1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
|
% Introductory sample article: intrart.tex
% Typeset with LaTeX format
\documentclass{article}
\usepackage{amsmath,amssymb}
\newtheorem{theorem}{Theorem}
\newtheorem{definition}{Definition}
\newtheorem{notation}{Notation}
\begin{document}
\title{A construction of complete-simple\\
distributive lattices}
\author{George~A. Menuhin\thanks{Research supported
by the NSF under grant number~23466.}\\
Computer Science Department\\
Winnebago, Minnesota 23714\\
menuhin@ccw.uwinnebago.edu}
\date{March 15, 1995}
\maketitle
\begin{abstract}
In this note we prove that there exist \emph{complete-simple
distributive lattices}, that is, complete distributive
lattices in which there are only two complete congruences.
\end{abstract}
\section{Introduction} \label{S:intro}
In this note we prove the following result:
\begin{theorem}
There exists an infinite complete distributive lattice $K$
with only the two trivial complete congruence relations.
\end{theorem}
\section{The $\Pi^{*}$ construction} \label{S:P*}
The following construction is crucial in our proof of our Theorem:
\begin{definition} \label{D:P*}
Let $D_{i}$, $i \in I$, be complete distributive
lattices satisfying condition~\textup{(J)}. Their
$\Pi^{*}$ product is defined as follows:
\[
\Pi^{*} ( D_{i} \mid i \in I ) =
\Pi ( D_{i}^{-} \mid i \in I ) + 1;
\]
that is, $\Pi^{*} ( D_{i} \mid i \in I )$ is
$\Pi ( D_{i}^{-} \mid i \in I )$ with a new unit element.
\end{definition}
\begin{notation}
If $i \in I$ and $d \in D_{i}^{-}$, then
\[
\langle \dots, 0, \dots, \overset{i}{d}, \dots, 0,
\dots \rangle
\]
is the element of $\Pi^{*} ( D_{i} \mid i \in I )$ whose
$i$th component is $d$ and all the other components
are $0$.
\end{notation}
See also Ernest~T. Moynahan~\cite{eM57a}.
Next we verify the following result:
\begin{theorem} \label{T:P*}
Let $D_{i}$, $i \in I$, be complete distributive
lattices satisfying condition~\textup{(J)}. Let $\Theta$
be a complete congruence relation on
$\Pi^{*} ( D_{i} \mid i \in I )$.
If there exist $i \in I$ and $d \in D_{i}$ with
$d < 1_{i}$ such that for all $d \leq c < 1_{i}$,
\begin{equation} \label{E:cong1}
\langle \dots, 0, \dots,\overset{i}{d},
\dots, 0, \dots \rangle \equiv \langle \dots, 0, \dots,
\overset{i}{c}, \dots, 0, \dots \rangle \pmod{\Theta},
\end{equation}
then $\Theta = \iota$.
\end{theorem}
\emph{Proof.} Since
\begin{equation} \label{E:cong2}
\langle \dots, 0, \dots, \overset{i}{d}, \dots, 0,
\dots \rangle \equiv \langle \dots, 0, \dots,
\overset{i}{c}, \dots, 0, \dots \rangle \pmod{\Theta},
\end{equation}
and $\Theta$ is a complete congruence relation, it follows
from condition~(C) that
\begin{align} \label{E:cong}
& \langle \dots, \overset{i}{d}, \dots, 0,
\dots \rangle \equiv\\
&\qquad \qquad \quad \bigvee ( \langle \dots, 0, \dots,
\overset{i}{c}, \dots, 0, \dots \rangle \mid d \leq c < 1 )
\equiv 1 \pmod{\Theta}. \notag
\end{align}
Let $j \in I$, $j \neq i$, and let $a \in D_{j}^{-}$.
Meeting both sides of the congruence \eqref{E:cong2} with
$\langle \dots, 0, \dots, \overset{j}{a}, \dots, 0,
\dots \rangle$, we obtain
\begin{align} \label{E:comp}
0 = & \langle \dots, 0, \dots, \overset{i}{d}, \dots, 0, \dots
\rangle \wedge \langle \dots, 0, \dots, \overset{j}{a},
\dots, 0, \dots \rangle \equiv\\
&\langle \dots, 0, \dots, \overset{j}{a}, \dots, 0, \dots
\rangle \pmod{\Theta}, \notag
\end{align}
Using the completeness of $\Theta$ and \eqref{E:comp},
we get:
\[
0 \equiv \bigvee ( \langle \dots, 0, \dots, \overset{j}{a},
\dots, 0, \dots \rangle \mid a \in D_{j}^{-} ) = 1 \pmod{\Theta},
\]
hence $\Theta = \iota$.
\begin{thebibliography}{9}
\bibitem{sF90}
Soo-Key Foo, \emph{Lattice Constructions}, Ph.D. thesis,
University of Winnebago, Winnebago, MN, December 1990.
\bibitem{gM68}
George~A. Menuhin, \emph{Universal Algebra}, D.~van Nostrand,
Princeton-Toronto-London-Mel\-bourne, 1968.
\bibitem{eM57}
Ernest~T. Moynahan, \emph{On a problem of M.~H. Stone}, Acta Math.
Acad. Sci. Hungar. \textbf{8} (1957), 455--460.
\bibitem{eM57a}
Ernest~T. Moynahan, \emph{Ideals and congruence relations in
lattices.~II}, Magyar Tud. Akad. Mat. Fiz. Oszt. K\"{o}zl. \textbf{9}
(1957), 417--434.
\end{thebibliography}
\end{document}
|