summaryrefslogtreecommitdiff
path: root/graphics/pgf/contrib/tikz-3dtools/3DToolsManual.tex
blob: 4463f79613fc8a3c8e23c47888fdb5dda212907d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
\documentclass[a4paper]{ltxdoc}
%\input{pgfmanual-dvipdfm.cfg}
%\input{../../text-en/pgfmanual-en-main-preamble}
\usepackage[version=latest]{pgf}
\usepackage{xkeyval,calc,listings,tikz,fp}
\usepackage[T1]{fontenc}% big thanks to samcarter!
\usepackage{makeidx}
\makeindex
\usepackage{hyperref}
\hypersetup{%
        colorlinks=true,
        linkcolor=blue,
        filecolor=blue,
        urlcolor=blue,
        citecolor=blue,
        pdfborder=0 0 0,
}
\makeatletter          % see https://tex.stackexchange.com/q/33946
\input{pgfmanual.code} % 
\makeatother           % 
\input{pgfmanual-en-macros.tex} % link from
% /usr/local/texlive/2019/texmf-dist/doc/generic/pgf/macros/pgfmanual-en-macros.tex
% or the equivalent on your installation
\newenvironment{ltxtikzlibrary}[1]{
  \begin{pgfmanualentry}
    \pgfmanualentryheadline{%
      \pgfmanualpdflabel{#1}{}%
      \textbf{\tikzname\ Library} \texttt{\declare{#1}}}
    \index{#1@\protect\texttt{#1} library}%
    \index{Libraries!#1@\protect\texttt{#1}}%
    \vskip.25em%
    {{\ttfamily\char`\\usetikzlibrary\char`\{\declare{#1}\char`\}\space\space \char`\%\space\space \LaTeX\space only}}\\[.5em]
    \pgfmanualbody
}
{
  \end{pgfmanualentry}
}
\def\pgfautoxrefs{1}
\usetikzlibrary{3dtools}
\begin{document}
\title{\tikzname\ 3D Tools}
\author{tallmarmot}
\date{v1.0}
\maketitle
\section{Manual}
\begin{ltxtikzlibrary}{3dtools}
    This library provides additional tools to create 3d--like pictures.
\end{ltxtikzlibrary}

TikZ has the |3d| and |tpp| libraries which deal with the projections of
three--dimensional drawings. This library provides some means to manipulate
the coordinates. It supports linear combinations of vectors, vector and scalar
products.

\noindent\textbf{Note:} Hopefully this library is only temporary and its
contents will be absorbed in slightly extended versions of the |3d| and |calc|
libraries.

\subsection{Coordinate computations}
\label{sec:3DCoordinateComputations}


The |3dtools| library has some options and styles for coordinate computations.
\begin{key}{/tikz/3d parse}
        Parses and expression and inserts the result in form of a coordinate.
\end{key}
\begin{key}{/tikz/3d coordinate}
        Allow one to define a 3d coordinate from other coordinates.
\end{key}
Both keys support both symbolic and explicit coordinates.

\begin{codeexample}[width=6cm]
\begin{tikzpicture}
 \path (1,2,3) coordinate (A) 
  (2,3,-1) coordinate (B) 
  (-1,-2,1) coordinate (C)
  [3d parse={0.25*(1,2,3)x(B)}] 
  	coordinate(D)
  [3d parse={0.25*(C)x(B)}] 
  	coordinate(E);
 \path foreach \X in {A,...,E} 
 {(\X) node[fill,inner sep=1pt,
 label=above:$\X$]{}};
\end{tikzpicture}
\end{codeexample}

Notice that, as of now, only the syntax |\path (1,2,3) coordinate (A);| works,
i.e.\ |\coordinate (A) at (1,2,3);| does \emph{not} work, but leads to error
messages.

\begin{codeexample}[width=6cm]
\begin{tikzpicture}
 \path (1,2,3) coordinate (A) 
  (2,3,-1) coordinate (B) 
  (-1,-2,1) coordinate (C)
  [3d coordinate={(D)=0.25*(1,2,3)x(B)},
  3d coordinate={(E)=0.25*(C)x(B)},
  3d coordinate={(F)=(A)-(B)},];
 \path foreach \X in {A,...,E} 
 {(\X) node[fill,inner sep=1pt,
 label=above:$\X$]{}};
\end{tikzpicture}
\end{codeexample}

The actual parsings are done by the function |\pgfmathtdparse| that allows one
to parse 3d expressions. The supported vector operations are |+| (addition $+$),
|-| (subtraction $-$), |*| (multiplication of the vector by a scalar), |x|
(vector product $\times$) and |o| (scalar product).

\begin{command}{\pgfmathtdparse{\marg{x}}}
   Parses 3d expressions.
\end{command}

In order to pretty-print the result one may want to use |\pgfmathprintvector|,
and use the math function |TD| for parsing.

\begin{command}{\pgfmathprintvector\marg{x}}
   Pretty-prints vectors.
\end{command}


\begin{codeexample}[width=6.5cm]
\pgfmathparse{TD("0.2*(A)
-0.3*(B)+0.6*(C)")}%
$0.2\,\vec A-0.3\,\vec B+0.6\,\vec C
=(\pgfmathprintvector\pgfmathresult)$
\end{codeexample}

The alert reader may wonder why this works, i.e.\ how would \tikzname\ ``know''
what the coordinates $A$, $B$ and $C$ are. It works because the coordinates in
\tikzname\ are global, so they get remembered from the above example.

\paragraph{Warning.} The expressions that are used in the coordinates will only
be evaluated when they are retrieved. So, if you use, say, random numbers, you
will get each time a \emph{different} result.

\begin{codeexample}[width=4cm]
\begin{tikzpicture}
 \path[overlay] (rnd,rnd,rnd) 
 	coordinate (R);
 \node at (0,1)
  {\pgfmathparse{TD("(R)")}%
  $\vec R=(\pgfmathprintvector\pgfmathresult)$};	
 \node at (0,0)
  {\pgfmathparse{TD("(R)")}%
  $\vec R=(\pgfmathprintvector\pgfmathresult)$};	
\end{tikzpicture}
\end{codeexample}

\begin{codeexample}[width=5.2cm]
\pgfmathparse{TD("(1,0,0)x(0,1,0)")}%
$(1,0,0)^T\times(0,1,0)^T=
(\pgfmathprintvector\pgfmathresult)^T$
\end{codeexample}


\begin{codeexample}[width=5.2cm]
\pgfmathparse{TD("(A)o(B)")}%
$\vec A\cdot \vec B=
\pgfmathprintnumber\pgfmathresult$
\end{codeexample}


Notice that, as of now, the only purpose of brackets |(...)| is to delimit
vectors. Further, the addition |+| and subtraction |-| have a \emph{higher}
precedence than vector products |x| and scalar products |o|. That is,
|(A)+(B)o(C)| gets interpreted as $(\vec A+\vec B)\cdot\vec C$, and
|(A)+(B)x(C)| as $(\vec A+\vec B)\times\vec C$.


\begin{codeexample}[width=5.2cm]
\pgfmathparse{TD("(A)+(B)o(C)")}%
$(\vec A+\vec B)\cdot\vec C=
\pgfmathprintnumber\pgfmathresult$
\end{codeexample}

\begin{codeexample}[width=5.2cm]
\pgfmathparse{TD("(A)+(B)x(C)")}%
$(\vec A+\vec B)\times\vec C=
(\pgfmathprintvector\pgfmathresult)$
\end{codeexample}

Moreover, any expression can only have either one |o| or one |x|, or none of
these. Expressions with more of these can be accidentally right.

\subsection{Orthonormal projections}
\label{sec:3DOrthonormalProjections}

This library can be used together with the |tikz-3dplot| package. It also has
its own means to install orthonormal projections. Orthonormal projections emerge
from subjecting 3-dimensional vectors to orthogonal transformations and
projecting them to 2 dimensions. They are not to be confused with the
perspective projections, which are more realistic and supported by the |tpp|
library. Orthonormal projections may be thought of a limit of perspective
projections at large distances, where large means that the distance of the
observer is much larger than the dimensions of the objects that get depicted. 

\begin{key}{/tikz/3d/install view}
        Installs a 3d orthonormal projection.
\end{key}

The initial projection is such that $x$ is right an $y$ is up, as if we had no
third direction.

\begin{codeexample}[width=2cm]
\begin{tikzpicture}[3d/install view]
 \draw[-stealth] (0,0,0) -- (1,0,0) 
  node[pos=1.2] {$x$};
 \draw[-stealth] (0,0,0) -- (0,1,0) 
  node[pos=1.2] {$y$};
 \draw[-stealth] (0,0,0) -- (0,0,1) 
  node[pos=1.2] {$z$};
\end{tikzpicture}
\end{codeexample}

The 3d-like picture emerge by rotating the view. The conventions for the
parametrization of the orthogonal rotations in terms of three rotation angles
$\phi$, $\psi$ and $\theta$ are
\[ O(\phi,\psi,\theta)=\left(\begin{array}{ccc}
  s_{\phi}\,c_{\psi}
&  s_{\psi} 
&  -s_{\phi}\,c_{\theta}-c_{\phi}\,s_{\psi}\,s_{\theta} \\
  c_{\phi}\,c_{\theta}-s_{\phi}\,s_{\psi}\,s_{\theta} 
&  c_{\psi}\,s_ {\theta}
&  s_{\phi}\,s_{\theta}-c_{\phi}\,c_{\theta}\,s_{\psi} \\
  -s_{\phi}\,s_{\psi}\,c_{\theta}-c_{\phi}\,s_{\theta} 
&  c_{\psi}\,c_{\theta}
& c_{\psi}\,c_{\theta}\end{array}\right)\;.
\]
Here, $c_\phi:=\cos\phi$, $s_\phi:=\sin\phi$ and so on.
\begin{key}{/tikz/3d/phi (initially 0)}
        3d rotation angle.
\end{key}
\begin{key}{/tikz/3d/psi (initially 0)}
        3d rotation angle.
\end{key}
\begin{key}{/tikz/3d/theta (initially 0)}
        3d rotation angle.
\end{key}
The rotation angles can be used to define the view. The conventions are chosen
in such a way that they resemble those of the |tikz-3dplot| package, which gets
widely used.

\begin{codeexample}[width=2.5cm]
\begin{tikzpicture}[3d/install view={phi=110,psi=0,theta=70}]
 \draw[-stealth] (0,0,0) -- (1,0,0) 
  node[pos=1.2] {$x$};
 \draw[-stealth] (0,0,0) -- (0,1,0) 
  node[pos=1.2] {$y$};
 \draw[-stealth] (0,0,0) -- (0,0,1) 
  node[pos=1.2] {$z$};
\end{tikzpicture}
\end{codeexample}

\begin{codeexample}[width=2.5cm]
\begin{tikzpicture}[3d/install view={phi=110,psi=0,theta=70}]
 \draw[-stealth] (0,0,0) -- (1,0,0) 
  node[pos=1.2] {$x$};
 \draw[-stealth] (0,0,0) -- (0,1,0) 
  node[pos=1.2] {$y$};
 \draw[-stealth] (0,0,0) -- (0,0,1) 
  node[pos=1.2] {$z$};
\end{tikzpicture}
\end{codeexample}

\subsection{Predefined pics}

\begin{key}{/tikz/pics/3d circle through 3 points=\meta{options} (initially empty)}
        Draws a circle through 3 points in 3 dimensions. If the three
		coordinates are close to linearly dependent, the circle will not be
		drawn.
\end{key}
\begin{key}{/tikz/3d circle through 3 points/A (initially {(1,0,0)})}
        First coordinate. Can be either symbolic or explicit. Symbolic
		coordinates need to be defined via 
		|\path (x,y,z) coordinate (name);|.
\end{key}
\begin{key}{/tikz/3d circle through 3 points/B (initially {(0,1,0)})}
        Second coordinate, like above.
\end{key}
\begin{key}{/tikz/3d circle through 3 points/C (initially {(0,0,1)})}
        Third coordinate, like above.
\end{key}
\begin{key}{/tikz/3d circle through 3 points/center name (initially {M})}
        Name of the center coordinate that will be derived.
\end{key}
\begin{key}{/tikz/3d circle through 3 points/auxiliary coordinate prefix (initially {tmp})}
        In \tikzname the coordinates are global. The code for the circle is more
		comprehensible if named coordinates are introduced. Their names will begin with
		this prefix. Changing the prefix will allow users to avoid overwritin
		existing coordinates.
\end{key}

\begin{codeexample}[width=2.5cm]
\begin{tikzpicture}[3d/install view={phi=30,psi=0,theta=70}]
 \foreach \X in {A,B,C}
 {\pgfmathsetmacro{\myx}{3*(rnd-1/2)}
 \pgfmathsetmacro{\myy}{3*(rnd-1/2)}
 \pgfmathsetmacro{\myz}{3*(rnd-1/2)}
 \path (\myx,\myy,\myz) coordinate (\X);}
 \path pic{3d circle through 3 points={%
 A={(A)},B={(B)},C={(C)}}};
  \foreach \X in {A,B,C,M}
  {\fill (\X) circle[radius=1.5pt] 
  node[above]{$\X$};}
\end{tikzpicture}
\end{codeexample}

To do:
\begin{itemize}
 \item transform to plane given by three non-degenerate coordinates
 \item transform to plane given by normal and one point
 \item maybe layering/visibility
\end{itemize}

\subsection{3D--like decorations}

\begin{key}{/tikz/decorations/3d complete  coil}
        3d--like coil where the front is thicker than the back.
\end{key}

\begin{key}{/tikz/decorations/3d coil closed}
        Indicates that the coil is closed.
\end{key}


\begin{codeexample}[width=8cm]
\begin{tikzpicture}
\draw[decoration={3d coil color=red,aspect=0.35, segment length=3.1mm, 
amplitude=3mm,3d complete  coil},
decorate] (0,1) -- (0,6);
\draw[decoration={3d coil color=blue,3d coil opacity=0.9,aspect=0.5, 
segment length={2*pi*3cm/50}, amplitude=5mm,3d complete coil,
3d coil closed},
decorate] (5,3.5) circle[radius=3cm];
\end{tikzpicture}
\end{codeexample}


\end{document}


\tdplotsetmaincoords{70}{110} 
\begin{tikzpicture}
 \begin{scope}[local bounding box=tests,tdplot_main_coords]
 % to work with this library, you need to define the cordinate
 % with \path (<x>,<y>,<z>) coordinate (<name>);
  \path (0,0,0) coordinate (O) 
  (1,2,3) coordinate (A) 
  (2,3,-1) coordinate (B) 
  (-1,-2,1) coordinate (C)
  % you can use 3d parse (clumsy)
  [3d parse={0.25*(A)x(B)}] coordinate(D)
  % you can use 3d coordinate to define a new coordinate from existing ones
  [3d coordinate={(E)=0.2*(A)-0.3*(B)+0.6*(C)}] 
  [3d coordinate={(H)=0.2*(A)-0.3*(B)+0.6*(C)}]; 
  \draw (A) -- (B) -- (C) -- (D) -- (E) -- cycle; 
 \end{scope}
 %\RawCoord yields the components
 \edef\tempD{\RawCoord(D)} 
 \edef\tempE{\RawCoord(E)} 
 \edef\tempH{\RawCoord(H)} 
 \node[below right,align=left] at (tests.south west) 
  {$(D)=\tempD$,\\ $(E)=\tempE$,\\ $(H)=\tempH$}; 
\end{tikzpicture} 

\noindent% clumsy parser
$\tdparse{(A)+0.3*(B)>(A)+0.3(B)}=(\pgfmathresult)$

\noindent% parsing inside \pgfmathparse. You need to wrap the argument in "..."
\pgfmathparse{TD("0.2*(A)-0.3*(B)+0.6*(C)")}%
$0.2\,\vec A-0.3\,\vec B+0.6\vec C=(\pgfmathresult)$

%one can parse with the same parser vector products
\noindent\pgfmathparse{TD("0.5*(A)x(B)")}%
$0.5\,\vec A\times\vec B=(\pgfmathresult)$
%(note, however, that something like (A)x(B)x(C) does NOT work)

%as well as scalar products
\noindent\pgfmathparse{TD("(A)+(C)o(B)")}%
$\left(\begin{array}{@{}c@{}}1\\ 0\\ 0\end{array}\right)$
%(note, however, that + and - have higher precedence than o)\end{document}


\end{document}

\endinput