1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
|
%%
%% A DANTE-Edition example
%%
%% Beispiel 06-00-39 auf Seite 204.
%%
%% Copyright (C) 2010 H. Voss
%%
%% It may be distributed and/or modified under the conditions
%% of the LaTeX Project Public License, either version 1.3
%% of this license or (at your option) any later version.
%%
%% See http://www.latex-project.org/lppl.txt for details.
%%
%%Run also: >> <<
% Show page(s) 1
\documentclass[]{article}
\pagestyle{empty}
\setlength\textwidth{355.65944pt}
\usepackage[utf8]{inputenc}
\usepackage[ngerman]{babel}
\usepackage{numprint,spreadtab}
\begin{document}
\begin{minipage}[t]{0.45\linewidth}\vspace{0pt}
\[\forall x\in \mathbf{R}\qquad e^x=\sum_{k=0}^\infty\frac{x^k}{k!}\]
Die nebenstehende Tabelle zeigt die Konvergenz für $x=0.5$.
\end{minipage}\hfill
\begin{minipage}[t]{0.45\linewidth}\vspace{0pt}
\STautoround{15}
\begin{spreadtab}[\STsavecell\xvalue{a1}]{{tabular}{cN{2}{15}}}
\multicolumn{2}{c}{Konvergenz für $x={\numprint{:={0.5}}}$}\\[1.5ex]
@$n$ & e^a1\SThidecol & {@
$\displaystyle e^{\numprint\xvalue}-\sum_{k=0}^n
\frac{\numprint\xvalue^k}{k!}$}\\[3ex]\hline
0 & a1^[-1,0]/fact([-1,0]) & b2-[-1,0] \\
[0,-1]+1 & a1^[-1,0]/fact([-1,0])+[0,-1] & b2-[-1,0] \\
[0,-1]+1 & a1^[-1,0]/fact([-1,0])+[0,-1] & b2-[-1,0] \\
[0,-1]+1 & a1^[-1,0]/fact([-1,0])+[0,-1] & b2-[-1,0] \\
[0,-1]+1 & a1^[-1,0]/fact([-1,0])+[0,-1] & b2-[-1,0] \\
[0,-1]+1 & a1^[-1,0]/fact([-1,0])+[0,-1] & b2-[-1,0] \\
[0,-1]+1 & a1^[-1,0]/fact([-1,0])+[0,-1] & b2-[-1,0] \\
[0,-1]+1 & a1^[-1,0]/fact([-1,0])+[0,-1] & b2-[-1,0] \\
[0,-1]+1 & a1^[-1,0]/fact([-1,0])+[0,-1] & b2-[-1,0] \\
[0,-1]+1 & a1^[-1,0]/fact([-1,0])+[0,-1] & b2-[-1,0] \\\hline
\end{spreadtab}
\end{minipage}
\end{document}
|