summaryrefslogtreecommitdiff
path: root/info/examples/Math/09-20-2.ltx
blob: 5de51c9a06dbf6ca99727898523fc3a0b98e0b49 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
%% 
%%  Ein Beispiel der DANTE-Edition
%%  Mathematiksatz mit LaTeX
%%  3. Auflage
%%  Beispiel 09-20-2 auf Seite 202.
%%  Copyright (C) 2018 Herbert Voss
%% 
%%  It may be distributed and/or modified under the conditions
%%  of the LaTeX Project Public License, either version 1.3
%%  of this license or (at your option) any later version.
%%  See http://www.latex-project.org/lppl.txt for details.
%% 
%% ==== 
% Show page(s) 1
%% 
%% 
\documentclass[10pt]{exaartplain}
\pagestyle{empty}
\setlength\textwidth{352.81416pt}
\AtBeginDocument{\setlength\parindent{0pt}}
%StartShownPreambleCommands
\usepackage{amsmath}\renewcommand\familydefault{\sfdefault}  \usepackage{mathastext}
%StopShownPreambleCommands
\begin{document}
Let $(X,Y)$ be two functions of a variable $a$. If they obey the differential system $(VI_{\nu,n})$:
\begin{align*}  a\frac{d}{da} X &= \nu
  X - (1 - X^2)\frac{2n a}{1 - a^2}\frac{aX+Y}{1+a XY} \\
a\frac{d}{da} Y &= -(\nu+1) Y + (1-Y^2)\frac{2n a}{1 - a^2}\frac{X+aY}{1+a XY}
\end{align*}
then the quantity $q=a\frac{aX+Y}{X+aY}$ satisfies as function of $b=a^2$ the $P_{VI}$
differential equation:
\begin{equation*}
\begin{split}
  \frac{d^2 q}{db^2} = \frac12\left\{\frac1q+\frac1{q-1}
  +\frac1{q-b}\right\}\left(\frac{dq}{db}\right)^2 - \left\{\frac1b+\frac1{b-1}
  +\frac1{q-b}\right\}\frac{dq}{db}\\+\frac{q(q-1)(q-b)}{b^2(b-1)^2}\left\{\alpha+\frac{\beta
    b}{q^2} + \frac{\gamma (b-1)}{(q-1)^2}+\frac{\delta
    b(b-1)}{(q-b)^2}\right\}
\end{split}
\end{equation*}
with parameters $(\alpha,\beta,\gamma,\delta) = (\frac{(\nu+n)^2}2,
\frac{-(\nu+n+1)^2}2, \frac{n^2}2, \frac{1 - n^2}2)$.
\end{document}