1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
|
%<TpX v="5" ArrowsSize="0.7" StarsSize="1" DefaultFontHeight="4" DefaultSymbolSize="30" ApproximationPrecision="0.01" PicScale="0.5" Border="2" BitmapRes="5000" HatchingStep="1.4" DottedSize="0.5" DashSize="1" LineWidth="1">
% <polygon li="none" fill="black">12,134 15,134 15,126 16,125 18,125 18,122 16,122 15,121 15,119 17,118 17,115 10,115 10,118 12,119 12,121 11,122 5,122 4,123 4,126</polygon>
% <polygon li="none" fill="white">12,129 11,129 8,126 8,125 11,125 12,126</polygon>
% <curve closed="1" li="none" fill="black">40.3412,101.25 40.7828,102.398 39.1047,103.988 37.9565,104.827 37.5149,105.71 37.4266,107.212 39.0164,107.565 40.6945,105.048 42.7259,104.209 45.5522,104.783 48.6434,108.581 48.6434,112.29 46.507,114.999 42.2849,115.3 40.3412,114.454 39.1489,114.984 39.9879,116.088 41.931,117.899 42.5051,120.46 41.0714,123.443 36.5476,125.252 32.3255,123.443 31.4278,118.014 33.2373,116.205 34.1421,114.999 33.2373,114.395 31.4278,115.3 26.9041,114.999 24.4914,111.681 24.793,108.665 27.8088,104.745 30.8247,104.142 32.6342,105.046 34.4437,107.459 35.9516,107.157 35.9516,105.649 35.0861,104.341 32.5248,102.398 33.0105,101.294 35.0419,101.206 38.3981,101.25</curve>
% <curve closed="1" li="none" fill="black">80.4446,101.25 80.8862,102.398 79.2081,103.988 78.0599,104.827 77.6183,105.71 77.5299,107.212 79.1197,107.565 80.7979,105.048 82.8293,104.209 85.6555,104.783 88.7468,108.581 88.7468,112.29 86.6104,114.999 82.3882,115.3 80.4446,114.454 79.2522,114.984 80.0913,116.088 82.0344,117.899 82.6084,120.46 81.1747,123.443 76.651,125.252 72.4288,123.443 71.5311,118.014 73.3406,116.205 74.2454,114.999 73.3406,114.395 71.5311,115.3 67.0074,114.999 64.5947,111.681 64.8963,108.665 67.9121,104.745 70.928,104.142 72.7375,105.046 74.547,107.459 76.0549,107.157 76.0549,105.649 75.1894,104.341 72.6281,102.398 73.1138,101.294 75.1452,101.206 78.5015,101.25</curve>
% <curve closed="1" li="none" fill="black">80.4446,27.2057 80.8862,26.0575 79.2081,24.4677 78.0599,23.6287 77.6183,22.7455 77.5299,21.244 79.1197,20.8907 80.7979,23.4079 82.8293,24.2469 85.6555,23.6728 88.7468,19.875 88.7468,16.1655 86.6104,13.4571 82.3882,13.1555 80.4446,14.0017 79.2522,13.4717 80.0913,12.3677 82.0344,10.5571 82.6084,7.99579 81.1747,5.01276 76.651,3.20325 72.4288,5.01276 71.5311,10.4413 73.3406,12.2508 74.2454,13.4571 73.3406,14.0603 71.5311,13.1555 67.0074,13.4571 64.5947,16.7745 64.8963,19.7903 67.9121,23.7109 70.928,24.3141 72.7375,23.4093 74.547,20.9967 76.0549,21.2982 76.0549,22.8062 75.1894,24.1144 72.6281,26.0575 73.1138,27.1615 75.1452,27.2499 78.5015,27.2057</curve>
% <curve closed="1" li="none" fill="black">40.3265,27.2057 40.7681,26.0575 39.09,24.4677 37.9418,23.6287 37.5002,22.7455 37.4118,21.244 39.0016,20.8907 40.6797,23.4079 42.7111,24.2469 45.5374,23.6728 48.6287,19.875 48.6287,16.1655 46.4922,13.4571 42.2701,13.1555 40.3265,14.0017 39.1341,13.4717 39.9732,12.3677 41.9162,10.5571 42.4903,7.99579 41.0566,5.01276 36.5329,3.20325 32.3107,5.01276 31.4131,10.4413 33.2226,12.2508 34.1273,13.4571 33.2226,14.0603 31.4131,13.1555 26.8893,13.4571 24.4766,16.7745 24.7782,19.7903 27.7941,23.7109 30.8099,24.3141 32.6194,23.4093 34.4289,20.9967 35.9368,21.2982 35.9368,22.8062 35.0713,24.1144 32.51,26.0575 32.9958,27.1615 35.0271,27.2499 38.3834,27.2057</curve>
% <polygon li="none" fill="black">100,-6 97,-6 97,2 96,3 94,3 94,6 96,6 97,7 97,9 95,10 95,13 102,13 102,10 100,9 100,7 101,6 107,6 108,5 108,2</polygon>
% <polygon li="none" fill="white">100,-1 101,-1 104,2 104,3 101,3 100,2</polygon>
% <polygon lc="darkslategray">1,-9 0,-6 -0.0842808,-1.8429 0,136 1,139 3,141 6,142 106,142 109,141 111,139 112,136 112,-6 111,-9 109,-11 106,-12 6,-12 3,-11</polygon>
% <curve closed="1" li="none" fill="black">15.2299,95.0317 15.5611,95.8928 14.3026,97.0852 13.4414,97.7145 13.1102,98.3769 13.044,99.503 14.2363,99.7679 15.4949,97.8801 17.0185,97.2508 19.1382,97.6814 21.4566,100.53 21.4566,103.312 19.8543,105.343 16.6877,105.569 15.2299,104.935 14.3357,105.332 14.965,106.16 16.4223,107.518 16.8529,109.439 15.7776,111.676 12.3847,113.034 9.21812,111.676 8.54489,107.605 9.90202,106.248 10.5806,105.343 9.90202,104.891 8.54489,105.569 5.15207,105.343 3.34256,102.855 3.56876,100.593 5.83063,97.6528 8.09252,97.2004 9.44965,97.879 10.8068,99.6885 11.9377,99.4623 11.9377,98.3313 11.2886,97.3502 9.36759,95.8928 9.73192,95.0648 11.2555,94.9986 13.7726,95.0317</curve>
% <curve closed="1" li="none" fill="black">96.5309,33.5032 96.1997,32.6421 97.4583,31.4498 98.3194,30.8205 98.6506,30.158 98.7169,29.0319 97.5245,28.767 96.2659,30.6548 94.7424,31.2842 92.6227,30.8536 90.3042,28.0052 90.3042,25.2231 91.9066,23.1917 95.0732,22.9656 96.5309,23.6002 97.4251,23.2027 96.7959,22.3747 95.3385,21.0167 94.908,19.0958 95.9833,16.8585 99.3761,15.5014 102.543,16.8585 103.216,20.9299 101.859,22.287 101.18,23.1917 101.859,23.6441 103.216,22.9656 106.609,23.1917 108.418,25.6798 108.192,27.9417 105.93,30.8821 103.668,31.3345 102.311,30.6559 100.954,28.8464 99.8231,29.0726 99.8231,30.2036 100.472,31.1848 102.393,32.6421 102.029,33.4701 100.505,33.5363 97.9882,33.5032</curve>
%</TpX>
\begin{figure}
\centering
\ifpdf
\setlength{\unitlength}{1bp}%
\begin{picture}(170.20, 229.61)(0,0)
\put(0,0){\includegraphics{Card.pdf}}
\end{picture}%
\else
\setlength{\unitlength}{1bp}%
\begin{picture}(170.20, 229.61)(0,0)
\put(0,0){\includegraphics{Card}}
\end{picture}%
\fi
\end{figure}
|