summaryrefslogtreecommitdiff
path: root/graphics/pictex/addon/piccorr.sty
blob: d0658aeaf02d78a0462ecd89ec49e240ab413579 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                 %
% Correction to PiCTeX 1.1 9/21/87                %
% by Andreas Schrell, Wuppertal, FRG, 9/30/91     %
%                                                 %
% The bug forces wrong height and position of the %
% vertical \betweenarrows - structure if the      %
% coordinate difference is negative.              %
% You can search for ERROR in this file.          %
%                                                 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

{\catcode`!=11

\global
\def\betweenarrows #1#2 from #3 #4 to #5 #6 {%
  \!xloc=\!M{#3}\!xunit  \!xxloc=\!M{#5}\!xunit%
  \!yloc=\!M{#4}\!yunit  \!yyloc=\!M{#6}\!yunit%
  \!dxpos=\!xxloc  \advance\!dxpos by -\!xloc
  \!dypos=\!yyloc  \advance\!dypos by -\!yloc
  \advance\!xloc .5\!dxpos
  \advance\!yloc .5\!dypos
%
  \let\!MBA=\!M%           ** save current coord\dimen mode
  \!setdimenmode%          ** express locations in dimens
  \ifdim\!dypos=\!zpt
    \ifdim\!dxpos<\!zpt \!dxpos=-\!dxpos \fi
    \put {\!lrarrows{\!dxpos}{#1}}#2{} at {\!xloc} {\!yloc}
  \else
    \ifdim\!dxpos=\!zpt
%     \ifdim\!dypos<\!zpt \!dypos=-\!zpt \fi
%                                  ^^^^^ ERROR!
      \ifdim\!dypos<\!zpt \!dypos=-\!dypos \fi
%                                  ^^^^^^^ CORRECTION!
      \put {\!udarrows{\!dypos}{#1}}#2{} at {\!xloc} {\!yloc}
    \fi
  \fi
  \let\!M=\!MBA%           ** restore previous c/d mode
  \ignorespaces}


% correction added by Robin Fairbairns (rf10@cam.ac.uk) 1999/09/14

\def\!qjoin (#1,#2) (#3,#4){%
  \advance\!intervalno by 1
  \!ifcoordmode
    \edef\!xmidpt{#1}\edef\!ymidpt{#2}%
  \else
    \!dimenA=#1\relax \edef\!xmidpt{\the\!dimenA}%
%   \!dimenA=#2\relax \edef\!xmidpt{\the\!dimenA}% WRONG
%                          ^^^^^^^^
    \!dimenA=#2\relax \edef\!ymidpt{\the\!dimenA}%
%                          ^^^^^^^^
  \fi
  \!xM=\!M{#1}\!xunit  \!yM=\!M{#2}\!yunit   \!rotateaboutpivot\!xM\!yM
  \!xE=\!M{#3}\!xunit  \!yE=\!M{#4}\!yunit   \!rotateaboutpivot\!xE\!yE
%
% ** Find coefficients for x(t)=a_x + b_x*t + c_x*t**2
  \!dimenA=\!xM  \advance \!dimenA by -\!xS%   ** dimA = I = xM - xS
  \!dimenB=\!xE  \advance \!dimenB by -\!xM%   ** dimB = II = xE-xM
  \!xB=3\!dimenA \advance \!xB by -\!dimenB%   ** b=3I-II
  \!xC=2\!dimenB \advance \!xC by -2\!dimenA%  ** c=2(II-I)
%
% ** Find coefficients for y(t)=y_x + b_y*t + c_y*t**2
  \!dimenA=\!yM  \advance \!dimenA by -\!yS%   
  \!dimenB=\!yE  \advance \!dimenB by -\!yM%  
  \!yB=3\!dimenA \advance \!yB by -\!dimenB%  
  \!yC=2\!dimenB \advance \!yC by -2\!dimenA% 
%
% ** Use Simpson's rule to calculate arc length over [0,1/2]:
% **   arc length = 1/2[1/6 f(0) + 4/6 f(1/4) + 1/6 f(1/2)]
% ** with f(t) = sqrt(x'(t)**2 + y'(t)**2).
  \!xprime=\!xB  \!yprime=\!yB%          ** x'(t) = b + 2ct
  \!dxprime=.5\!xC  \!dyprime=.5\!yC%    ** dt=1/4 ==> dx'(t) = c/2
  \!getf \!midarclength=\!dimenA
  \!getf \advance \!midarclength by 4\!dimenA
  \!getf \advance \!midarclength by \!dimenA
  \divide \!midarclength by 12
%
% ** Get arc length over [0,1].
  \!arclength=\!dimenA
  \!getf \advance \!arclength by 4\!dimenA
  \!getf \advance \!arclength by \!dimenA
  \divide \!arclength by 12%             ** Now have arc length over [1/2,1]
  \advance \!arclength by \!midarclength
  \global\advance \totalarclength by \!arclength
%
%
% ** Check to see if there's anything to plot in this interval
  \ifdim\!distacross>\!arclength 
    \advance \!distacross by -\!arclength%   ** nothing 
%
  \else
    \!initinverseinterp%  ** initialize for inverse interpolation on arc length
    \loop\ifdim\!distacross<\!arclength%     ** loop over points on arc 
      \!inverseinterp%    ** find  t  such that arc length[0,t] = distacross,
%                         **   using inverse quadratic interpolation
%                         ** now evaluate x(t)=(c*t + b)*t + a
      \!xpos=\!t\!xC \advance\!xpos by \!xB
        \!xpos=\!t\!xpos \advance \!xpos by \!xS
%                                             ** evaluate y(t)
      \!ypos=\!t\!yC \advance\!ypos by \!yB
        \!ypos=\!t\!ypos \advance \!ypos by \!yS
      \!plotifinbounds%                       ** plot point if in bounds
      \advance\!distacross \plotsymbolspacing%** advance arc length for next pt
      \!advancedashing%                       ** see "linear"
    \repeat  
%
    \advance \!distacross by -\!arclength%    ** prepare for next interval 
  \fi
%
  \!xS=\!xE%              ** shift ending points to starting points
  \!yS=\!yE
  \ignorespaces}
}

\endinput