summaryrefslogtreecommitdiff
path: root/graphics/pgf/contrib/tikz-ext/doc/tikz-ext-manual-en-pgf-trans.tex
blob: 3788e0c9a4f8ea751707d359914b1f3be7be3a07 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
% !TeX spellcheck = en_US
% !TeX root = tikz-ext-manual.tex
% Copyright 2022 by Qrrbrbirlbel
%
% This file may be distributed and/or modified
%
% 1. under the LaTeX Project Public License and/or
% 2. under the GNU Free Documentation License.
%

\section{Transformations: Mirroring}
\label{pgflibrary:transformations}

\begin{pgflibrary}{transformations.mirror}
  This library adds mirror transformations to PGF.
\end{pgflibrary}

Two approaches to mirror transformation exist:
\begin{enumerate}
\item Using the ``Spiegelmatrix`` (see section~\ref{pgflibrary:transformations:spiegelungsmatrix}).

  This depends on |\pgfpointnormalised| which involves the sine and the cosine functions of PGFmath.

\item Using built-in transformations (see section~\ref{pgflibrary:transformations:builtin}).

  This depends on |\pgfmathanglebetween| which involves the arctangent (|atan2|) function of PGFmath.
\end{enumerate}

Which one is better? I don't know.
Choose one you're comfortable with.

\subsection{Using the ``Spiegelungsmatrix''}
\label{pgflibrary:transformations:spiegelungsmatrix}

The following commands use the ``Spiegelungsmatrix'' that sets the transformation matrix following
\begin{equation*}
  A = \frac{1}{\Vert\vec l\Vert^2} \begin{bmatrix}
  l_x^2-l_y^2 & 2l_xl_y \\
  2l_xl_y & l_y^2-l_x^2\\
  \end{bmatrix}.
\end{equation*}


\begin{command}{\pgftransformxmirror\marg{value}}
  Sets up a transformation that mirrors along a vertical line that goes through point $(\text{\meta{value}}, 0)$.

\begin{codeexample}[preamble=\usepgflibrary{transformations.mirror}]
\begin{tikzpicture}
\draw[help lines] (-0.25, -.25) grid (3.25, 1.25);
\draw[-latex] (0,0) .. controls (.5,1) .. (1,1);

\draw[dashed] (1.5, -.25) -- (1.5, 1.25);
\pgftransformxmirror{1.5}

\draw[-latex] (0,0) .. controls (.5,1) .. (1,1);
\end{tikzpicture}
\end{codeexample}
\end{command}

\begin{command}{\pgftransformymirror\marg{value}}
  Sets up a transformation that mirrors along a horizontal line that goes through point $(0, \text{\meta{value})}$.
\end{command}

\begin{command}{\pgftransformmirror\marg{point A}\marg{point B}}
  Sets up a transformation that mirrors along the line that goes through \meta{point A} and \meta{point B}.
 
\begin{codeexample}[preamble=\usepgflibrary{transformations.mirror}]
\begin{tikzpicture}
\draw[help lines] (-.25, -2.25) grid (2.5, 1.25);
\draw[-latex] (0,0) .. controls (.5,1) .. (1,1);

\draw[dashed] (0, -1) -- (2, 0);
\pgftransformmirror{\pgfpointxy{0}{-1}}{\pgfpointxy{2}{0}}

\draw[-latex] (0,0) .. controls (.5,1) .. (1,1);
\end{tikzpicture}
\end{codeexample}
\end{command}

\begin{command}{\pgfqtransformmirror\marg{point A}}
  Sets up a transformation that mirrors along the line that goes through the origin and \meta{point A}.

\begin{codeexample}[preamble=\usepgflibrary{transformations.mirror}]
\begin{tikzpicture}
\draw[help lines] (-.25, -.25) grid (2.25, 1.25);
\draw[-latex] (0,0) .. controls (.5,1) .. (1,1);

\draw[dashed] (0, 0) -- (2, 1);
\pgfqtransformmirror{\pgfpointxy{2}{1}}

\draw[-latex] (0,0) .. controls (.5,1) .. (1,1);
\end{tikzpicture}
\end{codeexample}
\end{command}


\subsection{Using built-in transformations}
\label{pgflibrary:transformations:builtin}

The following commands use a combination of shifting, rotating, $-1$ scaling, rotating back and shifting back to reach the mirror transformation.

The commands are named the same as above, only the |m| in |mirror| is capitalized.


\begin{command}{\pgftransformxMirror\marg{value}}
  Sets up a transformation that mirrors along a vertical line that goes through point $(\text{\meta{value}}, 0)$.

\begin{codeexample}[preamble=\usepgflibrary{transformations.mirror}]
\begin{tikzpicture}
\draw[help lines] (-0.25, -.25) grid (3.25, 1.25);
\draw[-latex] (0,0) .. controls (.5,1) .. (1,1);

\draw[dashed] (1.5, -.25) -- (1.5, 1.25);
\pgftransformxMirror{1.5}

\draw[-latex] (0,0) .. controls (.5,1) .. (1,1);
\end{tikzpicture}
\end{codeexample}
\end{command}

\begin{command}{\pgftransformyMirror\marg{value}}
  Sets up a transformation that mirrors along a horizontal line that goes through point $(0, \text{\meta{value})}$.
\end{command}

\begin{command}{\pgftransformMirror\marg{point A}\marg{point B}}
  Sets up a transformation that mirrors along the line that goes through \meta{point A} and \meta{point B}.
 
\begin{codeexample}[preamble=\usepgflibrary{transformations.mirror}]
\begin{tikzpicture}
\draw[help lines] (-.25, -2.25) grid (2.5, 1.25);
\draw[-latex] (0,0) .. controls (.5,1) .. (1,1);

\draw[dashed] (0, -1) -- (2, 0);
\pgftransformMirror{\pgfpointxy{0}{-1}}{\pgfpointxy{2}{0}}

\draw[-latex] (0,0) .. controls (.5,1) .. (1,1);
\end{tikzpicture}
\end{codeexample}
\end{command}

\begin{command}{\pgfqtransformMirror\marg{point A}}
  Sets up a transformation that mirrors along the line that goes through the origin and \meta{point A}.

\begin{codeexample}[preamble=\usepgflibrary{transformations.mirror}]
\begin{tikzpicture}
\draw[help lines] (-.25, -.25) grid (2.25, 1.25);
\draw[-latex] (0,0) .. controls (.5,1) .. (1,1);

\draw[dashed] (0, 0) -- (2, 1);
\pgfqtransformMirror{\pgfpointxy{2}{1}}

\draw[-latex] (0,0) .. controls (.5,1) .. (1,1);
\end{tikzpicture}
\end{codeexample}
\end{command}

\endinput