summaryrefslogtreecommitdiff
path: root/info/tcdmanual/la_math.tex
blob: 464a374e1d1f2b2c424ea6e21b9639ff1ba530b9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
\sectiontitle{Mathematical Formulae using \LaTeX}
\label{la-math}
\subsectiontitle{Mathematics Mode}
In order to obtain a mathematical formula using \TeX, one must
enter {\it mathematics mode} before the formula and leave it
afterwards. Mathematical formulae can occur either embedded in text
or else displayed on a separate line. When a formula occurs within
the text of a paragraph one should place a \verb?$? sign before and
after the formula, in order to enter and leave mathematics mode.
Thus to obtain a sentence like
\begin{quotation}
\small
Let $f$ be the function defined by $f(x) = 3x + 7$, and
let $a$ be a positive real number.
\end{quotation}
one should type
\begin{quote}
\begin{verbatim}
Let $f$ be the function defined by $f(x) = 3x + 7$, and
let $a$ be a positive real number.
\end{verbatim}
\end{quote}
In particular, note that even mathematical expressions consisting
of a single character, like $f$ and $a$ in the example above, are
placed within \verb?$? signs. This is to ensure that they are set
in italic type, as is customary in mathematical typesetting.

\begin{quotation}
\footnotesize
\LaTeX\ also allows you to use \verb?\(? and \verb?\)? to mark
the beginning and the end respectively of a mathematical formula
embedded in text. Thus
\begin{quote}
Let \( f \) be the function defined by \( f(x) = 3x + 7 \).
\end{quote}
may be produced by typing
\begin{quote}
\begin{verbatim}
Let \( f \) be the function defined by \( f(x) = 3x + 7 \).
\end{verbatim}
\end{quote}
However this use of \verb?\(?$\ldots$\verb?\)? is only permitted
in \LaTeX, whereas \verb?$?$\ldots$\verb?$? is more standard, and is
used in other dialects of \TeX, such as Plain \TeX\ and \AmSTeX.
\end{quotation}

   In order to obtain an mathematical formula or equation which
is displayed on a line by itself, one places \verb?\[? before and
\verb?\]? after the formula. Thus to obtain
\begin{quotation}
\small
The product of two first degree polynomials is a quadratic
polynomial. For example, if $f(x) = 3x + 7$ and $g(x) = x + 4$
then
\[ f(x)g(x) = 3x^2 + 19x +28. \]
The converse does not hold for polynomials over the field of
real numbers. However if we consider polynomials over the
complex field then every polynomial factorizes as a product
of first degree polynomials, by the Fundamental Theorem of Algebra.
\end{quotation}
one would type
\begin{quote}
\begin{verbatim}
The product of two first degree polynomials is a quadratic
polynomial. For example, if $f(x) = 3x + 7$ and $g(x) = x + 4$
then
\[ f(x)g(x) = 3x^2 + 19x +28. \]
The converse does not hold for polynomials over the field of
real numbers. However if we consider polynomials over the
complex field then every polynomial factorizes as a product
of first degree polynomials, by the Fundamental Theorem of Algebra.
\end{verbatim}
\end{quote}

\begin{quotation}
\footnotesize
It is also possible to use \verb?$$? in place of both \verb?\[ ?
and \verb?\]? to mark the beginning and end of a displayed
mathematical equation. Thus
$$f(x)g(x) = 3x^2 + 19x +28.$$
can be produced by typing
\begin{quote}
\begin{verbatim}
$$f(x)g(x) = 3x^2 + 19x +28.$$
\end{verbatim}
\end{quote}
Indeed this the method of producing displayed equations in
dialects of \TeX\ other than \LaTeX, such as Plain \TeX\ and
\AmSTeX.
\end{quotation}

   \LaTeX\ provides facilities for the automatic numbering of
displayed equations. If you want an numbered equation then you
use \verb?\begin{equation}? and \verb?\end{equation}? instead
of using \verb?\[ ? and \verb?\]? . Thus
\begin{quote}
\begin{verbatim}
The product of two first degree polynomials is a quadratic
polynomial. For example, if $f(x) = 3x + 7$ and $g(x) = x + 4$
then
\begin{equation}
f(x)g(x) = 3x^2 + 19x +28.
\end{equation}
\end{verbatim}
\end{quote}
produces
\begin{quote}
The product of two first degree polynomials is a quadratic
polynomial. For example, if $f(x) = 3x + 7$ and $g(x) = x + 4$
then
\begin{equation}
f(x)g(x) = 3x^2 + 19x +28.
\end{equation}
\end{quote}

\subsectiontitle{Characters in Mathematics Mode}
All the characters on the keyboard have their standard meaning
in mathematics mode, with the exception of the characters
\begin{verbatim}
      # $ % & ~ _ ^ \ { } '
\end{verbatim}
Letters are set in italic type. In mathematics mode the character
\verb?'? has a special meaning: typing \verb?$f' + g''$?
produces $f' + g''$. When in mathematics mode the spaces you type
between letters and other symbols do not affect the spacing of
the final result, since \TeX\ determines the spacing of characters
in formulae by its own internal rules. Thus \verb?$x ( y + z )$?
and \verb?$x(y+z)$? both produce $x ( y + z )$. You can
also type carriage returns where necessary in your input file
(e.g., if you are typing in a complicated formula with many
Greek characters and funny symbols) and this will have no effect on
the final result if you are in mathematics mode.

\begin{quotation}
\footnotesize
To obtain the characters
\[ \# \quad \$ \quad \% \quad \& \quad \_ \quad \{ \quad \} \]
in mathematics mode, one should type
\begin{verbatim}
      \# \$ \% \& \_ \{ \} .
\end{verbatim}
To obtain $\backslash$ in mathematics mode, one may type
\verb?\backslash?.
\end{quotation}

\subsectiontitle{Subscripts and Superscripts}
Subscripts and superscripts are obtained using the special
characters \verb?_? and \verb?^? respectively. Thus the
expression $t^3 + x_1^2 - x_2$ is obtained by typing
\verb?$t^3 + x_1^2 - x_2$?. When the subscript or superscript
consists of more than one character then the characters involved
should be enclosed in curly brackets. Thus to obtain the
expression $u_{i,j}^{12}$ one would type
{\verb?$u_{i,j}^{12}$?}.

   It is immaterial whether one specifies the subscript before the
superscript or vica versa. Thus \verb?$u_1^2$? and \verb?$u^2_1$?
both produce $u_1^2$. However \TeX\ does not like it if you type
\verb?$s_n_j$? since this could be interpreted either as
$s_{n j}$ or as $s_{n_j}$. The first of these alternatives is
obtained by typing \verb?$s_{n j}$?, the second by typing
\verb?$s_{n_j}$?. A similar remark applies to superscripts.
Incidentally, the second alternative illustrates the fact that
one can obtain subscripts (or superscripts) on subscripts
(or superscripts). However one should not go beyond this to
try to obtain triple subscripts.

\begin{quotation}
\footnotesize
It is sometimes necessary to obtain expressions such as
$R_i{}^j{}_{kl}$ in which the exact positioning of the subscripts
and superscripts is important (e.g., in papers on general relativity
and tensor analysis). The way this is done is to include the
`empty group' \verb?{}? at the appropriate places to enable the
superscripts and subscripts to be aligned correctly. Thus to
obtain $R_i{}^j{}_{kl}$ one would type
\verb?$R_i{}^j{}_{kl}$?.
\end{quotation}

\subsectiontitle{Greek Letters}
Greek letters are produced in mathematics mode by preceding the
name of the letter by a backslash \verb?\?. Thus the Greek letters
alpha~($\alpha$), pi~($\pi$) and chi~($\chi$) are obtained by
typing \verb?\alpha?,\verb?\pi? and \verb?\chi? respectively.
Thus the sentence
\begin{quotation}
\small
The area $A$ of a circle of radius $r$ is given by the
formula $A = \pi r^2$.
\end{quotation}
is obtained by typing
\begin{quote}
\begin{verbatim}
The area~$A$ of a circle of radius~$r$ is given by the
formula $A = \pi r^2$.
\end{verbatim}
\end{quote}
Upper case Greek letters are obtained by making the first character
of the name upper case. Thus $\Gamma$,$\Phi$ and $\Lambda$ are
obtained by typing \verb?\Gamma?,\verb?\Phi? and \verb?\Lambda?.
\begin{quotation}
\footnotesize
There is no special command for omicron: just use \verb?o?.
\end{quotation}

   Some Greek letters occur in variant forms. The variant forms
are obtained by preceding the name of the Greek letter by `var'.
The following table lists the usual form of these letters and
the variant forms:-
{\def\displayandname#1{\rlap{$\displaystyle\csname #1\endcsname$}%
                      \qquad {\tt \char92 #1}}
\[ \vcenter{\halign{\displayandname{#}\hfil&&\qquad
                   \displayandname{#}\hfil\cr
epsilon&varepsilon\cr
theta&vartheta\cr
pi&varpi\cr
rho&varrho\cr
sigma&varsigma\cr
phi&varphi\cr}}$$}

\subsectiontitle{Mathematical Symbols}
There are numerous mathematical symbols that can be used in
mathematics mode. These are obtained by typing an appropriate
control sequence. These are listed in Appendix~\ref{la-mthcs}.
For example \verb?\neq?, \verb?\leq? and \verb?\geq? produce
$\neq$, $\leq$ and $\geq$ respectively, \verb?\infty? produces
$\infty$, \verb?\times? and \verb?\div? produce $\times$ and
$\div$, both \verb?\to? and \verb?\rightarrow? produce $\to$,
\verb?\in? produces $\in$, \verb?\cup?, \verb?\cap?,
\verb?\setminus? and \verb?\subset? produce $\cup$,$\cap$,
$\setminus$ and $\subset$ respectively. The list seems endless.

\subsectiontitle{Changing Fonts in Mathematics Mode}
\ifx\selectfont\undefined
One can change fonts in mathematics mode in exactly the same
way as when typesetting ordinary text. For instance \verb?\rm?
changes to the $\rm roman$ font, \verb?\bf? changes to the
$\bf boldface$ font and \verb?\mit? changes to the
$math$ $italic$ font. The $math$ $italic$ font is automatically
used in mathematics mode unless you explicitly change the font.
In addition there is a `calligraphic' font which is obtained using
the control sequence \verb?\cal?. {\it This font can only be used
for uppercase letters.} These calligraphic letters have the form
\else
The $math$ $italic$ font is automatically
used in mathematics mode unless you explicitly change the font.
The rules for changing the font in mathematics mode are rather different
to those applying when typesetting ordinary text. 
Firstly, any change only applies to the single character
or symbol that follows.
Secondly, to change a character to the
$\mathrm{r}\mathrm{o}\mathrm{m}\mathrm{a}\mathrm{n}$ font,
the control sequence \verb?\mathrm? must be used
(rather than \verb?\rm?).
Thirdly to change a character to the
$\boldsymbol{b}\boldsymbol{o}\boldsymbol{l}\boldsymbol{d}%
\boldsymbol{f}\boldsymbol{a}\boldsymbol{c}\boldsymbol{e}$
font the control sequence \verb?\boldsymbol? must be used,
{\em and in addition the \verb?amsbsy? style must be included
in the \verb?\documentstyle? heading}.

There is also a `calligraphic' font available in mathematics mode.
This is obtained using the control sequence \verb?\cal?. 
{\it This font can only be used for uppercase letters.} 
These calligraphic letters have the form
\fi
\[ \cal{A}\cal{B}\cal{C}\cal{D}\cal{E}\cal{F}\cal{G}\cal{H}\cal{I}
\cal{J}\cal{K}\cal{L}\cal{M}\cal{N}\cal{O}\cal{P}\cal{Q}\cal{R}
\cal{S}\cal{T}\cal{U}\cal{V}\cal{W}\cal{X}\cal{Y}\cal{Z}. \]

   The following example shows how fonts are changed in an
example involving mathematics. To obtain
\ifx\selectfont\undefined
\begin{quotation}
\small
Let $\bf u$,$\bf v$ and $\bf w$ be three vectors in
${\bf R}^3$. The volume~$V$ of the parallelepiped with
corners at the points $\bf 0$,$\bf u$,$\bf v$,
$\bf w$,${\bf u}+{\bf v}$,
${\bf u}+{\bf w}$,${\bf v}+{\bf w}$
and ${\bf u}+{\bf v}+{\bf w}$
is given by the formula
\[ V = ({\bf u} \times {\bf v}) \cdot {\bf w}. \]
\end{quotation}
one would type
\begin{quote}
\begin{verbatim}
Let $\bf u$,$\bf v$ and $\bf w$ be three vectors 
in ${\bf R}^3$. The volume~$V$ of the parallelepiped with corners 
at the points $\bf 0$,$\bf u$,$\bf v$,
$\bf w$,${\bf u}+{\bf v}$,
${\bf u}+{\bf w}$,${\bf v}+{\bf w}$
and ${\bf u}+{\bf v}+{\bf w}$
is given by the formula
\[ V = ({\bf u} \times {\bf v}) . {\bf w}. \]
\end{verbatim}
\end{quote}
\else
\begin{quotation}
\small
Let $\boldsymbol u$,$\boldsymbol v$ and $\boldsymbol w$ be three vectors in
${\boldsymbol R}^3$. The volume~$V$ of the parallelepiped with
corners at the points $\boldsymbol{0}$,$\boldsymbol{u}$,$\boldsymbol{v}$,
$\boldsymbol{w}$,$\boldsymbol{u}+\boldsymbol{v}$,
$\boldsymbol{u}+\boldsymbol{w}$,$\boldsymbol{v}+\boldsymbol{w}$
and $\boldsymbol{u}+\boldsymbol{v}+\boldsymbol{w}$
is given by the formula
\[ V = (\boldsymbol{u} \times \boldsymbol{v}) \cdot \boldsymbol{w}. \]
\end{quotation}
one would type
\begin{quote}
\begin{verbatim}
Let $\boldsymbol u$,$\boldsymbol v$ and $\boldsymbol w$ be three vectors 
in ${\boldsymbol R}^3$. The volume~$V$ of the parallelepiped with corners 
at the points $\boldsymbol{0}$,$\boldsymbol{u}$,$\boldsymbol{v}$,
$\boldsymbol{w}$,$\boldsymbol{u}+\boldsymbol{v}$,
$\boldsymbol{u}+\boldsymbol{w}$,$\boldsymbol{v}+\boldsymbol{w}$
and $\boldsymbol{u}+\boldsymbol{v}+\boldsymbol{w}$
is given by the formula
\[ V = (\boldsymbol{u} \times \boldsymbol{v}) . \boldsymbol{w}. \]
\end{verbatim}
\end{quote}
\fi

\subsectiontitle{Standard Functions and Embedded Text}
The names of certain standard functions and abbreviations are
obtained by typing a backlash \verb?\? before the name. The
complete list in \TeX\ is as follows:-

\[ \vcenter{\halign{$\backslash${\tt #}&&\quad $\backslash${\tt #}\cr
arccos&cos&csc&exp&ker&limsup&min&sinh\cr
arcsin&cosh&deg&gcd&lg&ln&Pr&sup\cr
arctan&cot&det&hom&lim&log&sec&tan\cr
arg&coth&dim&inf&liminf&max&sin&tanh\cr}} \]

   Names of functions and other abbreviations not in this list can be
obtained by converting to the roman font. Thus one obtains
${\rm Aut}(V)$ by typing \verb?${\rm Aut}(V)$?.
\begin{quotation}
\footnotesize
Note that if one were to type simply \verb?$Aut(V)$? one
would obtain $Aut(V)$, because \TeX\ has treated
\verb?Aut? as the product of three quantities $A$,$u$ and $t$ and
typeset the formula accordingly.
\end{quotation}

The recommended way to obtain ordinary text in displayed mathematical
formulae is to use \verb?\mbox?. Thus one obtains
\[ M^\bot = \{ f \in V' : f(m) = 0 \mbox{ for all } m \in M \}. \]
by typing
\begin{quote}
\begin{verbatim}
\[ M^\bot = \{ f \in V' : f(m) = 0 \mbox{ for all } m \in M \}. \]
\end{verbatim}
\end{quote}
Note the blank spaces before and after the words `for all' in the above
example. Had we typed
\begin{quote}
\begin{verbatim}
\[ M^\bot = \{ f \in V' : f(m) = 0 \mbox{for all} m \in M \}. \]
\end{verbatim}
\end{quote}
we would have obtained
\[ M^\bot = \{ f \in V' : f(m) = 0 \mbox{for all} m \in M \}. \]

\begin{quotation}
\footnotesize
One can use \verb?\hbox? as an alternative to \verb?\mbox? in
mathematical formulae. Indeed \verb?\mbox? is specific to
\LaTeX, whereas \verb?\hbox? is used in Plain \TeX\ and in
other dialects of \TeX. Also \verb?\hbox? and \verb?\mbox?
only differ in their behaviour when used to begin a paragraph
of ordinary text, and in particular behave in an identical
manner when used in a mathematical formula.
\end{quotation}

\subsectiontitle{Fractions,Roots and Ellipsis}
Fractions of the form
\[ \frac{\mbox{\it numerator}}{\mbox{\it denominator}} \]
are obtained in \LaTeX\ using the construction
\begin{quote}
\verb?\frac{?{\it numerator\verb?}{?denominator}\verb?}?.
\end{quote}
For example, to obtain
\begin{quotation}
\small
The function $f$ is given by
\[ f(x) = 2x + \frac{x - 7}{x^2 + 4} \]
for all real numbers $x$.
\end{quotation}
one would type
\begin{quote}
\begin{verbatim}
The function $f$ is given by
\[ f(x) = 2x + \frac{x - 7}{x^2 + 4} \]
for all real numbers $x$.
\end{verbatim}
\end{quote}

   To obtain square roots one uses the control sequence
\verb?\sqrt?. For example, $\sqrt{x^2 + y^2}$ is produced
by typing \verb?$\sqrt{x^2 + y^2}$?. In \LaTeX, an $n$th
root is produced using
\begin{quote}
\verb?\sqrt[n]{?{\it expression}\verb?}?.
\end{quote}
Thus $\sqrt[3]{x + 3y}$ is produced in \LaTeX\ by typing
\verb?$\sqrt[3]{x + 3y}$?

Ellipsis (three dots) is produced in mathematics mode using
the control sequences \verb?\cdots? and \verb?\ldots?. A
low ellipsis, such as $(x_1,x_2,\ldots ,x_n)$, is produced by
typing
\begin{quote}
\begin{verbatim}
$(x_1,x_2,\ldots ,x_n)$.
\end{verbatim}
\end{quote}
A centred ellipsis, such as $x_1 + x_2 + \cdots + x_n$ is produced
by typing
\begin{quote}
\begin{verbatim}
$x_1 + x_2 + \cdots + x_n$.
\end{verbatim}
\end{quote}

\subsectiontitle{Accents in Mathematics Mode}
The control sequences \verb?\underline?, \verb?\overline?,
 \verb?\hat?, \verb?\check?, \verb?\tilde?, \verb?\acute?,
\verb?\grave?, \verb?\dot?, \verb?\ddot?, \verb?\breve?,
\verb?\bar? and \verb?\vec? produce underlining, overlining,
and various accents, {\it but only in mathematics mode}.
For example, $\tilde c$ is produced by \verb?$\tilde{c}$?.
The effect of these accents on the letter $a$ is shown in
the table below:
\begin{quote}
\begin{tabular}{ll}
\verb?$\underline{a}$? & $\underline{a}$\\
\verb?$\overline{a}$?  & $\overline{a}$\\
\verb?$\hat{a}$?       & $\hat{a}$\\
\verb?$\check{a}$?     & $\check{a}$\\
\verb?$\tilde{a}$?     & $\tilde{a}$\\
\verb?$\acute{a}$?     & $\acute{a}$\\
\verb?$\grave{a}$?     & $\grave{a}$\\
\verb?$\dot{a}$?       & $\dot{a}$\\
\verb?$\ddot{a}$?      & $\ddot{a}$\\
\verb?$\breve{a}$?     & $\breve{a}$\\
\verb?$\bar{a}$?       & $\bar{a}$\\
\verb?$\vec{a}$?       & $\vec{a}$
\end{tabular}
\end{quote}
You should bear in  mind that when a character is underlined in
a mathematical manuscript then it is normally typeset in
bold face without any underlining. Underlining is used very
rarely in print.

\begin{quotation}
\footnotesize
The control sequences such as \verb?\'? and \verb?\"?, used
to produce accents in ordinary text, may not be used in
mathematics mode.
\end{quotation}

\subsectiontitle{Brackets and Norms}
The frequently used left delimiters include $($, $[$ and $\{$,
which are obtained by typing \verb?(?, \verb?[? and \verb?\{?
respectively. The corresponding right delimiters are of
course $)$, $]$ and $\}$, obtained by typing \verb?)?,
\verb?]? and \verb?\}?. In addition $|$ and $\|$ are used as
both left and right delimiters, and are obtained by typing
\verb?|? and \verb?\|? respectively. For example, we obtain
\begin{quotation}
\small
Let $X$ be a Banach space and let $f \colon B \to {\bf R}$
be a bounded linear functional on $X$. The {\it norm} of
$f$, denoted by $\|f\|$, is defined by
\[ \|f\| = \inf \{ K \in [0,+\infty) :
          |f(x)| \leq K \|x\| \mbox{ for all } x \in X \}. \]
\end{quotation}
by typing
\begin{quote}
\begin{verbatim}
Let $X$ be a Banach space and let $f \colon B \to {\bf R}$
be a bounded linear functional on $X$. The {\it norm} of
$f$, denoted by $\|f\|$, is defined by
\[ \|f\| = \inf \{ K \in [0,+\infty) :
          |f(x)| \leq K \|x\| \mbox{ for all } x \in X \}. \]
\end{verbatim}
\end{quote}

   Larger delimiters are sometimes required which have the
appropriate height to match the size of the subformula which
they enclose. Consider, for instance, the problem of typesetting
the following formula:
\[ f(x,y,z) = 3y^2 z \left( 3 + \frac{7x+5}{1 + y^2} \right). \]
The way to type the large parentheses is to type \verb?\left(?
for the left parenthesis and \verb?\right)? for the right
parenthesis, and let \TeX\ do the rest of the work for you.
Thus the above formula was obtained by typing
\begin{quote}
\begin{verbatim}
\[ f(x,y,z) = 3y^2 z \left( 3 + \frac{7x+5}{1 + y^2} \right). \]
\end{verbatim}
\end{quote}
If you type a delimiter which is preceded by \verb?\left? then
\TeX\ will search for a corresponding delimiter preceded by
\verb?\right? and calculate the size of the delimiters required
to enclose the intervening subformula. One is allowed to balance
a \verb?\left(? with a \verb?\right]? (say) if one desires: there
is no reason why the enclosing delimiters have to have the same
shape. One may also nest pairs of delimiters within one another:
by typing
\begin{quote}
\begin{verbatim}
\[ \left| 4 x^3 + \left( x + \frac{42}{1+x^4} \right) \right|. \]
\end{verbatim}
\end{quote}
we obtain
\[ \left| 4 x^3 + \left( x + \frac{42}{1+x^4} \right) \right|. \]

\begin{quotation}
\footnotesize
By typing \verb?\left.? and \verb?\right.? one obtains
{\it null delimiters} which are completely invisible. Consider,
for example, the problem of typesetting
\[ \left. \frac{du}{dx} \right|_{x=0}. \]
We wish to make the vertical bar big enough to match the
derivative preceding it. To do this, we suppose that the
derivative is enclosed by delimiters, where the left delimiter
is invisible and the right delimiter is the vertical line.
The invisible delimiter is produced using \verb?\left.? and thus
the whole formula is produced by typing
\begin{verbatim}
\[ \left. \frac{du}{dx} \right|_{x=0}. \]
\end{verbatim}
\end{quotation}

\subsectiontitle{Multiline Formulae in \LaTeX}
Consider the problem of typesetting the formula
\begin{eqnarray*}
\cos 2\theta & = & \cos^2 \theta - \sin^2 \theta \\
             & = & 2 \cos^2 \theta - 1.
\end{eqnarray*}
It is necessary to ensure that the $=$ signs are aligned with one
another. In \LaTeX, such a formula is typeset using the
\verb?eqnarray*? environment. The above example was obtained by
typing the lines
\begin{quote}
\begin{verbatim}
\begin{eqnarray*}
\cos 2\theta & = & \cos^2 \theta - \sin^2 \theta \\
             & = & 2 \cos^2 \theta - 1.
\end{eqnarray*}
\end{verbatim}
\end{quote}
Note the use of the special character \verb?&? as an {it alignment
tab}. When the formula is typeset, the part of the second line of
the formula beginning with an occurrence of \verb?&? will be
placed immediately beneath that part of the first line of the
formula which begins with the corresponding occurrence of \verb?&?.
Also \verb?\\? is used to separate the lines of the formula.

Although we have placed corresponding occurrences of \verb?&?
beneath one another in the above example, it is not necessary to
do this in the input file. It was done in the above example merely
to improve the appearance (and readability) of the input file.

   The more complicated example
\begin{quotation}
\small
If $h \leq \frac{1}{2} |\zeta - z|$ then
\[ |\zeta - z - h| \geq \frac{1}{2} |\zeta - z| \]
and hence
\begin{eqnarray*}
\left| \frac{1}{\zeta - z - h} - \frac{1}{\zeta - z} \right|
& = & \left|
\frac{(\zeta - z) - (\zeta - z - h)}{(\zeta - z - h)(\zeta - z)}
\right| \\  & = &
\left| \frac{h}{(\zeta - z - h)(\zeta - z)} \right| \\
  & \leq & \frac{2 |h|}{|\zeta - z|^2}.
\end{eqnarray*}
\end{quotation}
was obtained by typing
\begin{quote}
\begin{verbatim}
If $h \leq \frac{1}{2} |\zeta - z|$ then
\[ |\zeta - z - h| \geq \frac{1}{2} |\zeta - z| \]
and hence
\begin{eqnarray*}
\left| \frac{1}{\zeta - z - h} - \frac{1}{\zeta - z} \right|
& = & \left|
\frac{(\zeta - z) - (\zeta - z - h)}{(\zeta - z - h)(\zeta - z)}
\right| \\  & = &
\left| \frac{h}{(\zeta - z - h)(\zeta - z)} \right| \\
  & \leq & \frac{2 |h|}{|\zeta - z|^2}.
\end{eqnarray*}
\end{verbatim}
\end{quote}

   The asterisk in \verb?eqnarray*? is put there to suppress the
automatic equation numbering produced by \LaTeX. If you wish for
an automatically numbered multiline formula, you should use
\verb?\begin{eqnarray}? and \verb?\end{eqnarray}?.

\subsectiontitle{Matrices and other arrays in \LaTeX}
Matrices and other arrays are produced in \LaTeX\ using the
{\bf array} environment. For example, suppose that we wish to
typeset the following passage:
\begin{quotation}
\small
The {\em characteristic polynomial} $\chi(\lambda)$ of the
$3 \times 3$~matrix
\[ \left( \begin{array}{ccc}
a & b & c \\
d & e & f \\
g & h & i \end{array} \right) \]
is given by the formula
\[ \chi(\lambda) = \left| \begin{array}{ccc}
\lambda - a & -b & -c \\
-d & \lambda - e & -f \\
-g & -h & \lambda - i \end{array} \right|. \]
\end{quotation}
This passage is produced by the following input:
\begin{quote}
\begin{verbatim}
The {\em characteristic polynomial} $\chi(\lambda)$ of the
$3 \times 3$~matrix
\[ \left( \begin{array}{ccc}
a & b & c \\
d & e & f \\
g & h & i \end{array} \right) \]
is given by the formula
\[ \chi(\lambda) = \left| \begin{array}{ccc}
\lambda - a & -b & -c \\
-d & \lambda - e & -f \\
-g & -h & \lambda - i \end{array} \right|. \]
\end{verbatim}
\end{quote}
First of all, note the use of \verb?\left? and \verb?\right?
to produce the large delimiters around the arrays. As we have
already seen, if we use
$$\hbox{\verb?\left(?} \qquad \ldots \qquad
                       \hbox{\verb?\right)?}$$
then the size of the parentheses is chosen to match the subformula
that they enclose. Next note the use of the alignment tab
character \verb?&? to separate the entries of the matrix and
the use of \verb?\\? to separate the rows of the matrix, exactly
as in the construction of multiline formulae described above.
We begin the array with \verb?\begin{array}? and end it with
\verb?\end{array}?. The only thing left to explain, therefore,
is the mysterious \verb?{ccc}? which occurs immediately after
\verb?\begin{array}?.
   Now each of the \verb?c?'s in \verb?{ccc}? represents a
column of the matrix and indicates that the entries of the
column should be {\em centred}. If the \verb?c? were replaced by
\verb?l? then the corresponding column would be typeset with
all the entries flush {\em left}, and \verb?r? would produce a
column with all entries flush {\em right}. Thus
\begin{quote}
\begin{verbatim}
\[ \begin{array}{lcr}
\mbox{First number} & x & 8 \\
\mbox{Second number} & y & 15 \\
\mbox{Sum} & x + y & 23 \\
\mbox{Difference} & x - y & -7 \\
\mbox{Product} & xy & 120 \end{array} \]
\end{verbatim}
\end{quote}
produces
\begin{quotation}
\small
\[ \begin{array}{lcr}
\mbox{First number} & x & 8 \\
\mbox{Second number} & y & 15 \\
\mbox{Sum} & x + y & 23 \\
\mbox{Difference} & x - y & -7 \\
\mbox{Product} & xy & 120 \end{array} \]
\end{quotation}

   We can use the array environment to produce formulae such as
\[ |x| = \left\{ \begin{array}{ll}
         x & \mbox{if $x \geq 0$};\\
        -x & \mbox{if $x < 0$}.\end{array} \right.  \]
Note that both columns of this array are set flush left. Thus we
use \verb?{ll}? immediately after \verb?\begin{array}?. The large
curly bracket is produced using \verb?\left\{?. However this
requires a corresponding \verb?\right? delimiter to match it.
We therefore use the {\em null delimiter} \verb?\right.?
discussed earlier. This delimiter is invisible. We can
therefore obtain the above formula by typing
\begin{quote}
\begin{verbatim}
\[ |x| = \left{ \begin{array}{ll}
         x & \mbox{if $x \geq 0$};\\
        -x & \mbox{if $x < 0$}.\end{array} \right.  \]
\end{verbatim}
\end{quote}

\subsectiontitle{Derivatives, Limits, Sums and Integrals}
The expressions
\[ \frac{du}{dt} \mbox{ and } \frac{d^2 u}{dx^2} \]
are obtained in \LaTeX\ by typing \verb?\frac{du}{dt}?
and \verb?\frac{d^2 u dx^2}? respectively. The mathematical
symbol $\partial$ is produced using \verb?\partial?. Thus
partial derivatives such as
$\displaystyle\frac{\partial u}{\partial t}$ and
$\displaystyle\frac{\partial^2 u}{\partial x^2}$ are obtained
in \LaTeX\ by typing
\begin{quote}
\verb?\frac{\partial u}{\partial t}? and
\verb?\frac{\partial^2 u}{\partial x^2}?.
\end{quote}

To obtain mathematical expressions such as
\[ \lim_{x \to +\infty} \mbox{, } \inf_{x > s} \mbox{ and } \sup_K \]
in displayed equations we type \verb?\lim_{x \to +\infty}?,
\verb?\inf_{x > s}? and \verb?\sup_K? respectively. Thus to obtain
\[ \lim_{x \to 0} \frac{3x^2 +7}{x^2 +1} = 3. \]
(in \LaTeX) we type
\begin{quote}
\begin{verbatim}
\[ \lim_{x \to 0} \frac{3x^2 +7x^3}{x^2 +5x^4} = 3. \]
\end{verbatim}
\end{quote}

To obtain a summation sign such as
\[ \sum_{i=1}^{2n} \]
we type \verb?\sum_{i=1}^{2n}?. Thus
\[ \sum_{k=1}^n k^2 = \frac{1}{2} n (n+1). \]
is obtained by typing
\begin{quote}
\begin{verbatim}
\[ \sum_{k=1}^n k^2 = \frac{1}{2} n (n+1). \]
\end{verbatim}
\end{quote}

   We now discuss how to obtain {\it integrals} in mathematical
documents. A typical integral is the following:
\[ \int_a^b f(x)\,dx. \]
This is typeset using
\begin{quote}
\begin{verbatim}
\[ \int_a^b f(x)\,dx. \]
\end{verbatim}
\end{quote}
The integral sign $\int$ is typeset using the control sequence
\verb?\int?, and the {\it limits of integration} (in this case
$a$ and $b$) are treated as a subscript and a superscript on the
integral sign. It remains to describe the purpose of the \verb?\,?
occurring immediately before the \verb?dx?. This is the means of telling
\TeX\ to put extra space before the $d$. This is necessary to
produce the correct appearance.

   Most integrals occurring in mathematical documents begin with
an integral sign and contain one or more instances of \verb?d?
followed by another (Latin or Greek) letter, as in $dx$, $dt$,
and $d\theta$. To obtain the correct appearance one should put
extra space before the $d$, using \verb?\,?. Thus
\[ \int_0^{+\infty} x^n e^{-x} \,dx = n!. \]
\[ \int \cos \theta \,d\theta = \sin \theta. \]
\[ \int_{x^2 + y^2 \leq R^2} f(x,y)\,dx\,dy
   = \int_{\theta=0}^{2\pi} \int_{r=0}^R
      f(r\cos\theta,r\sin\theta) r\,dr\,d\theta. \]
and
\[ \int_0^R \frac{2x\,dx}{1+x^2} = \log(1+R^2). \]
are obtained by typing
\begin{quote}
\begin{verbatim}
\[ \int_0^{+\infty} x^n e^{-x} \,dx = n!. \]
\end{verbatim}
\end{quote}
\begin{quote}
\begin{verbatim}
\[ \int \cos \theta \,d\theta = \sin \theta. \]
\end{verbatim}
\end{quote}
\begin{quote}
\begin{verbatim}
\[ \int_{x^2 + y^2 \leq R^2} f(x,y)\,dx\,dy
   = \int_{\theta=0}^{2\pi} \int_{r=0}^R
      f(r\cos\theta,r\sin\theta) r\,dr\,d\theta. \]
\end{verbatim}
\end{quote}
and
\begin{quote}
\begin{verbatim}
\[ \int_0^R \frac{2x\,dx}{1+x^2} = \log(1+R^2). \]
\end{verbatim}
\end{quote}
respectively.

   In some multiple integrals (i.e., integrals containing more than
one integral sign) one finds that \TeX\ puts too much space
between the integral signs. The way to improve the appearance of
of the integral is to use the control sequence \verb?\!? to
remove a thin strip of unwanted space. Thus, for example, the
multiple integral
\[ \int_0^1 \! \int_0^1 x^2 y^2\,dx\,dy. \]
is obtained by typing
\begin{quote}
\begin{verbatim}
\[ \int_0^1 \! \int_0^1 x^2 y^2\,dx\,dy. \]
\end{verbatim}
\end{quote}
Had we typed
\begin{quote}
\begin{verbatim}
\[ \int_0^1 \int_0^1 x^2 y^2\,dx\,dy. \]
\end{verbatim}
\end{quote}
we would have obtained
\[ \int_0^1 \int_0^1 x^2 y^2\,dx\,dy. \]

   A particularly noteworthy example comes when we are
typesetting a multiple integral such as
\[ \int \!\!\! \int_D f(x,y)\,dx\,dy. \]
Here we use \verb?\!? three times to obtain suitable spacing
between the integral signs. We typeset this integral using
\begin{quote}
\begin{verbatim}
\[ \int \!\!\! \int_D f(x,y)\,dx\,dy. \]
\end{verbatim}
\end{quote}
Had we typed
\begin{quote}
\begin{verbatim}
\[ \int \int_D f(x,y)\,dx\,dy. \]
\end{verbatim}
\end{quote}
we would have obtained
\[ \int \int_D f(x,y)\,dx\,dy. \]

   The following (reasonably complicated) passage exhibits a
number of the features which we have been discussing:
\begin{quotation}
\small
   In non-relativistic wave mechanics, the wave function
$\psi({\bf r},t)$ of a particle satisfies the
{\it Schr\"{o}dinger Wave Equation}
\[ i\hbar\frac{\partial \psi}{\partial t}
  = \frac{-\hbar^2}{2m} \left(
    \frac{\partial^2}{\partial x^2}
    + \frac{\partial^2}{\partial y^2}
    + \frac{\partial^2}{\partial z^2}
  \right) \psi + V \psi. \]
It is customary to normalize the wave equation by
demanding that
\[ \int \!\!\! \int \!\!\! \int_{{\bf R}^3}
      \left| \psi({\bf r},0) \right|^2\,dx\,dy\,dz = 1. \]
A simple calculation using the Schr\"{o}dinger wave
equation shows that
\[ \frac{d}{dt} \int \!\!\! \int \!\!\! \int_{{\bf R}^3}
      \left| \psi({\bf r},t) \right|^2\,dx\,dy\,dz = 0, \]
and hence
\[ \int \!\!\! \int \!\!\! \int_{{\bf R}^3}
      \left| \psi({\bf r},t) \right|^2\,dx\,dy\,dz = 1 \]
for all times~$t$. If we normalize the wave function in this
way then, for any (measurable) subset~$V$ of ${\bf R}^3$ and
time~$t$,
\[ \int \!\!\! \int \!\!\! \int_V
      \left| \psi({\bf r},t) \right|^2\,dx\,dy\,dz \]
represents the probability that the particle is to be found
within the region~$V$ at time~$t$.
\end{quotation}
One would typeset this in \LaTeX\ by typing
\begin{quote}
\begin{verbatim}
   In non-relativistic wave mechanics, the wave function
$\psi({\bf r},t)$ of a particle satisfies the
{\it Schr\"{o}dinger Wave Equation}
\[ i\hbar\frac{\partial \psi}{\partial t}
  = \frac{-\hbar^2}{2m} \left(
    \frac{\partial^2}{\partial x^2}
    + \frac{\partial^2}{\partial y^2}
    + \frac{\partial^2}{\partial z^2}
  \right) \psi + V \psi. \]
It is customary to normalize the wave equation by
demanding that
\[ \int \!\!\! \int \!\!\! \int_{{\bf R}^3}
      \left| \psi({\bf r},0) \right|^2\,dx\,dy\,dz = 1. \]
A simple calculation using the Schr\"{o}dinger wave
equation shows that
\[ \frac{d}{dt} \int \!\!\! \int \!\!\! \int_{{\bf R}^3}
      \left| \psi({\bf r},t) \right|^2\,dx\,dy\,dz = 0, \]
and hence
\[ \int \!\!\! \int \!\!\! \int_{{\bf R}^3}
      \left| \psi({\bf r},t) \right|^2\,dx\,dy\,dz = 1 \]
for all times~$t$. If we normalize the wave function in this
way then, for any (measurable) subset~$V$ of ${\bf R}^3$ and
time~$t$,
\[ \int \!\!\! \int \!\!\! \int_V
      \left| \psi({\bf r},t) \right|^2\,dx\,dy\,dz \]
represents the probability that the particle is to be found
within the region~$V$ at time~$t$.
\end{verbatim}
\end{quote}