summaryrefslogtreecommitdiff
path: root/graphics/sketch/geometry.c
blob: e08d4beb3e9abdee6591e36090a64a5828616ea0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
/* geometry.c
   Copyright (C) 2005,2006,2007 Eugene K. Ressler, Jr.

This file is part of Sketch, a small, simple system for making 
3d drawings with LaTeX and the PSTricks or TikZ package.

Sketch is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

Sketch is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Sketch; see the file COPYING.txt.  If not, see
http://www.gnu.org/copyleft */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "geometry.h"
#include "error.h"
#include "memutil.h"

// global constants 
POINT_2D origin_2d = { 0, 0 };
POINT_3D origin_3d = { 0, 0, 0 };
VECTOR_2D I_2d = { 1, 0 };
VECTOR_2D J_2d = { 0, 1 };
VECTOR_3D I_3d = { 1, 0, 0 };
VECTOR_3D J_3d = { 0, 1, 0 };
VECTOR_3D K_3d = { 0, 0, 1 };
TRANSFORM identity = {
  1, 0, 0, 0,
  0, 1, 0, 0,
  0, 0, 1, 0,
  0, 0, 0, 1
};

// numerics 

FLOAT
max_float (FLOAT x, FLOAT y)
{
  return x > y ? x : y;
}

FLOAT
min_float (FLOAT x, FLOAT y)
{
  return x < y ? x : y;
}

// points

void
copy_pt_2d (POINT_2D r, POINT_2D s)
{
  r[X] = s[X];
  r[Y] = s[Y];
}

void
copy_pt_3d (POINT_3D r, POINT_3D s)
{
  r[X] = s[X];
  r[Y] = s[Y];
  r[Z] = s[Z];
}

void
find_pt_3d_from_2d (POINT_3D r, POINT_2D pt)
{
  r[X] = pt[X];
  r[Y] = pt[Y];
  r[Z] = 0;
}

// polyline initialization and cleanup

#define SET_NEXT_NULL a->next = NULL;

DECLARE_DYNAMIC_2D_ARRAY_FUNCS (POLYLINE_2D, POINT_2D, FLOAT, polyline_2d,
				v, n_vertices, SET_NEXT_NULL)
DECLARE_DYNAMIC_2D_ARRAY_FUNCS (POLYLINE_3D, POINT_3D, FLOAT, polyline_3d,
				v, n_vertices, SET_NEXT_NULL)
// polygon initialization and cleanup
  DECLARE_DYNAMIC_2D_ARRAY_FUNCS (POLYGON_2D, POINT_2D, FLOAT, polygon_2d, v,
				n_sides, SET_NEXT_NULL)
DECLARE_DYNAMIC_2D_ARRAY_FUNCS (POLYGON_3D, POINT_3D, FLOAT, polygon_3d, v,
				n_sides, SET_NEXT_NULL)
// rudimentary vectors of variable size
     void init_vec (VECTOR * v)
{
  *v = 0;
}

void
clear_vec (VECTOR * v)
{
  safe_free (*v);
  init_vec (v);
}

void
setup_vec (VECTOR * v, SIZE n)
{
  clear_vec (v);
  *v = safe_malloc (n * sizeof (FLOAT));
}

void
init_and_setup_vec (VECTOR * v, SIZE n)
{
  *v = safe_malloc (n * sizeof (FLOAT));
}

void
zero_vec (VECTOR r, SIZE n)
{
  INDEX i;

  for (i = 0; i < n; i++)
    r[i] = 0;
}

void
copy_vec (VECTOR r, VECTOR v, SIZE n)
{
  INDEX i;

  for (i = 0; i < n; i++)
    r[i] = v[i];
}

FLOAT
length_vec_2d (VECTOR_2D v)
{
  return sqrt (dot_2d (v, v));
}

FLOAT
length_vec_3d (VECTOR_3D v)
{
  return sqrt (dot_3d (v, v));
}

FLOAT
dist_2d (POINT_2D p1, POINT_2D p2)
{
  VECTOR_2D dif;
  sub_pts_2d (dif, p1, p2);
  return length_vec_2d (dif);
}

FLOAT
dist_3d (POINT_3D p1, POINT_3D p2)
{
  VECTOR_3D dif;
  sub_pts_3d (dif, p1, p2);
  return length_vec_3d (dif);
}

FLOAT
length_vec_2d_sqr (VECTOR_2D v)
{
  return dot_2d (v, v);
}

FLOAT
length_vec_3d_sqr (VECTOR_3D v)
{
  return dot_3d (v, v);
}

FLOAT
dist_2d_sqr (POINT_2D p1, POINT_2D p2)
{
  VECTOR_2D dif;
  sub_pts_2d (dif, p1, p2);
  return length_vec_2d_sqr (dif);
}

FLOAT
dist_3d_sqr (POINT_3D p1, POINT_3D p2)
{
  VECTOR_3D dif;
  sub_pts_3d (dif, p1, p2);
  return length_vec_3d_sqr (dif);
}

void
zero_vec_2d (VECTOR_2D v)
{
  v[X] = v[Y] = 0;
}

void
zero_vec_3d (VECTOR_3D v)
{
  v[X] = v[Y] = v[Z] = 0;
}

void
negate_vec_2d (VECTOR_2D r, VECTOR_2D v)
{
  r[X] = -v[X];
  r[Y] = -v[Y];
}

void
negate_vec_3d (VECTOR_3D r, VECTOR_3D v)
{
  r[X] = -v[X];
  r[Y] = -v[Y];
  r[Z] = -v[Z];
}

void
copy_vec_2d (VECTOR_2D r, VECTOR_2D s)
{
  r[X] = s[X];
  r[Y] = s[Y];
}

void
copy_vec_3d (VECTOR_3D r, VECTOR_3D s)
{
  r[X] = s[X];
  r[Y] = s[Y];
  r[Z] = s[Z];
}

void
scale_vec_2d (VECTOR_2D r, VECTOR_2D v, FLOAT s)
{
  r[X] = v[X] * s;
  r[Y] = v[Y] * s;
}

void
scale_vec_3d (VECTOR_3D r, VECTOR_3D v, FLOAT s)
{
  r[X] = v[X] * s;
  r[Y] = v[Y] * s;
  r[Z] = v[Z] * s;
}

int
find_unit_vec_2d (VECTOR_2D r, VECTOR_2D v)
{
  FLOAT len = length_vec_2d (v);
  if (len <= FLT_EPSILON)
    {
      r[X] = 1;
      r[Y] = 0;
      return 0;
    }
  else
    {
      scale_vec_2d (r, v, 1 / len);
      return 1;
    }
}

int
find_unit_vec_3d (VECTOR_3D r, VECTOR_3D v)
{
  FLOAT len = length_vec_3d (v);
  if (len == FLT_EPSILON)
    {
      r[X] = 1;
      r[Y] = r[Z] = 0;
      return 0;
    }
  else
    {
      scale_vec_3d (r, v, 1 / len);
      return 1;
    }
}

void
add_vecs_2d (VECTOR_2D r, VECTOR_2D a, VECTOR_2D b)
{
  r[X] = a[X] + b[X];
  r[Y] = a[Y] + b[Y];
}

void
add_vecs_3d (VECTOR_3D r, VECTOR_3D a, VECTOR_3D b)
{
  r[X] = a[X] + b[X];
  r[Y] = a[Y] + b[Y];
  r[Z] = a[Z] + b[Z];
}

void
sub_vecs_2d (VECTOR_2D r, VECTOR_2D a, VECTOR_2D b)
{
  r[X] = a[X] - b[X];
  r[Y] = a[Y] - b[Y];
}

void
sub_vecs_3d (VECTOR_3D r, VECTOR_3D a, VECTOR_3D b)
{
  r[X] = a[X] - b[X];
  r[Y] = a[Y] - b[Y];
  r[Z] = a[Z] - b[Z];
}

void
add_vec_to_pt_2d (POINT_2D r, POINT_2D pt, VECTOR_2D v)
{
  r[X] = pt[X] + v[X];
  r[Y] = pt[Y] + v[Y];
}

void
add_vec_to_pt_3d (POINT_3D r, POINT_3D pt, VECTOR_3D v)
{
  r[X] = pt[X] + v[X];
  r[Y] = pt[Y] + v[Y];
  r[Z] = pt[Z] + v[Z];
}

void
add_scaled_vec_to_pt_2d (POINT_2D r, POINT_2D pt, VECTOR_2D v, FLOAT s)
{
  r[X] = pt[X] + v[X] * s;
  r[Y] = pt[Y] + v[Y] * s;
}

void
add_scaled_vec_to_pt_3d (POINT_3D r, POINT_3D pt, VECTOR_3D v, FLOAT s)
{
  r[X] = pt[X] + v[X] * s;
  r[Y] = pt[Y] + v[Y] * s;
  r[Z] = pt[Z] + v[Z] * s;
}

void
sub_pts_2d (VECTOR_2D r, POINT_2D a, POINT_2D b)
{
  r[X] = a[X] - b[X];
  r[Y] = a[Y] - b[Y];
}

void
sub_pts_3d (VECTOR_3D r, POINT_3D a, POINT_3D b)
{
  r[X] = a[X] - b[X];
  r[Y] = a[Y] - b[Y];
  r[Z] = a[Z] - b[Z];
}

void
fold_min_pt_2d (POINT_2D min, POINT_2D new_pt)
{
  int i;

  for (i = 0; i < 2; i++)
    if (new_pt[i] < min[i])
      min[i] = new_pt[i];
}

void
fold_min_pt_3d (POINT_3D min, POINT_3D new_pt)
{
  int i;

  for (i = 0; i < 3; i++)
    if (new_pt[i] < min[i])
      min[i] = new_pt[i];
}

void
fold_max_pt_2d (POINT_2D max, POINT_3D new_pt)
{
  int i;

  for (i = 0; i < 2; i++)
    if (new_pt[i] > max[i])
      max[i] = new_pt[i];
}

void
fold_max_pt_3d (POINT_3D max, POINT_3D new_pt)
{
  int i;

  for (i = 0; i < 3; i++)
    if (new_pt[i] > max[i])
      max[i] = new_pt[i];
}

FLOAT
dot_2d (VECTOR_2D a, VECTOR_2D b)
{
  return a[X] * b[X] + a[Y] * b[Y];
}

FLOAT
dot_3d (VECTOR_3D a, VECTOR_3D b)
{
  return a[X] * b[X] + a[Y] * b[Y] + a[Z] * b[Z];
}

void
cross (VECTOR_3D r, VECTOR_3D a, VECTOR_3D b)
{
  r[X] = a[Y] * b[Z] - a[Z] * b[Y];
  r[Y] = a[Z] * b[X] - a[X] * b[Z];
  r[Z] = a[X] * b[Y] - a[Y] * b[X];
}

void
lerp_2d (POINT_2D r, FLOAT t, POINT_2D p1, POINT_2D p2)
{
  r[0] = p1[0] + t * (p2[0] - p1[0]);
  r[1] = p1[1] + t * (p2[1] - p1[1]);
}

void
lerp_3d (POINT_3D r, FLOAT t, POINT_3D p1, POINT_3D p2)
{
  r[0] = p1[0] + t * (p2[0] - p1[0]);
  r[1] = p1[1] + t * (p2[1] - p1[1]);
  r[2] = p1[2] + t * (p2[2] - p1[2]);
}

int
line_intersect_2d (POINT_2D a, POINT_2D b, POINT_2D c, POINT_2D d,
		   FLOAT eps, FLOAT * t_ab, FLOAT * t_cd)
{
  FLOAT dx_ab, dy_ab, dx_dc, dy_dc, det, dx_ac, dy_ac;

  dx_ab = b[X] - a[X];
  dy_ab = b[Y] - a[Y];
  dx_dc = c[X] - d[X];
  dy_dc = c[Y] - d[Y];
  det = dx_ab * dy_dc - dx_dc * dy_ab;
  if (-eps < det && det < eps)
    return 1;
  dx_ac = c[X] - a[X];
  dy_ac = c[Y] - a[Y];
  *t_ab = (dx_ac * dy_dc - dx_dc * dy_ac) / det;
  *t_cd = (dx_ab * dy_ac - dx_ac * dy_ab) / det;
  return 0;
}

void
find_polygon_plane (PLANE * plane, POLYGON_3D * polygon)
{
  int i, j;
  VECTOR_3D sum, dif;

  zero_vec_3d (plane->p);
  zero_vec_3d (plane->n);
  for (i = 0, j = polygon->n_sides - 1; i < polygon->n_sides; j = i++)
    {
      add_vecs_3d (plane->p, plane->p, polygon->v[i]);
      add_vecs_3d (sum, polygon->v[j], polygon->v[i]);
      sub_vecs_3d (dif, polygon->v[j], polygon->v[i]);
      plane->n[X] += dif[Y] * sum[Z];
      plane->n[Y] += dif[Z] * sum[X];
      plane->n[Z] += dif[X] * sum[Y];
    }
  scale_vec_3d (plane->p, plane->p, 1.0 / polygon->n_sides);
  find_unit_vec_3d (plane->n, plane->n);
  plane->c = -dot_3d (plane->p, plane->n);
}

int
pt_side_of_plane (PLANE * plane, POINT_3D p)
{
  FLOAT d = dot_3d (p, plane->n) + plane->c;
  return d < -PLANE_HALF_THICKNESS ? S_IN :
    d > PLANE_HALF_THICKNESS ? S_OUT :
    d < 0 ? S_IN_ON : d > 0 ? S_OUT_ON : S_ON;
}

int
polygon_side_of_plane (POLYGON_3D * polygon, PLANE * plane)
{
  int i, j, i_side, j_side, n_in, n_out;

  // initialize with last point in polygon
  // scan for OUT-IN or IN-OUT pair
  j = polygon->n_sides - 1;
  j_side = pt_side_of_plane (plane, polygon->v[j]);
  n_in = n_out = 0;
  for (i = 0; i < polygon->n_sides; i++)
    {

      // advance to next vertex
      i_side = pt_side_of_plane (plane, polygon->v[i]);

      if ((i_side | j_side) == (S_IN | S_OUT))
	// found a straddling pair
	return S_SPLIT;

      if (i_side & (S_IN | S_OUT))
	// found an IN or an OUT; remember it
	j_side = i_side;

      // keep counts for polygons entirely inside the thick plane
      if (i_side == S_OUT_ON)
	n_out++;
      if (i_side == S_IN_ON)
	n_in++;
    }
  return
    j_side & (S_IN | S_OUT) ? j_side :
    (n_out > n_in) ? S_OUT : (n_in > n_out) ? S_IN : S_ON;
}

# if TREAT_POLYLINE_POINTS_ON_PLANE_AS_IN_OR_OUT

// this will work only with BSPs, not with depth sort
// it causes polylines that end  on a plane to be split into a line and a point
int
polyline_side_of_plane (POLYLINE_3D * polyline, PLANE * plane)
{
  int i, j, i_side, j_side, n_in, n_out;
  //  predicate for "if more than one bit set..."
  //                       0  1  2  3  4  5  6  7
  static int is_split_p[] = { 0, 0, 0, 1, 0, 1, 1, 1 };

  // initialize with first point in polyline
  // scan for OUT-IN or IN-OUT pair
  j = 0;
  i_side = pt_side_of_plane (plane, polyline->v[j]);
  n_in = n_out = 0;
  for (i = 1; i < polyline->n_vertices; i++)
    {
      // advance to next vertex, remembering side of last
      j_side = i_side;
      i_side = pt_side_of_plane (plane, polyline->v[i]);

      if (is_split_p[(i_side | j_side) & 7])
	return S_SPLIT;

      // keep counts for polylines entirely inside the thick plane
      if (i_side == S_OUT_ON)
	n_out++;
      if (i_side == S_IN_ON)
	n_in++;
    }
  return
    i_side & (S_IN | S_OUT) ? i_side :
    (n_out > n_in) ? S_OUT : (n_in > n_out) ? S_IN : S_ON;
}

#else

int
polyline_side_of_plane (POLYLINE_3D * polyline, PLANE * plane)
{
  int i, j, i_side, j_side, n_in, n_out;

  // initialize with last point in polygon
  // scan for OUT-IN or IN-OUT pair
  j = polyline->n_vertices - 1;
  j_side = pt_side_of_plane (plane, polyline->v[j]);
  n_in = n_out = 0;
  for (i = 0; i < polyline->n_vertices; i++)
    {

      // advance to next vertex
      i_side = pt_side_of_plane (plane, polyline->v[i]);

      if ((i_side | j_side) == (S_IN | S_OUT))
	// found a straddling pair
	return S_SPLIT;

      if (i_side & (S_IN | S_OUT))
	// found an IN or an OUT; remember it
	j_side = i_side;

      // keep counts for polylines entirely inside the thick plane
      if (i_side == S_OUT_ON)
	n_out++;
      if (i_side == S_IN_ON)
	n_in++;
    }
  return
    j_side & (S_IN | S_OUT) ? j_side :
    (n_out > n_in) ? S_OUT : (n_in > n_out) ? S_IN : S_ON;
}

#endif

void
init_box_2d (BOX_2D * b)
{
  b->min[X] = b->min[Y] = FLOAT_MAX;
  b->max[X] = b->max[Y] = -FLOAT_MAX;
}

void
init_box_3d (BOX_3D * b)
{
  b->min[X] = b->min[Y] = b->min[Z] = FLOAT_MAX;
  b->max[X] = b->max[Y] = b->max[Z] = -FLOAT_MAX;
}

void
fold_min_max_pt_2d (BOX_2D * b, POINT_2D p)
{
  fold_min_pt_2d (b->min, p);
  fold_max_pt_2d (b->max, p);
}

void
fold_min_max_pt_3d (BOX_3D * b, POINT_3D p)
{
  fold_min_pt_3d (b->min, p);
  fold_max_pt_3d (b->max, p);
}

void
fold_min_max_polygon_2d (BOX_2D * b, POLYGON_2D * polygon)
{
  int i;

  for (i = 0; i < polygon->n_sides; i++)
    fold_min_max_pt_2d (b, polygon->v[i]);
}

void
fold_min_max_polygon_3d (BOX_3D * b, POLYGON_3D * polygon)
{
  int i;

  for (i = 0; i < polygon->n_sides; i++)
    fold_min_max_pt_3d (b, polygon->v[i]);
}

void
fold_min_max_polyline_2d (BOX_2D * b, POLYLINE_2D * polyline)
{
  int i;

  for (i = 0; i < polyline->n_vertices; i++)
    fold_min_max_pt_2d (b, polyline->v[i]);
}

void
fold_min_max_polyline_3d (BOX_3D * b, POLYLINE_3D * polyline)
{
  int i;

  for (i = 0; i < polyline->n_vertices; i++)
    fold_min_max_pt_3d (b, polyline->v[i]);
}

void
copy_box_2d (BOX_2D * r, BOX_2D * s)
{
  *r = *s;
}

void
copy_box_3d (BOX_3D * r, BOX_3D * s)
{
  *r = *s;
}

int
boxes_2d_intersect_p (BOX_2D * a, BOX_2D * b)
{
  if (a->max[X] < b->min[X])	// a left of b
    return 0;
  if (a->min[X] > b->max[X])	// a right of b
    return 0;
  if (a->max[Y] < b->min[Y])	// a below  b
    return 0;
  if (a->min[Y] > b->max[Y])	// a above b
    return 0;
  return 1;
}

int
boxes_3d_intersect_p (BOX_2D * a, BOX_2D * b)
{
  if (a->max[X] < b->min[X])	// a left of b
    return 0;
  if (a->min[X] > b->max[X])	// a right of b
    return 0;
  if (a->max[Y] < b->min[Y])	// a below  b
    return 0;
  if (a->min[Y] > b->max[Y])	// a above b
    return 0;
  if (a->max[Z] < b->min[Z])	// a behind  b
    return 0;
  if (a->min[Z] > b->max[Z])	// a in front of b
    return 0;
  return 1;
}

void
copy_transform (TRANSFORM r, TRANSFORM s)
{
  int i;

  for (i = 0; i < 16; i++)
    r[i] = s[i];
}

#define R(I,J) r[IT(I,J)]

void
set_ident (TRANSFORM r)
{
  R (1, 1) = 1;			// hard code for speed
  R (2, 1) = 0;
  R (3, 1) = 0;
  R (4, 1) = 0;

  R (1, 2) = 0;
  R (2, 2) = 1;
  R (3, 2) = 0;
  R (4, 2) = 0;

  R (1, 3) = 0;
  R (2, 3) = 0;
  R (3, 3) = 1;
  R (4, 3) = 0;

  R (1, 4) = 0;
  R (2, 4) = 0;
  R (3, 4) = 0;
  R (4, 4) = 1;
}

void
set_scale (TRANSFORM r, FLOAT sx, FLOAT sy, FLOAT sz)
{
  set_ident (r);
  R (1, 1) = sx;
  R (2, 2) = sy;
  R (3, 3) = sz;
}

void
set_translation (TRANSFORM r, FLOAT dx, FLOAT dy, FLOAT dz)
{
  set_ident (r);
  R (1, 4) = dx;
  R (2, 4) = dy;
  R (3, 4) = dz;
}

#define SQR(A) ((A) * (A))

void
set_angle_axis_rot (TRANSFORM r, FLOAT theta, VECTOR_3D u)
{
  FLOAT c = cos (theta);
  FLOAT s = sin (theta);
  FLOAT d = 1 - c;

  R (1, 1) = d * (SQR (u[X]) - 1) + 1;
  R (1, 2) = d * u[X] * u[Y] - u[Z] * s;
  R (1, 3) = d * u[X] * u[Z] + u[Y] * s;

  R (2, 1) = d * u[X] * u[Y] + u[Z] * s;
  R (2, 2) = d * (SQR (u[Y]) - 1) + 1;
  R (2, 3) = d * u[Y] * u[Z] - u[X] * s;

  R (3, 1) = d * u[X] * u[Z] - u[Y] * s;
  R (3, 2) = d * u[Y] * u[Z] + u[X] * s;
  R (3, 3) = d * (SQR (u[Z]) - 1) + 1;

  R (1, 4) = R (4, 1) = R (2, 4) = R (4, 2) = R (3, 4) = R (4, 3) = 0;
  R (4, 4) = 1;
}

void
set_angle_axis_rot_about_point (TRANSFORM r, FLOAT theta, POINT_3D p,
				VECTOR_3D u)
{
  VECTOR_3D u_unit;
  TRANSFORM tmp;

  if (u)
    {
      find_unit_vec_3d (u_unit, u);
    }
  else
    {
      u_unit[X] = u_unit[Y] = 0;
      u_unit[Z] = 1;
    }
  set_angle_axis_rot (r, theta, u_unit);
  if (p)
    {
      set_translation (tmp, -p[X], -p[Y], -p[Z]);
      compose (r, r, tmp);
      set_translation (tmp, p[X], p[Y], p[Z]);
      compose (r, tmp, r);
    }
}

void
set_perspective_projection (TRANSFORM r, FLOAT p)
{
  set_scale (r, p, p, p);
  R (4, 4) = 0;
  R (4, 3) = -1;
}

void
set_perspective_transform (TRANSFORM r, FLOAT p)
{
  set_scale (r, p, p, 1);
  R (3, 4) = 1;
  R (4, 3) = -1;
  R (4, 4) = 0;
}

void
set_parallel_projection (TRANSFORM r)
{
  set_scale (r, 1, 1, 0);
}

void
set_view_transform (TRANSFORM r, POINT_3D eye, VECTOR_3D vd, VECTOR_3D up)
{
  static VECTOR_3D default_up = { 0, 1, 0 };

  VECTOR_3D unit_vd, unit_up, h, v;
  TRANSFORM tmp;

  if (vd)
    {
      find_unit_vec_3d (unit_vd, vd);
    }
  else
    {
      negate_vec_3d (unit_vd, eye);	// assumes point and vector are compatible
      find_unit_vec_3d (unit_vd, unit_vd);
    }

  if (up)
    find_unit_vec_3d (unit_up, up);
  else
    copy_vec_3d (unit_up, default_up);

  cross (h, unit_vd, unit_up);
  cross (v, h, unit_vd);

  R (1, 1) = h[X];
  R (1, 2) = h[Y];
  R (1, 3) = h[Z];
  R (1, 4) = 0;
  R (2, 1) = v[X];
  R (2, 2) = v[Y];
  R (2, 3) = v[Z];
  R (2, 4) = 0;
  R (3, 1) = -unit_vd[X];
  R (3, 2) = -unit_vd[Y];
  R (3, 3) = -unit_vd[Z];
  R (3, 4) = 0;
  R (4, 1) = 0;
  R (4, 2) = 0;
  R (4, 3) = 0;
  R (4, 4) = 1;

  if (eye)
    {
      set_translation (tmp, -eye[X], -eye[Y], -eye[Z]);
      compose (r, r, tmp);
    }
}

void
set_view_transform_with_look_at (TRANSFORM r, POINT_3D eye,
				 POINT_3D look_at, VECTOR_3D up)
{
  VECTOR_3D vd;
  sub_vecs_3d (vd, look_at, eye);
  set_view_transform (r, eye, vd, up);
}

#define M(I,J) m[IT(I,J)]

// invert a transform using the method of cofactors
// this code was generated by the Perl program geninv.pl
void
invert (TRANSFORM r, FLOAT * det_rtn, TRANSFORM m, FLOAT min_det)
{
  int i;
  FLOAT det;
  FLOAT t001, t002, t003, t004, t005, t006, t007, t008,
    t009, t010, t011, t012, t013, t014, t015, t016,
    t017, t018, t019, t020, t021, t022, t023, t024,
    t025, t026, t027, t028, t029, t030, t031, t032,
    t033, t034, t035, t036, t037, t038, t039, t040,
    t057, t058, t061, t062, t065, t066, t072, t073,
    t076, t077, t085, t086, t097, t098, t101, t102,
    t105, t106, t112, t113, t116, t117, t125, t126;
  t001 = M (3, 3) * M (4, 4);
  t002 = M (3, 4) * M (4, 3);
  t003 = t001 - t002;
  t004 = M (2, 2) * t003;
  t005 = M (3, 2) * M (4, 4);
  t006 = M (3, 4) * M (4, 2);
  t007 = t006 - t005;
  t008 = M (2, 3) * t007;
  t009 = M (3, 2) * M (4, 3);
  t010 = M (3, 3) * M (4, 2);
  t011 = t009 - t010;
  t012 = M (2, 4) * t011;
  t013 = t004 + t008 + t012;
  R (1, 1) = t013;
  t014 = t002 - t001;
  t015 = M (2, 1) * t014;
  t016 = M (3, 1) * M (4, 4);
  t017 = M (3, 4) * M (4, 1);
  t018 = t016 - t017;
  t019 = M (2, 3) * t018;
  t020 = M (3, 1) * M (4, 3);
  t021 = M (3, 3) * M (4, 1);
  t022 = t021 - t020;
  t023 = M (2, 4) * t022;
  t024 = t015 + t019 + t023;
  R (2, 1) = t024;
  t025 = t005 - t006;
  t026 = M (2, 1) * t025;
  t027 = t017 - t016;
  t028 = M (2, 2) * t027;
  t029 = M (3, 1) * M (4, 2);
  t030 = M (3, 2) * M (4, 1);
  t031 = t029 - t030;
  t032 = M (2, 4) * t031;
  t033 = t026 + t028 + t032;
  R (3, 1) = t033;
  t034 = t010 - t009;
  t035 = M (2, 1) * t034;
  t036 = t020 - t021;
  t037 = M (2, 2) * t036;
  t038 = t030 - t029;
  t039 = M (2, 3) * t038;
  t040 = t035 + t037 + t039;
  R (4, 1) = t040;
  det =
    (M (1, 1) * t013) + (M (1, 2) * t024) + (M (1, 3) * t033) +
    (M (1, 4) * t040);
  R (1, 2) = (M (1, 2) * t014) + (M (1, 3) * t025) + (M (1, 4) * t034);
  R (2, 2) = (M (1, 1) * t003) + (M (1, 3) * t027) + (M (1, 4) * t036);
  R (3, 2) = (M (1, 1) * t007) + (M (1, 2) * t018) + (M (1, 4) * t038);
  R (4, 2) = (M (1, 1) * t011) + (M (1, 2) * t022) + (M (1, 3) * t031);
  t057 = M (2, 3) * M (4, 4);
  t058 = M (2, 4) * M (4, 3);
  t061 = M (2, 2) * M (4, 4);
  t062 = M (2, 4) * M (4, 2);
  t065 = M (2, 2) * M (4, 3);
  t066 = M (2, 3) * M (4, 2);
  R (1, 3) =
    ((t057 - t058) * M (1, 2)) + ((t062 - t061) * M (1,
						     3)) + ((t065 -
							     t066) * M (1,
									4));
  t072 = M (2, 1) * M (4, 4);
  t073 = M (2, 4) * M (4, 1);
  t076 = M (2, 1) * M (4, 3);
  t077 = M (2, 3) * M (4, 1);
  R (2, 3) =
    ((t058 - t057) * M (1, 1)) + ((t072 - t073) * M (1,
						     3)) + ((t077 -
							     t076) * M (1,
									4));
  t085 = M (2, 1) * M (4, 2);
  t086 = M (2, 2) * M (4, 1);
  R (3, 3) =
    ((t061 - t062) * M (1, 1)) + ((t073 - t072) * M (1,
						     2)) + ((t085 -
							     t086) * M (1,
									4));
  R (4, 3) =
    ((t066 - t065) * M (1, 1)) + ((t076 - t077) * M (1,
						     2)) + ((t086 -
							     t085) * M (1,
									3));
  t097 = M (2, 3) * M (3, 4);
  t098 = M (2, 4) * M (3, 3);
  t101 = M (2, 2) * M (3, 4);
  t102 = M (2, 4) * M (3, 2);
  t105 = M (2, 2) * M (3, 3);
  t106 = M (2, 3) * M (3, 2);
  R (1, 4) =
    ((t098 - t097) * M (1, 2)) + ((t101 - t102) * M (1,
						     3)) + ((t106 -
							     t105) * M (1,
									4));
  t112 = M (2, 1) * M (3, 4);
  t113 = M (2, 4) * M (3, 1);
  t116 = M (2, 1) * M (3, 3);
  t117 = M (2, 3) * M (3, 1);
  R (2, 4) =
    ((t097 - t098) * M (1, 1)) + ((t113 - t112) * M (1,
						     3)) + ((t116 -
							     t117) * M (1,
									4));
  t125 = M (2, 1) * M (3, 2);
  t126 = M (2, 2) * M (3, 1);
  R (3, 4) =
    ((t102 - t101) * M (1, 1)) + ((t112 - t113) * M (1,
						     2)) + ((t126 -
							     t125) * M (1,
									4));
  R (4, 4) =
    ((t105 - t106) * M (1, 1)) + ((t117 - t116) * M (1,
						     2)) + ((t125 -
							     t126) * M (1,
									3));
  if (-min_det <= det && det <= min_det)
    {
      *det_rtn = 0;
    }
  else
    {
      *det_rtn = det;
      for (i = 0; i < 16; i++)
	r[i] *= 1 / det;
    }
}

#define A(I,J) a[IT(I,J)]
#define B(I,J) b[IT(I,J)]
void
compose_unsafe (TRANSFORM r, TRANSFORM a, TRANSFORM b)
{
  int i, j;
  FLOAT *p = r;

  for (j = 1; j <= 4; j++)
    for (i = 1; i <= 4; i++)
      *p++ =
	A (i, 1) * B (1, j) + A (i, 2) * B (2, j) + A (i, 3) * B (3,
								  j) +
	A (i, 4) * B (4, j);
}

void
compose (TRANSFORM r, TRANSFORM a, TRANSFORM b)
{
  TRANSFORM t;
  compose_unsafe (t, a, b);
  copy_transform (r, t);
}

void
transform_pt_3d (POINT_3D r, TRANSFORM m, POINT_3D p)
{
  POINT_3D t;
  FLOAT wi;

  wi = 1 / (M (4, 1) * p[X] + M (4, 2) * p[Y] + M (4, 3) * p[Z] + M (4, 4));
  t[X] =
    (M (1, 1) * p[X] + M (1, 2) * p[Y] + M (1, 3) * p[Z] + M (1, 4)) * wi;
  t[Y] =
    (M (2, 1) * p[X] + M (2, 2) * p[Y] + M (2, 3) * p[Z] + M (2, 4)) * wi;
  t[Z] =
    (M (3, 1) * p[X] + M (3, 2) * p[Y] + M (3, 3) * p[Z] + M (3, 4)) * wi;
  copy_pt_3d (r, t);
}

void
transform_vec_3d (VECTOR_3D r, TRANSFORM m, VECTOR_3D v)
{
  VECTOR_3D t;

  t[X] = M (1, 1) * v[X] + M (1, 2) * v[Y] + M (1, 3) * v[Z];
  t[Y] = M (2, 1) * v[X] + M (2, 2) * v[Y] + M (2, 3) * v[Z];
  t[Z] = M (3, 1) * v[X] + M (3, 2) * v[Y] + M (3, 3) * v[Z];
  copy_vec_3d (r, t);
}

void
set_ident_quat (QUATERNION q)
{
  q[W] = 1;
  q[X] = q[Y] = q[Z] = 0;
}

void
set_angle_axis_quat (QUATERNION q, FLOAT theta, VECTOR_3D axis)
{
  VECTOR_3D v;

  find_unit_vec_3d (v, axis);
  scale_vec_3d (&q[X], v, sin (theta));
  q[W] = cos (theta);
}

void
mult_quat (QUATERNION r, QUATERNION a, QUATERNION b)
{
  r[W] = a[W] * b[W] - a[X] * b[X] - a[Y] * b[Y] - a[Z] * b[Z];
  r[X] = a[W] * b[X] + a[X] * b[W] + a[Y] * b[Z] - a[Z] * b[Y];
  r[Y] = a[W] * b[Y] - a[X] * b[Z] + a[Y] * b[W] + a[Z] * b[X];
  r[Z] = a[W] * b[Z] + a[X] * b[Y] - a[Y] * b[X] + a[Z] * b[W];
}

#define R(I,J) r[IT(I,J)]
#define SQR(A) ((A) * (A))

void
find_rot_from_quat (TRANSFORM r, QUATERNION q)
{
  FLOAT len2 = SQR (q[W]) + SQR (q[X]) + SQR (q[Y]) + SQR (q[Z]);
  FLOAT s = len2 > 0 ? 2 / len2 : 0;

  R (1, 1) = 1 - s * (SQR (q[Y]) + SQR (q[Z]));
  R (1, 2) = s * (q[X] * q[Y] - q[W] * q[Z]);
  R (1, 3) = s * (q[X] * q[Z] + q[W] * q[Y]);

  R (2, 1) = s * (q[X] * q[Y] + q[W] * q[Z]);
  R (2, 2) = 1 - s * (SQR (q[X]) + SQR (q[Z]));
  R (2, 3) = s * (q[Y] * q[Z] - q[W] * q[X]);

  R (3, 1) = s * (q[X] * q[Z] - q[W] * q[Y]);
  R (3, 2) = s * (q[Y] * q[Z] + q[W] * q[X]);
  R (3, 3) = 1 - s * (SQR (q[X]) + SQR (q[Y]));

  R (1, 4) = R (4, 1) = R (2, 4) = R (4, 2) = R (3, 4) = R (4, 3) = 0;
  R (4, 4) = 1;
}

void
find_quat_from_rot (QUATERNION q, TRANSFORM r)
{
  if (R (1, 1) + R (2, 2) + R (3, 3) >= 0)
    {				// w first
      FLOAT w2 = sqrt (R (1, 1) + R (2, 2) + R (3, 3) + 1);
      q[W] = 0.5 * w2;		// 1st
      q[X] = (0.5 / w2) * (R (3, 2) - R (2, 3));	// (f)
      q[Y] = (0.5 / w2) * (R (1, 3) - R (3, 1));	// (d)
      q[Z] = (0.5 / w2) * (R (2, 1) - R (1, 2));	// (b)
      return;
    }
  // x, y, or z first
  if (R (1, 1) > R (2, 2))
    if (R (1, 1) > R (3, 3))
      goto x_first;
    else
      goto z_first;
  else				// R(2,2) >= R(1,1)
  if (R (2, 2) > R (3, 3))
    goto y_first;
  else
    goto z_first;

x_first:{
    FLOAT x2 = sqrt (R (1, 1) - R (2, 2) - R (3, 3) + 1);
    q[W] = (0.5 / x2) * (R (3, 2) - R (2, 3));	// (f)
    q[X] = 0.5 * x2;		// 1st
    q[Y] = (0.5 / x2) * (R (2, 1) + R (1, 2));	// (a)
    q[Z] = (0.5 / x2) * (R (1, 3) + R (3, 1));	// (c)
    return;
  }

y_first:{
    FLOAT y2 = sqrt (-R (1, 1) + R (2, 2) - R (3, 3) + 1);
    q[W] = (0.5 / y2) * (R (1, 3) - R (3, 1));	// (d)
    q[X] = (0.5 / y2) * (R (2, 1) + R (1, 2));	// (a)
    q[Y] = 0.5 * y2;		// 1st
    q[Z] = (0.5 / y2) * (R (3, 2) + R (2, 3));	// (e)
    return;
  }

z_first:{
    FLOAT z2 = sqrt (-R (1, 1) - R (2, 2) + R (3, 3) + 1);
    q[W] = (0.5 / z2) * (R (2, 1) - R (1, 2));	// (b)
    q[X] = (0.5 / z2) * (R (1, 3) + R (3, 1));	// (c)
    q[Y] = (0.5 / z2) * (R (3, 2) + R (2, 3));	// (e)
    q[Z] = 0.5 * z2;		// 1st
    return;
  }
}

#undef R

void
make_cso_polygon_2d (POLYGON_2D * r, POLYGON_2D * a, POINT_2D p,
		     POLYGON_2D * b)
{
  int j, ia, ja, ib, jb, ir, nb;
  FLOAT x, y, dx_a, dy_a, dx_b, dy_b;

  setup_polygon_2d (r, a->n_sides + b->n_sides);
  r->n_sides = a->n_sides + b->n_sides;

  ja = 0;
  x = a->v[ja][X];
  for (j = 1; j < a->n_sides; j++)
    if (a->v[j][X] < x)
      {
	x = a->v[j][X];
	ja = j;
      }

  jb = 0;
  x = b->v[0][X];
  for (j = 1; j < b->n_sides; j++)
    if (b->v[j][X] > x)
      {
	x = b->v[j][X];
	jb = j;
      }
  // this point is certain to be an extreme point of the cso
  x = b->v[jb][X] + (p[X] - a->v[ja][X]);
  y = b->v[jb][Y] + (p[Y] - a->v[ja][Y]);

  ia = (ja + 1) % a->n_sides;
  dx_a = a->v[ja][X] - a->v[ia][X];
  dy_a = a->v[ja][Y] - a->v[ia][Y];
  ib = (jb + 1) % b->n_sides;
  dx_b = b->v[ib][X] - b->v[jb][X];
  dy_b = b->v[ib][Y] - b->v[jb][Y];
  nb = b->n_sides;
  ir = 0;
  for (;;)
    {

      // record obstacle polygon point and quit if done
      r->v[ir][X] = x;
      r->v[ir][Y] = y;
      if (++ir == r->n_sides)
	break;

      // merge next edge of lowest theta. */
      if (nb == 0 || dx_a * dy_b - dy_a * dx_b > 0)
	{
	  x += dx_a;
	  y += dy_a;
	  ja = ia;
	  ia = (ja + 1) % a->n_sides;
	  dx_a = a->v[ja][X] - a->v[ia][X];
	  dy_a = a->v[ja][Y] - a->v[ia][Y];
	}
      else
	{
	  x += dx_b;
	  y += dy_b;
	  jb = ib;
	  ib = (jb + 1) % b->n_sides;
	  dx_b = b->v[ib][X] - b->v[jb][X];
	  dy_b = b->v[ib][Y] - b->v[jb][Y];
	  nb--;
	}
    }
}

int
point_near_convex_polygon_2d_p (POINT_2D p, POLYGON_2D * a, FLOAT eps)
{
  int i, j;
  VECTOR_2D vji_perp, vjp;

  // if the point is more than eps right of any edge, we're outside
  for (i = 0, j = a->n_sides - 1; i < a->n_sides; j = i++)
    {
      vji_perp[X] = a->v[j][Y] - a->v[i][Y];
      vji_perp[Y] = a->v[i][X] - a->v[j][X];
      find_unit_vec_2d (vji_perp, vji_perp);
      sub_pts_2d (vjp, p, a->v[j]);
      if (dot_2d (vjp, vji_perp) <= eps)
	return 0;
    }
  // else we're inside!
  return 1;
}

int
point_inside_convex_polygon_2d_p (POINT_2D p, POLYGON_2D * a)
{
  int i, j;

  // if the point is right of any edge, we're outside
  for (i = 0, j = a->n_sides - 1; i < a->n_sides; j = i++)
    if ((p[X] - a->v[j][X]) * (a->v[i][Y] - a->v[j][Y]) -
	(p[Y] - a->v[j][Y]) * (a->v[i][X] - a->v[j][X]) >= 0)
      return 0;

  // else we're inside!
  return 1;
}

// The Franklin code...
int
point_inside_polygon_2d_p (POINT_2D p, POLYGON_2D * a)
{
  int i, j, r = 0;
  for (i = 0, j = a->n_sides - 1; i < a->n_sides; j = i++)
    {
      if (((a->v[i][Y] <= p[Y] && p[Y] < a->v[j][Y]) ||
	   (a->v[j][Y] <= p[Y] && p[Y] < a->v[i][Y])) &&
	  (p[X] < (a->v[j][X] - a->v[i][X]) * (p[Y] - a->v[i][Y]) /
	   (a->v[j][Y] - a->v[i][Y]) + a->v[i][X]))
	r ^= 1;
    }
  return r;
}

#ifdef TEST_INVERT

void
print_transform (TRANSFORM m)
{
  int i, j;
  printf ("[\n");
  for (i = 1; i <= 4; i++)
    {
      printf ("[");
      for (j = 1; j <= 4; j++)
	{
	  printf (" %8.3g", m[IT (i, j)]);
	}
      printf ("]\n");
    }
  printf ("]\n");
}

int
main (void)
{
  TRANSFORM m = { 1, 0, 1, 1, 2, 4, 0, 19, 3, 5, 6, 57, 14, -3, 34, 1 }, r;
  FLOAT det;
  VECTOR_3D axis = { 1, 2, 3 };
  POINT_3D pt = { -10, 2, 41 };

  // set_angle_axis_rot_about_point(m, 30, pt, axis);
  print_transform (m);
  invert (r, &det, m, 1e-4);
  printf ("det=%.3g\n", det);
  print_transform (r);
  invert (m, &det, r, 1e-4);
  printf ("det=%.3g\n", det);
  print_transform (m);
}

#endif

#ifdef TEST_DYNARRAY_H

// we need a dynamic arrao of these things
typedef struct foo_t
{
  char *name;
  int count;
}
FOO;

typedef struct foo_array_t
{
  DYNAMIC_ARRAY_FIELDS (FOO, val, n_vals);
}
FOO_ARRAY;

// do the prototypes for the constructor, destructor, and accessor functions
DECLARE_DYNAMIC_ARRAY_PROTOS (FOO_ARRAY, FOO, foo_list, val, n_vals)
// ---- in foo.c ----
// create the bodies for the constructor, destructor, and accessor functions
  DECLARE_DYNAMIC_ARRAY_FUNCS (FOO_ARRAY, FOO, foo_list, val, n_vals)
// use all the new stuff!
     void do_stuff_with_foos (void)
{
  int i;
  char buf[100];
  FOO_ARRAY list[1];		// or FOO_ARRAY list; but then we're forever &'ing
  FOO_ARRAY copy[1];

  init_foo_list (list);		// do this JUST ONCE right after declaration
  init_foo_list (copy);		// (not necessary for static/global decls)

  setup_foo_list (list, 10);	// allow for 10 elements

  // read some data and push it on the list tail
  while (scanf ("%d %s", &i, buf) == 2)
    {
      // get pointer to new (empty) element at the end of array
      FOO *p = pushed_foo_list_val (list);
      // fill in field values
      p->name = strdup (buf);
      p->count = i;
    }

  // shows unsafe access to elements
  printf ("forward listing:\n");
  for (i = 0; i < list->n_vals; i++)
    printf ("name=%s count=%d (%d)\n", list->val[i].name,	// fast unsafe access
	    foo_list_val_ptr (list, i)->count,	// slower safe pointer access
	    foo_list_val (list, i).count);	// copying access

  copy_foo_list_filled (copy, list);	// copies only filled elements

  // print in reverse order by popping from tail
  printf ("backward listing:\n");
  while (copy->n_vals > 0)
    {
      FOO *p = popped_foo_list_val (copy);
      printf ("name=%s count=%d\n", p->name, p->count);
    }

  // clear out all the allocated storage for the ilst
  clear_foo_list (list);
  clear_foo_list (copy);
}

#endif