1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
|
%Contents: Sorting via TeX (heap and quick) %Submission CTAN
% Introduced at TUG 93.
%Version: 1.0 December 1993.
%Purpose: Sorting within TeX.
%Example of use (after \input sort.tex %the auxiliaries
% \input heap.tex resp. quick.tex %the macros)
%Documentation: Proceedings TUG 93, Aston, TUGboat 14.3, (abridged)
% and MAPS 93.1 (complete)
%C.G. van der Laan, Hunzeweg 57, 9893PB, Garnwerd. Holland. 05941-1525.
% cgl@risc1.rug.nl
%For TeX-ing this contribution use ltugproc.sty; the macros can be used
%with AllTeX.
%This file contains
% - History of changes
% - Auxiliaries (sort.tex)
% - heap.tex
% - quick.tex
% - Example heap sort
% - quick sort
%
%%%%%%%%%% History of changes %%%%%%%%%%
%History of change files
%Jan 1994: Submission CTAN.
%
%Next follows the two appendices as supplied in TUGboat 14, 3 with the macros
%included, so that it can be processed by ltugproc.sty
\documentstyle{ltugproc}
\title{Sorting macros}
\author{Kees van der Laan}
\address{Hunzeweg 57, 9893 PB, Garnwerd, The Netherlands}
\netaddress[\network{Internet}]{cgl@risc1.rug.nl}
\begin{abstract} The macros as submitted for CTAN.
They are embedded in an article which consists of the appendices
heap sort and quick sort.
The latter show the low level use of the (worker) macros.
For high level use see the article in TUGBoat 14, 3, (TUG 93) or
the complete---Sorting in BLUe---as released in MAPS 93.1.
\end{abstract}
\maketitle
\let\ftn\footnote
\begin{document}
\noindent Contents of file\\
- sort.tex (auxiliaries)\\
- heap.sort (specific for heap sort)\\
- quick.sort (specific for quick sort)\\
- the two appendices.
\vfill\eject
%
%%%%%%%%%% Auxiliaries sort.tex %%%%%%%%%%
%Sort tex macros%sort.tex Jan 93
%Shorthands
\let\ag=\aftergroup
\let\ea=\expandafter\let\nx=\noexpand
%Counters
\newcount\n\newcount\k\newcount\kk\n=0
\newcount\kzero\kzero0 %Bias value
\newcount\pk\newcount\pkone%Used in sortcs
\newcount\frst%First value of range
\newcount\lst %Last value of range
\newcount\slst%Successor \lst
\newcount\dif %Difference \lst-\frst
\newcount\nw %Number of words
\newcount\nc %Number of characters/comp
\newcount\numex %Number of exchanges
\newcount\rndval%Random number
\newcount\rndnum%Seed random generator
\newcount\rndtmp%Temporary value
\newcount\status%Status comparison
%Newif-s
\newif\ifcontinue%controls loops
\newif\iffound%locating accent cs
\newif\ifproof\prooftrue
%
%Storing: from copy
\def\seq#1\qes{\k0 \fifow#1 \wofif{} }
%Auxiliaries: FIFO
\def\fifow#1 {\ifx\wofif#1\n\k\wofif\fi
\processw{#1}\fifow}
\def\wofif#1\fifow{\fi}
\def\processw#1{\advance\k1 \ea
\gdef\csname\the\k\endcsname{#1}}
%
%Storing: from file
\newread\rec
\def\storefrom#1{%#1 is file name
\openin\rec=#1 \k\kzero \continuetrue
\loop\ifeof\rec\continuefalse\fi
\ifcontinue\advance\k1{}\read\rec to\xyz
\ea\let\csname\the\k\endcsname=\xyz
\repeat\advance\k-1\n\k\closein\rec}
%
%Storing: random numbers
\def\storerandomn#1{%#1 number of numbers
\n#1\k0
\loop\ifnum\k<\n\advance\k1 \rnd\ea
\xdef\csname\the\k\endcsname{\the\rndval}
\repeat}
%
%With, due to Reid, 1987
\def\rnd{\global\multiply\rndnum371{}%
\global\advance\rndnum1{}%
\ifnum\rndnum>99999
\rndtmp\rndnum \divide\rndtmp100000
\multiply\rndtmp100000
\global\advance\rndnum-\rndtmp
\fi\global\rndval\rndnum
\global\divide\rndval1000 }
%
%Storing: random words
\def\storerandomw#1{%#1 number of words
\n#1\nw\n\def\defarr{\ea\gdef
\csname\the\nw\endcsname}
{\loop\ifnum0<\nw{\ag\defarr\ag{%
\randomword}}\advance\nw-1
\repeat}}%end s-r-w.
%
\def\randomword{\rnd \nc\rndval
\divide\nc15 \advance\nc2
\loop\ifnum0<\nc\randomchar
\advance\nc-1
\repeat}%end r-word
%
%Random character is modified
\def\randomchar{\rnd
\multiply\rndval29 \divide\rndval100
\ifnum26=\rndval\rndval0 \fi
\ifnum26<\rndval\rndval4 \fi
%Mod cgl: I \ag-ed the letter
\ea\ag\ifcase\rndval
a\or b\or c\or d\or e\or f\or g\or h\or
i\or j\or k\or l\or m\or n\or o\or p\or
q\or r\or s\or t\or u\or v\or w\or x\or
y\or z\fi}%end r-char
%
%Typeset
%Parameters: Separators
\def\sepn{, }%Number separator
\def\sepw{ } %Word separator
\let\sep\sepw
%
\def\prc#1{\init{#1}\def\prc##1{%
\ifnum\lst=##1{}\else\ifnum\slst=##1{}%
\lst\slst\advance\slst1{}\else
\prtfl\sepn\init{##1}\fi\fi}}
%
\def\init#1{\frst=#1\lst=#1\slst=#1{}%
\advance\slst1{}}
%
%Print range: \frst-\lst (or \lst).
\def\prtfl{\the\frst\ifnum\frst<\lst
\advance\frst1{}\ifnum\frst=\lst\sepn
\else\nobreak--\nobreak\fi\the\lst\fi}
%
%Printing sequences
\def\prts{{\k\kzero%print \1,...\n
\def\sep{\let\sep=\sepw}%
\loop\ifnum\k<\n\advance\k1
\sep\csname\the\k\endcsname
\repeat}}%end \prts
%
\let\prtw=\prts
%
\def\prtn{{\k\kzero%Print number sequence
\loop\ifnum\k<\n\advance\k1
\ea\prc\csname\the\k\endcsname
\repeat\prtfl}}%end \prtn
%
\def\typind#1{%#1 a def
\ea\splittot#1.%
\ifcase\digit\word\or
{\tt\word}\or
{\tt\char92\word}\or
$\langle\hbox{\word}\rangle$\fi{}
\pagenrs}
%
\def\splittot#1 !#2 #3.{\def\word{#1}%
\chardef\digit=#2{}\def\pagenrs{#3}}
%
\def\prtind{{\def\\{\hfil\break}\k\kzero
\def\sep{\let\sep\sepw}%
\loop\ifnum\k<\n\advance\k1
\sep\ea\typind\csname\the\k\endcsname
\repeat}}
%
%Sorting in O(nlog n)
%Numbers
\def\sortn{\let\cmp\cmpn\sort\prtn}
%
%ASCII words
\def\sortaw{\let\cmp\cmpaw\sort\prtw}
%
%Words (with accents)
\def\sortw{\let\cmp\cmpw{\accdef\sort}\prtw}
%
\def\sort{\heapsort}
%
%Paramaters: ij and accent string
\def\accstr{\`\'\"\^\c}
%
\def\accdef{\def\i{i}\def\j{j}%
\def\'##1{##1a}\def\`##1{##1g}%
\def\"##1{##1t}\def\^##1{##1h}%
\def\c##1{##1c}}
%
\def\ij{ij}
%
%Sorting parameters: exchange macro
\def\xch#1#2{%#1, #2 counter variables
\ea\let\ea\auxone\csname\the#1\endcsname
\ea\let\ea\auxtwo\csname\the#2\endcsname
\ea\global\ea\let\csname\the#2\endcsname
\auxone
\ea\global\ea\let\csname\the#1\endcsname
\auxtwo}
%
%Sorting parameters: number comparison
\def\cmpn#1#2{%#1, #2 are def-s
%Result: \status= 0, 1, 2, if
% \val{#1} =, >, < \val{#2}
\ifnum#1=#2\global\status0 \else
\ifnum#1>#2\global\status1 \else
\global\status2 \fi\fi}
%
%Parameters: comparison of words
\def\cmpw#1#2{%#1, #2 are def-s
%Result: \status= 0, 1, 2, if
% \val{#1} =, >, < \val{#2}
\let\nxt\nxtw\cmpc#1#2}
%
\def\cmpaw#1#2{%#1, #2 are defs with as
%replacement text the words.
%Result: \status= 0, 1, 2, if
% \val{#1} =, >, < \val{#2}
\let\nxt\nxtaw\cmpc#1#2}
%
\def\cmpc#1#2{%#1, #2 are def-s
%Result: \status= 0, 1, 2, if
% \val{#1} =, >, < \val{#2}
\ifproof\global\advance\nc1
\let\aa#1\let\bb#2\fi
\global\status0 \continuetrue
{\loop\ifx\empty#1\continuefalse\fi
\ifx\empty#2\continuefalse\fi
\ifcontinue\nxt#1\nxtt\nxt#2\nxtu
\lge\nxtt\nxtu
\repeat}\ifnum0=\status
\ifx\empty#1\ifx\empty#2\else
\global\status2 \fi
\else\ifx\empty#2\global\status1 \fi
\fi\fi
\ifproof\immediate\write16{\aa
\ifnum0=\status=\else
\ifnum1=\status>\else
<\fi\fi\bb.}
\fi%end ifproof
}
%
\def\lge#1#2{%#1 and #2 letter values
%Result: \status= 0, 1, 2, if
% #1 =, >, < #2.
%and \continuefalse if #1=/#2.
\ifnum#1=#2{}\else\continuefalse
\ifnum#1<#2\global\status2 \else
\global\status1 \fi
\fi}
%
\def\nxtw#1#2{\def\pop##1##2\pop{%
\gdef#1{##2}\def\head{##1}}%head and tail
\ea\pop#1\pop%split in head and tail
\ea\loc\head\accstr%\head is an accent cs?
\iffound\let\acs\head
\ea\pop#1\pop%next head and tail
\ea\let\ea#2\csname ot\acs\head\endcsname
\else\ea\let\ea#2\csname ot\head\endcsname
\fi}
%
\def\loc#1#2{\def\locate##1#1##2\end
{\ifx\empty##2\empty\foundfalse
\else\foundtrue\fi}\ea\locate#2.#1\end}
%
%Parameters: for ASCII words
\def\nxtaw#1#2{%Result: value of first
%letter of string supplied in #1 is delivered
%in #2. (To be used as a number (\chardef)).
%#1, #2 are control sequences.
\def\pop##1##2\pop{\gdef#1{##2}%
\chardef#2=`##1{}}\ea\pop#1\pop}
%
\def\cmpir#1#2{%#1, #2 defs
%Result: \status= 0, 1, 2 if
% \val{#1} =, >, < \val{#2}
\ea\ea\ea\decom\ea#1\ea;#2.}
%
\def\decom#1 !#2 #3;#4 !#5 #6.{%
\def\one{#1}\def\four{#4}\cmpaw\one\four
\ifnum0=\status%Compare secondary keys
\ifnum#2<#5{}\global\status2{}\else
\ifnum#2>#5{}\global\status1{}\else
%Compare tertiary keys
\ifnum#3<#6{}\global\status2{}\else
\ifnum#3>#6{}\global\status1{}\fi
\fi
\fi
\fi
\fi}
%
\def\red{%Reduction of \1,...,\n
\k0\kk0\let\refer\empty
\loop\ifnum\k<\n\advance\k1
\ea\let\ea\record\csname\the\k\endcsname
\ea\splitwn\record.%
\ifx\refer\word%extend with number
\ea\xdef\csname\the\kk\endcsname{%
\csname\the\kk\endcsname, \num}%
\else%write record to \kk
\advance\kk1\let\refer\word\ea\global
\ea\let\csname\the\kk\endcsname\record
\fi
\repeat\n=\kk}
%
\def\redrng{%Reduction of \1,...,\n, with
%range representation of page numbers
{\k1\kk0
\ea\let\ea\record\csname\the\k\endcsname
\ea\splitwn\record.\let\refer\word
\let\nrs\empty\prcrng\num
\loop\ifnum\k<\n\advance\k1
\ea\let\ea\record\csname\the\k\endcsname
\ea\splitwn\record.%
\ifx\refer\word%extend \nrs with number
\prcrng\num
\else%write record to \kk
\advance\kk1 \strnrs
\ea\xdef\csname\the\kk\endcsname{\refer{}
\nrs}\let\nrs\empty\init\num\prcrng\num
\let\refer\word
\fi
\repeat\ifnum1<\n
\advance\kk1 \strnrs
\ea\xdef\csname\the\kk\endcsname{\word{}
\nrs}
\global\n\kk\fi}}
%
\def\prcrng#1{\init{#1}\def\prcrng##1{%
\ifnum##1=\lst\else\ifnum##1=\slst
\lst\slst\advance\slst1 \else
\strnrs\init{##1}\fi\fi}}
%
\def\strnrs{\dif\lst\advance\dif-\frst
\edef\nrs{\ifx\nrs\empty\else\nrs\sepn\fi
\the\frst\ifnum0<\dif
\ifnum1=\dif\sepn\the\lst
\else\nobreak--\nobreak\the\lst
\fi
\fi}}
%
\def\splitwn#1 !#2 #3.{\def\word{#1 !#2}%
\def\num{#3}}
%
\def\getdig#1 !#2 #3.{\def\dig{#2}}
%
\def\sortcs{\global\k0\global\pk\n
\global\pkone\pk\global\advance\pkone1
%Invariant: 1:k non-cs; pk+1:n control seq-s
\loop\global\advance\k1
\ifnum\k<\pkone
\ea\ea\ea\getdig\csname\the\k\endcsname.%
\if2\dig{\continuetrue
\loop
\ifnum\k=\pk\continuefalse
\else\ea\ea\ea\getdig\csname\the\pk
\endcsname.%
\if2\dig
\else\xch\k\pk\continuefalse
\fi
\fi\global\pkone\pk\global\advance\pk-1
\ifcontinue
\repeat}%
\fi
\repeat}%Result\1:\pk non-cs, \pkone:\n cs
%
%Parameters: Ordering table
\chardef\ota=32 \chardef\otA=32
\chardef\otaa=33 \chardef\otag=33
\chardef\otat=34 \chardef\otah=35
\chardef\otb=39 \chardef\otB=39
\chardef\otc=46 \chardef\otC=46
\chardef\otcc=47 \chardef\otcc=47
\chardef\otd=53 \chardef\otD=53
\chardef\ote=60 \chardef\otE=60
\chardef\otea=61 \chardef\oteg=62
\chardef\otet=63 \chardef\oteh=64
\chardef\otf=67 \chardef\otF=67
\chardef\otg=74 \chardef\otG=74
\chardef\oth=81 \chardef\otH=81
\chardef\oti=88 \chardef\otI=88
\chardef\otit=91 \chardef\otih=92
\chardef\otj=95 \chardef\otJ=95
\chardef\otjt=98
\chardef\otk=102 \chardef\otK=102
\chardef\otl=109 \chardef\otL=109
\chardef\otm=116 \chardef\otM=116
\chardef\otn=123 \chardef\otN=123
\chardef\oto=130 \chardef\otO=130
\chardef\otoa=131 \chardef\otog=132
\chardef\otot=133 \chardef\otoh=134
\chardef\otp=137 \chardef\otP=137
\chardef\otq=143 \chardef\otQ=143
\chardef\otr=150 \chardef\otR=150
\chardef\ots=157 \chardef\otS=157
\chardef\ott=164 \chardef\otT=164
\chardef\otu=171 \chardef\otU=171
\chardef\otut=174 \chardef\otuh=175
\chardef\otv=178 \chardef\otV=178
\chardef\otw=185 \chardef\otW=185
\chardef\otx=192 \chardef\otX=192
\chardef\otij=199 \chardef\otIJ=199
\chardef\oty=200 \chardef\otY=200
\chardef\otz=206 \chardef\otZ=206
%\endinput %cgl@rug.nl
%
%%%%%%%%%% heap sort macro %%%%%%%%%%
%heapsort.tex Jan, 93
\newcount\n\newcount\lc\newcount\r
\newcount\ic\newcount\uone
\newcount\jc\newcount\jj\newcount\jjone
\newif\ifgoon
%Non-descending sorting
\def\heapsort{%data in \1 to \n
\r=\n\heap\ic=1{}%
{\loop\ifnum\r>1{}\xch\ic\r
\advance\r-1{}\sift\ic\r
\repeat}}
%
\def\heap{%Transform \1..\n into heap
\lc=\n\divide\lc2{}\advance\lc1{}%
{\loop\ifnum\lc>1{}\advance\lc-1{}%
\sift\lc\n\repeat}}
%
\def\sift#1#2{%#1, #2 counter variables
\jj=#1\uone=#2\advance\uone1{}\goontrue
{\loop\jc=\jj \advance\jj by\jj
\ifnum\jj<\uone
\jjone=\jj \advance\jjone1{}%
\ifnum\jj<#2{}\cmpval\jj\jjone
\ifnum2=\status\jj=\jjone\fi\fi
\cmpval\jc\jj\ifnum2>\status\goonfalse\fi
\else\goonfalse\fi
\ifgoon\xch\jc\jj\repeat}}
%
\def\cmpval#1#2{%#1, #2 counter variables
%Result: \status= 0, 1, 2 if
% \val{#1} =, >, < \val{#2}
\ea\let\ea\aone\csname\the#1\endcsname
\ea\let\ea\atwo\csname\the#2\endcsname
\cmp\aone\atwo}
%\endinput %cgl@rug.nl
%
%%%%%%%%%% quick sort macro %%%%%%%%%%
\newcount\low\newcount\up\newcount\m
\def\quicksort{%Values given in
%\low,...,\up are sorted, non-descending.
%Parameters: \cmp, comparison.
\ifnum\low<\up\else\brk\fi
%\refval, a reference value selected at random.
\m=\up\advance\m-\low%Size-1 of array part
\ifnum10<\m\rnd\multiply\m\rndval
\divide\m99{}\advance\m\low \xch\low\m
\fi
\ea\let\ea\refval\csname\the\low\endcsname
\m=\low\k=\low\let\refvalcop=\refval
{\loop\ifnum\k<\up\advance\k1{}%
\ea\let\ea\oneqs\csname\the\k\endcsname
\cmp\refval\oneqs\ifnum1=\status
\global\advance\m1{}\xch\m\k\fi
\let\refval=\refvalcop
\repeat}\xch\low\m
{\up=\m\advance\up-1{}\quicksort}%
{\low=\m\advance\low1{}\quicksort}\krb}
%
\def\brk#1\krb{\fi}\def\krb{\relax}
%\endinput %cgl@rug.nl
%
%%%%%%%%%% Example: heap sort %%%%%%%%%%
\onecolumn
\section{Appendix: Heap Sort} %Aug, 93, cgl@risc1.rug.nl
The process consists of two main steps:
creation of a heap, and sorting the heap.
A sift operation is used in both.
In comparison with my earlier release of the code in MAPS92.2,
I adapted the notation with respect to sorting in {\em non-decreasing\/}
order.\ftn{It is true that the reverse of the comparison operation would
do, but it seemed more consistent to me to adapt
the notation of the heap concept with
the smallest elements at the bottom.}
What is a heap? A sequence $a_1, a_2, \ldots, a_n$, is a heap if
$a_k\ge a_{2k} \wedge a_k\ge a_{2k+1}, k=1, 2, \ldots, n\div2$, and
because $a_{n+1}$ is undefined, the notation is simplified by
defining $a_k>a_{n+1}, k= 1, 2, \ldots , n$.
\\
For example, a tree and one of its heap representations of $2, 6, 7, 1, 3, 4$
read
$$\setlength{\unitlength}{3ex}
\vcenter{\noindent\hsize=18ex
\begin{picture}(7,4.5)(0,-.5)
\put(.5,.5){\circle{1}}
\put(.5,.5){\makebox(0,0){1}}
\put(2.5,.5){\circle{1}}
\put(2.5,.5){\makebox(0,0){3}}
\put(4.5,.5){\circle{1}}
\put(4.5,.5){\makebox(0,0){4}}
\put(1.5,2.5){\circle{1}}
\put(1.5,2.5){\makebox(0,0){6}}
\put(5.5,2.5){\circle{1}}
\put(5.5,2.5){\makebox(0,0){7}}
\put(3.5,3.5){\circle{1}}
\put(3.5,3.5){\makebox(0,0){2}}
\put(.9,1){\line(1,2){.5}}
\put(2.1,1){\line(-1,2){.5}}
\put(4.9,1){\line(1,2){.5}}
\put(2,2.9){\line(2,1){1}}
\put(5,2.9){\line(-2,1){1}}
\end{picture}}
\qquad\qquad
\vcenter{\noindent\hsize=21ex
\begin{picture}(7,5)(0,-.5)
\put(.5,.5){\circle{1}}
\put(.5,.5){\makebox(0,0){2}}
\put(2.5,.5){\circle{1}}
\put(2.5,.5){\makebox(0,0){3}}
\put(4.5,.5){\circle{1}}
\put(4.5,.5){\makebox(0,0){1}}
\put(1.5,2.5){\circle{1}}
\put(1.5,2.5){\makebox(0,0){6}}
\put(5.5,2.5){\circle{1}}
\put(5.5,2.5){\makebox(0,0){4}}
\put(3.5,3.5){\circle{1}}
\put(3.5,3.5){\makebox(0,0){7}}
\put(.9,1){\line(1,2){.5}}
\put(2.1,1){\line(-1,2){.5}}
\put(4.9,1){\line(1,2){.5}}
\put(2,2.9){\line(2,1){1}}
\put(5,2.9){\line(-2,1){1}}
\end{picture}}
$$
%
\subsection{The algorithm.}
In a pseudo notation the algorithm,
for sorting the array a[1:n], reads
\def\PO#1{\mathop{\hbox{\bf#1}}}
\def\P#1{\hbox{\bf#1}\,}
{\obeylines \parindent=0pt
\%heap creation
$l:=n\PO{div}2+1; $
$\P{while} l\ne1 \PO{do} l:=l-1; sift(a, l, n)\PO{od}$
\%sorting
$r:=n; $
$\P{while} r\ne1 \PO{do} (a[1], a[r]):=(a[r], a[1])\%exchange $
$\quad r:=r-1; sift(a, 1, r)\PO{od} $
\%sift \#1 through \#2
$j:=\#1 $
$\P{while} 2j\geq\#2 \wedge(a[j]<a[2j]\vee a[j]<a[2j+1])\PO{do} $
$\quad mi:=2j+\PO{if}a[2j]>a[2j+1]\PO{then}0\PO{else}1\PO{fi}$
$\quad exchange(a[j], a[mi])\,j:=mi\,\P{od}$
}%end scope \obeylines
%
\subsection{Encoding: Purpose.} Sorting values given in an array.
%
\subsection{Encoding: Input.} The values are stored in the control sequences
\verb|\1|, \ldots, \verb|\|$\langle n\rangle$.
The counter \verb|\n| must contain the value $\langle n\rangle$.
The parameter for comparison, \verb|\cmp|,
must be \verb|\let|-equal to \verb|\cmpn|, for numerical
comparison, to \verb|\cmpw|, for word comparison, to \verb|\cmpaw|,
for word comparison obeying the ASCII ordering, or to a comparison
macro of your own.
(The latter macro variants, and in general the common definitions for
\verb|\heapsort|, and \verb|\quicksort|,
are supplied in the file \verb|sort.tex|, see van der Laan (1993).)
%
\subsection{Encoding: Output.}
The sorted array \verb|\1|, \verb|\2|, \ldots \verb|\|$\langle n\rangle$,
with \verb|\val1| $\le$ \verb|\val2| $\le$
\ldots $\le$ \verb|\val|$\langle n\rangle$. %\ftn{And {\tt\char92%
%def\char92val\#1$\{$\char92csname\#1\char92endcsname$\}$.}}
%
\subsection{Encoding: Source.}
\begin{verbatim}
%heapsort.tex Jan, 93
\newcount\n\newcount\lc\newcount\r\newcount\ic\newcount\uone
\newcount\jc\newcount\jj\newcount\jjone \newif\ifgoon
%Non-descending sorting
\def\heapsort{%data in \1 to \n
\r\n\heap\ic1
{\loop\ifnum1<\r \xch\ic\r \advance\r-1 \sift\ic\r\repeat}}
%
\def\heap{%Transform \1..\n into heap
\lc\n\divide\lc2{}\advance\lc1
{\loop\ifnum1<\lc\advance\lc-1 \sift\lc\n\repeat}}
%
\def\sift#1#2{%#1, #2 counter variables
\jj#1\uone#2\advance\uone1 \goontrue
{\loop\jc\jj \advance\jj\jj
\ifnum\jj<\uone \jjone\jj \advance\jjone1
\ifnum\jj<#2 \cmpval\jj\jjone
\ifnum2=\status\jj\jjone\fi
\fi\cmpval\jc\jj\ifnum2>\status\goonfalse\fi
\else\goonfalse
\fi
\ifgoon\xch\jc\jj\repeat}}
%
\def\cmpval#1#2{%#1, #2 counter variables
%Result: \status= 0, 1, 2 if
%values pointed by
% #1 =, >, < #2
\ea\let\ea\aone\csname\the#1\endcsname
\ea\let\ea\atwo\csname\the#2\endcsname
\cmp\aone\atwo}
\endinput %cgl@risc1.rug.nl
\end{verbatim}
%
\subsection{Explanation: {\tt\char92heapsort}.}
The values given in \verb|\1,...\|$\langle n\rangle$,
are sorted in non-descending order.
\subsection{Explanation: {\tt\char92heap}.}
The values given in \verb|\1|, \ldots, \verb|\|$\langle n\rangle$,
are rearranged into a heap.
\subsection{Explanation: {\tt\char92sift}.}
The first element denoted by the first (counter) argument
has disturbed the heap. Sift rearranges
the part of the array denoted by its two arguments, such that the
heap property holds again.
\subsection{Explanation: {\tt\char92cmpval}.}
The values denoted by the counter values,
supplied as arguments, are compared.
%
\subsection{Examples of use: Numbers, words.} %, and accented words)
After \verb=\input heap \input sort=
\begin{verbatim}
\def\1{314}\def\2{1}\def\3{27}\n3 \let\cmp\cmpn\heapsort
\begin{quote}\prtn,\end{quote}
%
\def\1{ab}\def\2{c}\def\3{aa}\n3 \let\cmp\cmpaw\heapsort
\begin{quote}\prtw,\end{quote}
and
\def\1{j\ij}\def\2{ge\"urm}\def\3{gar\c con}\def\4{\'el\`eve}\n4
\let\cmp\cmpw {\accdef\heapsort}
\begin{quote}\prtw\end{quote}
\end{verbatim}
yields\ftn{{\tt\char92accdef} suitably redefines the
accents within this scope.}
\def\1{314}\def\2{1}\def\3{27}\n=3
{\let\cmp\cmpn\heapsort
\begin{quote}\prtn,\end{quote}
%
\def\1{ab}\def\2{c}\def\3{aa}\n=3
\let\cmp\cmpaw\heapsort
\begin{quote}\prtw,\end{quote}
and
\def\1{j\ij}\def\2{ge\"urm}\def\3{gar\c con}\def\4{\'el\`eve}\n=4
\let\cmp=\cmpw{\accdef\heapsort}
\begin{quote}\prtw.\end{quote}
}
%
\clearpage
%%%%%%%%%% Example: quick sort %%%%%%%%%%
\section{Appendix: Quick Sort}
The quick sort algorithm has been discussed in many places. %,
%for example \cite{dek73}.
Here the following code due to Bentley %\cite{jb86}, p.~112,
has been transliterated.\footnote{L, U have been changed in the \TeX\ code
into low, up.}
\begin{verbatim}
procedure QSort(L,U)
if L<U then Swap(X[l], X[RandInt(L,U)]) T:=X[L] M:=L
for I:=L+1 to U do if X[I]<T M:=M+1 Swap(X[M], X[I]) fi od
Swap(X[L], X[M])
QSort(L, M-1) QSort(M+1, U)
fi
\end{verbatim}
%
\subsection{Encoding: Purpose.}
Sorting of the values given in the array
\verb|\|$\langle low\rangle$, \ldots, \verb|\|$\langle up\rangle$.
\subsection{Encoding: Input.}
The values are stored in
\verb|\|$\langle low\rangle$, \ldots, \verb|\|$\langle up\rangle$,
with $1\le low\le up\le n$.
The parameter for comparison, \verb|\cmp|,
must be \verb|\let|-equal
to \verb|\cmpn|, for number comparison,
to \verb|\cmpw|, for word comparison,
to \verb|\cmpaw|,
for word comparison obeying the ASCII ordering,
or to a comparison macro of your own.
(The latter macros, and in general the common definitions for
\verb|\heapsort|, and \verb|\quicksort|,
are supplied in the file \verb|sort.tex|, see van der Laan (1993).)
%
\subsection{Encoding: Output.}
The sorted array \verb|\|$\langle low\rangle$,
\ldots \verb|\|$\langle up\rangle$, with
\verb|\val|$\langle low\rangle \le
\dots \le{}$ \verb|\val|$\langle up\rangle$.
%
\subsection{Encoding: Source.}
\begin{verbatim}
%quick.tex Jan 93
\newcount\low\newcount\up\newcount\m
\def\quicksort{%Values given in \low,...,\up are sorted, non-descending.
%Parameters: \cmp, comparison.
\ifnum\low<\up\else\brk\fi
%\refval, a reference value selected at random.
\m\up\advance\m-\low%Size-1 of array part
\ifnum10<\m\rnd\multiply\m\rndval
\divide\m99 \advance\m\low \xch\low\m
\fi
\ea\let\ea\refval\csname\the\low\endcsname
\m\low\k\low\let\refvalcop\refval
{\loop\ifnum\k<\up\advance\k1
\ea\let\ea\oneqs\csname\the\k\endcsname
\cmp\refval\oneqs\ifnum1=\status\global\advance\m1 \xch\m\k\fi
\let\refval\refvalcop
\repeat}\xch\low\m
{\up\m\advance\up-1 \quicksort}{\low\m\advance\low1 \quicksort}\krb}
%
\def\brk#1\krb{\fi}\def\krb{\relax}
\endinput %cgl@risc1.rug.nl
\end{verbatim}
\subsection{Explanation.}
At each level the array is partitioned into two parts.
After partitioning
the left part contains values less than the reference value and the
right part contains values greater than or equal to the reference value.
Each part is again partitioned via a recursive call of the macro.
The array is sorted when all parts are partitioned.
In the \TeX\ encoding
the reference value as estimate for the mean value is determined
via a random selection of one of the elements.
The random number is mapped into
the range [$\,low:up\,$], via the linear transformation
$\hbox{\tt\char92low}+(\hbox{\tt\char92up}-\hbox{\tt\char92low})*
\hbox{\tt\char92rndval}/99$.\ftn{Note that the number is guaranteed within
the range.}
The termination of the recursion is encoded in
a \TeX\ peculiar way.
First, I encoded the infinite loop. Then I inserted
the condition for termination with the \verb|\fi| on the same line,
and not enclosing the main part of the macro.
On termination the invocation \verb|\brk|
gobbles up all the tokens
at that level up to its separator \verb|\krb|,
and inserts its replacement text\Dash a new \verb|\fi|\Dash %
to compensate for the gobbled \verb|\fi|.
%
\subsection{Examples: Numbers, words.}
After \verb=\input quick \input sort=
\begin{verbatim}
\def\1{314}\def\2{1}\def\3{27}\n3 \low1\up\n\let\cmp\cmpn
\quicksort
\begin{quote}\prtn,\end{quote}
%
\def\1{ab}\def\2{c}\def\3{aa}\def\4{\ij}\def\5{ik}\def\6{z}\def\7{a}\n7
\low1\up\n\let\cmp\cmpw \quicksort
\begin{quote}\prtw,\end{quote}
and
\def\1{j\ij}\def\2{ge\"urm}\def\3{gar\c con}\def\4{\'el\`eve}\n4
\low1\up\n\let\cmp\cmpw {\accdef\quicksort}
\begin{quote}\prtw.\end{quote}
\end{verbatim}
yields\ftn{{\tt\char92accdef} suitably redefines the
accents within this scope.}
\def\1{314}\def\2{1}\def\3{27}\n3
{\low1\up\n\let\cmp\cmpn \quicksort
\begin{quote}\prtn,\end{quote}
%
\def\1{ab}\def\2{c}\def\3{aa}
\def\4{\ij}\def\5{ik}\def\6{z}\def\7{a}\n7
\low1\up\n\let\cmp\cmpw \quicksort
\begin{quote}\prtw,\end{quote}
and
\def\1{j\ij}\def\2{ge\"urm}\def\3{gar\c con}
\def\4{\'el\`eve}\n=4
\low=1\up=\n\let\cmp=\cmpw
{\accdef\quicksort}
\begin{quote}\prtw.\end{quote}
}
%end appendices
\end{document}
|