENTIATION
%
\def\POL@diff@loop@one #1/#2[#3]#4%
{\xintIrr{\xintiiMul{#4}{#1}/#2[0]}[#3]}%
\def\POL@diff#1{\POL@diff@loop1.}%
\def\POL@diff@loop#1.#2{%
\if\relax#2\expandafter\xint_gob_til_dot\fi
{\expandafter\POL@diff@loop@one\romannumeral0\xintraw{#2}{#1}}%
\expandafter\POL@diff@loop\the\numexpr#1+\@ne.%
}%
\def\PolDiff{\POL@chkopt\POL@oPolDiff[1]}%
\def\POL@oPolDiff[#1]{%
% optional parameter is how many times to derivate
% first mandatory arg is name of polynomial function to derivate,
% same name as in \NewPolExpr
% second mandatory arg name of derivative
\edef\POL@iterindex{\the\numexpr#1\relax}%
\ifnum\POL@iterindex<\z@
\expandafter\xint_firstoftwo
\else
\expandafter\xint_secondoftwo
\fi
{\PolAntiDiff[-\POL@iterindex]}{\POL@Diff}%
}%
\def\POL@Diff{%
\ifcase\POL@iterindex\space
\expandafter\POL@Diff@no
\or\expandafter\POL@Diff@one
\else\xint_afterfi{\POL@Iterate\POL@Diff@one}%
\fi
}%
\def\POL@Diff@no #1#2{\POL@let{#2}{#1}}%
\def\POL@Diff@one #1#2{\POL@Diff@@one {#1}{#2}\POL@newpol{#2}}%
\def\POL@Diff@@one#1#2{%
\expandafter\expandafter\expandafter\POL@split
\csname POLuserpol@#1\endcsname;\POL@var@deg\POL@var@coeffs
\ifnum\POL@var@deg<\@ne
\XINT_global\@namedef{POLuserpol@#2}{-1.\empty{0/1[0]}}%
\else
\edef\POL@var@coeffs{\expandafter\POL@diff\POL@var@coeffs\relax}%
\XINT_global\expandafter\edef\csname POLuserpol@#2\endcsname
{\the\numexpr\POL@var@deg-\@ne.\noexpand\empty\POL@var@coeffs}%
\fi
}%
% lazy way but allows to share with AntiDiff
\def\POL@Iterate#1#2#3{%
\begingroup
\xintverbosefalse
#1{#2}{#3}%
\xintloop
\ifnum\POL@iterindex>\tw@
#1{#3}{#3}%
\edef\POL@iterindex{\the\numexpr\POL@iterindex-\@ne}%
\repeat
\expandafter
\endgroup\expandafter
\XINT_global
\expandafter
\def\csname POLuserpol@#3\expandafter\endcsname
\expandafter{\romannumeral`&&@\csname POLuserpol@#3\endcsname}%
#1{#3}{#3}%
}%
%
%% ANTI-DIFFERENTIATION
%
\def\POL@antidiff@loop@one #1/#2[#3]#4%
{\xintIrr{#1/\xintiiMul{#4}{#2}[0]}[#3]}%
\def\POL@antidiff{\POL@antidiff@loop1.}%
\def\POL@antidiff@loop#1.#2{%
\if\relax#2\expandafter\xint_gob_til_dot\fi
{\expandafter\POL@antidiff@loop@one\romannumeral0\xintraw{#2}{#1}}%
\expandafter\POL@antidiff@loop\the\numexpr#1+\@ne.%
}%
\def\PolAntiDiff{\POL@chkopt\POL@oPolAntiDiff[1]}%
\def\POL@oPolAntiDiff[#1]{%
% optional parameter is how many times to derivate
% first mandatory arg is name of polynomial function to derivate,
% same name as in \NewPolExpr
% second mandatory arg name of derivative
\edef\POL@iterindex{\the\numexpr#1\relax}%
\ifnum\POL@iterindex<\z@
\expandafter\xint_firstoftwo
\else
\expandafter\xint_secondoftwo
\fi
{\PolDiff[-\POL@iterindex]}{\POL@AntiDiff}%
}%
\def\POL@AntiDiff{%
\ifcase\POL@iterindex\space
\expandafter\POL@AntiDiff@no
\or\expandafter\POL@AntiDiff@one
\else\xint_afterfi{\POL@Iterate\POL@AntiDiff@one}%
\fi
}%
\let\POL@AntiDiff@no\POL@Diff@no
\def\POL@AntiDiff@one #1#2{\POL@AntiDiff@@one{#1}{#2}\POL@newpol{#2}}%
\def\POL@AntiDiff@@one#1#2{%
\expandafter\expandafter\expandafter\POL@split
\csname POLuserpol@#1\endcsname;\POL@var@deg\POL@var@coeffs
\ifnum\POL@var@deg<\z@
\XINT_global\@namedef{POLuserpol@#2}{-1.\empty{0/1[0]}}%
\else
\edef\POL@var@coeffs{\expandafter\POL@antidiff\POL@var@coeffs\relax}%
\XINT_global\expandafter\edef\csname POLuserpol@#2\endcsname
{\the\numexpr\POL@var@deg+\@ne.\noexpand\empty{0/1[0]}\POL@var@coeffs}%
\fi
}%
%
%%
%% Localization of roots
%%
% this is big. It provides also output macros, of both expandable and
% non-expandable type
\input polexprsturm.tex\relax
%
%
%% Non-expandable output macros
%
\def\PolTypesetCmdPrefix#1{\xintiiifSgn{#1}{}{+}{+}}%
\def\PolTypesetCmd#1{\xintifOne{\xintiiAbs{#1}}%
{\ifnum\PolIndex=\z@\xintiiSgn{#1}\else
\xintiiifSgn{#1}{-}{}{}\fi
\let\PolIfCoeffIsPlusOrMinusOne\xint_firstoftwo}%
{\PolTypesetOne{#1}%
\let\PolIfCoeffIsPlusOrMinusOne\xint_secondoftwo}%
}%
\ifdefined\frac
\def\PolTypesetOne{\xintTeXsignedFrac}%
\else
\def\PolTypesetOne{\xintTeXsignedOver}%
\fi
\catcode`^ 7 %
\def\PolTypesetMonomialCmd{%
\ifcase\PolIndex\space
%
\or\PolVar
\else\PolVar^{\PolIndex}%
\fi
}%
\catcode`^ 11 % normal xint catcode
\def\PolTypeset{\POL@ifstar
{\def\POL@ts@ascending{1}\POL@Typeset}%
{\def\POL@ts@ascending{0}\POL@Typeset}%
}%
%%
%% \PolTypeset
%%
%% extended at 0.8 to handle arbitrary expressions on input
%%
\def\POL@Typeset{\POL@chkopt\POL@oPOL@Typeset[x]}%
\def\POL@oPOL@Typeset[#1]#2{%
\ifmmode\let\POL@endtypeset\empty\else$\def\POL@endtypeset{$}\fi
\ifcsname POLuserpol@#2\endcsname
\expandafter\expandafter\expandafter\POL@split
\csname POLuserpol@#2\endcsname;\POL@var@deg\POL@var@coeffs
\else
\xintAssign\expandafter\xint_firstofone\romannumeral0\xintbareeval
subs((deg(x),coeffs(x)),x=subs(#2,\PolToExprInVar=pol([0,1])))\relax
\to\POL@var@deg\POL@var@coeffs
\fi
\if\POL@ts@ascending1%
\def\PolIndex{0}%
\let\POL@ts@reverse\xint_firstofone
\let\POL@@ne@or@m@ne\@ne
\else
\let\PolIndex\POL@var@deg
\ifnum\PolIndex<\z@\def\PolIndex{0}\fi
\let\POL@ts@reverse\xintRevWithBraces
\let\POL@@ne@or@m@ne\m@ne
\fi
\def\PolVar{#1}%
\ifnum\POL@var@deg<\z@
\PolTypesetCmd{0/1[0]}\PolTypesetMonomialCmd
\else
\ifnum\POL@var@deg=\z@
\expandafter\PolTypesetCmd\POL@var@coeffs\PolTypesetMonomialCmd
\else
\def\POL@ts@prefix##1{\let\POL@ts@prefix\PolTypesetCmdPrefix}%
\expandafter\POL@ts@loop
\romannumeral-`0\POL@ts@reverse{\POL@var@coeffs}\relax
\fi
\fi
\POL@endtypeset
}%
\def\POL@ts@loop{\ifpoltypesetall\expandafter\xint_firstoftwo
\else\expandafter\xint_secondoftwo\fi
{\POL@ts@nocheck}{\POL@ts@check}.%
}%
\def\POL@ts@check.#1{%
\if\relax#1\expandafter\xint_gob_til_dot\fi
\xintiiifZero{#1}%
{}%
{\POL@ts@prefix{#1}\PolTypesetCmd{#1}\PolTypesetMonomialCmd}%
\edef\PolIndex{\the\numexpr\PolIndex+\POL@@ne@or@m@ne}\POL@ts@check.%
}%
\def\POL@ts@nocheck.#1{%
\if\relax#1\expandafter\xint_gob_til_dot\fi
\POL@ts@prefix{#1}\PolTypesetCmd{#1}\PolTypesetMonomialCmd
\edef\PolIndex{\the\numexpr\PolIndex+\POL@@ne@or@m@ne}\POL@ts@nocheck.%
}%
%
%%
%% Expandable output macros (legacy)
%%
\def\POL@eval@fork#1\At#2#3\krof{#2}%
\def\PolEval#1#2#3{\romannumeral`&&@\POL@eval@fork
#2\PolEvalAt
\At\PolEvalAtExpr\krof {#1}{#3}%
}%
\def\PolEvalAt#1#2{%
\xintpraw{\csname XINT_expr_polfunc_#1\endcsname{#2}}%
}%
\def\POL@eval#1#2{%
\csname XINT_expr_polfunc_#1\endcsname{#2}%
}%
\def\PolEvalAtExpr#1#2{\xinttheexpr #1(#2)\relax}%
%
\def\PolEvalReduced#1#2#3{\romannumeral`&&@\POL@eval@fork
#2\PolEvalReducedAt
\At\PolEvalReducedAtExpr\krof {#1}{#3}%
}%
\def\PolEvalReducedAt#1#2{%
\xintpraw % in order not to print denominator if the latter equals 1
{\xintIrr{\csname XINT_expr_polfunc_#1\endcsname{#2}}[0]}%
}%
\def\PolEvalReducedAtExpr#1#2{%
\xintpraw
{\expandafter\xintIrr\romannumeral`&&@\xintthebareeval#1(#2)\relax[0]}%
}%
%
\def\PolFloatEval#1#2#3{\romannumeral`&&@\POL@eval@fork
#2\PolFloatEvalAt
\At\PolFloatEvalAtExpr\krof {#1}{#3}%
}%
\def\PolFloatEvalAt#1#2{%
\xintpfloat{\csname XINT_flexpr_polfunc_#1\endcsname{#2}}%
}%
\def\PolFloatEvalAtExpr#1#2{\xintthefloatexpr #1(#2)\relax}%
\def\PolLeadingCoeff#1{%
\romannumeral`&&@\expandafter\expandafter\expandafter\xintlastitem
\expandafter\expandafter\expandafter
{\csname POLuserpol@#1\endcsname}%
}%
%
\def\PolNthCoeff#1#2{\romannumeral`&&@%
\expandafter\POL@nthcoeff
\romannumeral0\xintnthelt{\ifnum\numexpr#2<\z@#2\else(#2)+1\fi}%
{\expandafter\expandafter\expandafter
\xint_gob_til_dot\csname POLuserpol@#1\endcsname}@%
}%
\def\POL@nthcoeff#1@{\if @#1@\expandafter\xint_firstoftwo
\else\expandafter\xint_secondoftwo\fi
{0/1[0]}{#1}}%
%
% returns -1 for zero polynomial for context of numerical expression
% should it return -\infty?
\def\PolDegree#1{\romannumeral`&&@\expandafter\expandafter\expandafter
\POL@degree\csname POLuserpol@#1\endcsname;}%
\def\POL@degree #1.#2;{#1}%
%
\def\PolToList#1{\romannumeral`&&@\expandafter\expandafter\expandafter
\xint_gob_til_dot\csname POLuserpol@#1\endcsname}%
%
\def\PolToCSV#1{\romannumeral0\xintlistwithsep{, }{\PolToList{#1}}}%
%
% \PolIContent (0.5)
% Why did I call this IContent and not Content? Ah, I see, Maple terminology!
% But I realize now I misread in 2018 the Maple doc, its icontent() is the gcd
% of all coeffs of a multivariate polynomial. Whereas content(,) second argument
% specifies which variable to consider expression as being univariate in it.
% Refactored at 0.8 as xint 1.4 has a backported fractional gcd
% (itself refactored at 1.4d)
\def\POL@icontent#1{\romannumeral0\expandafter\XINT_fgcd_out
\romannumeral0\expandafter\XINT_fgcdof\romannumeral`&&@#1^}%
% Since xintexpr 1.4d, \xintGCDof always outputs an irreducible fraction A/B.
% (with B=1 if A/B integer).
\def\PolIContent#1{\xintGCDof{\PolToList{#1}}}%
%
\def\PolToExprCmd#1{\xintPRaw{\xintRawWithZeros{#1}}}%
\def\PolToFloatExprCmd#1{\xintPFloat{#1}}% CHANGED AT 0.8.2! was \xintFloat
% \def\PolTypesetCmdPrefix#1{\xintiiifSgn{#1}{}{+}{+}}%
\let\PolToExprTermPrefix\PolTypesetCmdPrefix
\def\PolToExprOneTermStyleA#1#2{%
\ifnum#2=\z@
\PolToExprCmd{#1}%
\else
\xintifOne{\xintiiAbs{#1}}
{\xintiiifSgn{#1}{-}{}{}}% + from \PolToExprTermPrefix
{\PolToExprCmd{#1}\PolToExprTimes}%
\fi
\ifcase\xintiiAbs{#2} %<-- space here mandatory
\or\PolToExprVar
\else\PolToExprVar\PolToExprCaret\xintiiAbs{#2}%
\fi
}%
\let\PolToExprOneTerm\PolToExprOneTermStyleA
\def\PolToExprOneTermStyleB#1#2{%
\ifnum#2=\z@
\xintNumerator{#1}%
\else
\xintifOne{\xintiiAbs{\xintNumerator{#1}}}
{\xintiiifSgn{#1}{-}{}{}}% + from \PolToExprTermPrefix
{\xintNumerator{#1}\PolToExprTimes}%
\fi
\ifcase\xintiiAbs{#2} %<-- space here mandatory
\or\PolToExprVar
\else\PolToExprVar\PolToExprCaret\xintiiAbs{#2}%
\fi
\xintiiifOne{\xintDenominator{#1}}{}{/\xintDenominator{#1}}%
}%
\def\PolToFloatExprOneTerm#1#2{%
\ifnum#2=\z@
\PolToFloatExprCmd{#1}%
\else
\PolToFloatExprCmd{#1}\PolToExprTimes
\fi
\ifcase\xintiiAbs{#2} %<-- space here mandatory
\or\PolToExprVar
\else\PolToExprVar\PolToExprCaret\xintiiAbs{#2}%
\fi
}%
\def\PolToExprTimes{*}%
\def\PolToExprVar{x}%
\def\PolToExprInVar{x}%
\edef\PolToExprCaret{\string ^}%
%%
%% \PolToExpr
%%
%% extended at 0.8 to handle arbitrary expressions on input
%%
\def\PolToExpr#1{%
\if*\noexpand#1\expandafter\xint_firstoftwo\else
\expandafter\xint_secondoftwo\fi
\PolToExprAscending\PolToExprDescending{#1}}%
\def\PolToFloatExpr#1{%
\if*\noexpand#1\expandafter\xint_firstoftwo\else
\expandafter\xint_secondoftwo\fi
\PolToFloatExprAscending\PolToFloatExprDescending{#1}}%
\def\PolToExpr@getit#1%
{%
\ifcsname XINT_expr_varvalue_#1\endcsname
\csname XINT_expr_varvalue_#1\expandafter\endcsname
\else
\expandafter\xint_firstofone\romannumeral0%
\xintbareeval subs(#1,\PolToExprInVar=pol([0,1]))\expandafter\relax
\fi
}%
\def\PolToExprAscending#1#2{%
\expandafter\POL@toexpr\romannumeral0\PolToExpr@getit{#2}%
\PolToExprOneTerm\POL@toexprA
}%
\def\PolToFloatExprAscending#1#2{%
\expandafter\POL@toexpr\romannumeral0\PolToExpr@getit{#2}%
\PolToFloatExprOneTerm\POL@toexprA
}%
\def\PolToExprDescending#1{%
\expandafter\POL@toexpr\romannumeral0\PolToExpr@getit{#1}%
\PolToExprOneTerm\POL@toexprD
}%
\def\PolToFloatExprDescending#1{%
\expandafter\POL@toexpr\romannumeral0\PolToExpr@getit{#1}%
\PolToFloatExprOneTerm\POL@toexprD
}%
\def\POL@toexpr#1#2#3{\POL@toexpr@fork#3#2#1\relax}%
\def\POL@toexpr@fork #1#2#3{%
\POL_Pfork
#3\POL@toexpr@pol
P\POL@toexpr@cst
\krof #1#2#3%
}%
\def\POL@toexpr@cst#1#2#3\relax{#2{#3}{0}}%
\def\POL@toexpr@pol#1#2P#3.{#1{#3}#2\empty}%
% now back to legacy pre 0.8 code
\def\POL@toexprA #1#2\empty#3{%
\ifpoltoexprall\expandafter\POL@toexprall@b
\else\expandafter\POL@toexpr@b
\fi {#3}#2{0}1.%
}%
\def\POL@toexprD #1#2#3\relax{% #3 has \empty to prevent brace removal
\expandafter\POL@toexprD@a\expandafter#2%
\the\numexpr #1\expandafter.\romannumeral0\xintrevwithbraces{#3}\relax
}%
\def\POL@toexprD@a #1#2.#3{%
\ifpoltoexprall\expandafter\POL@toexprall@b
\else\expandafter\POL@toexpr@b
\fi{#3}#1{-#2}\the\numexpr\@ne+-#2.%
}%
\def\POL@toexpr@b #1#2#3{%
\xintiiifZero{#1}%
{\expandafter\POL@toexpr@loop\expandafter\POL@toexpr@b}%
{#2{#1}{#3}%
\expandafter\POL@toexpr@loop\expandafter\POL@toexpr@c}%
\expandafter#2%
}%
\def\POL@toexpr@c #1#2#3{%
\xintiiifZero{#1}%
{}%
{\PolToExprTermPrefix{#1}#2{#1}{#3}}%
\expandafter\POL@toexpr@loop\expandafter\POL@toexpr@c
\expandafter#2%
}%
\def\POL@toexprall@b #1#2#3{%
#2{#1}{#3}%
\expandafter\POL@toexpr@loop\expandafter\POL@toexprall@c
\expandafter#2%
}%
\def\POL@toexprall@c #1#2#3{%
\PolToExprTermPrefix{#1}#2{#1}{#3}%
\expandafter\POL@toexpr@loop\expandafter\POL@toexprall@c
\expandafter#2%
}%
\def\POL@toexpr@loop#1#2#3.#4{%
\if\relax#4\expandafter\xint_gob_til_dot\fi
#1{#4}#2{#3}\the\numexpr\@ne+#3.%
}%
\XINTrestorecatcodesendinput%
|