1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
|
\documentclass{amsart}
\title[The Lie Hasse package]{The Lie Hasse package \\ Version 1.0}
%% My name:
\makeatletter
\DeclareRobustCommand{\scotsMc}{\scotsMcx{c}}
\DeclareRobustCommand{\scotsMC}{\scotsMcx{\textsc{c}}}
\DeclareRobustCommand{\scotsMcx}[1]{%
M%
\raisebox{\dimexpr\fontcharht\font`M-\height}{%
\check@mathfonts\fontsize{\sf@size}{0}\selectfont
\kern.3ex\underline{\kern-.3ex #1\kern-.3ex}\kern.3ex
}%
}
\expandafter\def\expandafter\@uclclist\expandafter{%
\@uclclist\scotsMc\scotsMC
}
\makeatother
\newcommand{\authorsname}{\texorpdfstring{Benjamin \scotsMc{}Kay}{Benjamin McKay}}
\author{\authorsname}
\address{School of Mathematical Sciences, University College Cork, Cork, Ireland}
\email{b.mckay@ucc.ie}
\date{3 February 2020}
\usepackage{etex}
\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenx}
\usepackage{etoolbox}
\usepackage{lmodern}
\RequirePackage[tt=lining]{cfr-lm}
\usepackage[kerning=true,tracking=true]{microtype}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{mathtools}
\usepackage{mathtext}
\usepackage[english]{babel}
\usepackage[pagebackref]{hyperref}
\hypersetup{
colorlinks = true, %Colours links instead of ugly boxes
urlcolor = black, %Colour for external hyperlinks
linkcolor = black, %Colour of internal links
citecolor = black %Colour of citations
}
\usepackage{lie-hasse}
\usetikzlibrary{positioning}
\usepackage{fancyvrb}\fvset{obeytabs,tabsize=2,fontsize=\small}
\usepackage[listings]{tcolorbox}
\tcbuselibrary{breakable}
\tcbuselibrary{skins}
\usepackage{varwidth}
\usepackage{xspace}
\newcommand{\TikZ}{Ti\textit{k}Z\xspace}
\definecolor{example-color}{gray}{1}
\definecolor{example-border-color}{gray}{.8}
\tcbset{
coltitle=black,
colback=example-color,
colframe=example-border-color,
enhanced,breakable,
pad at break*=1mm,
toprule=1.2mm,
bottomrule=1.2mm,
leftrule=1mm,
rightrule=1mm,
toprule at break=-1mm,
bottomrule at break=-1mm,
before upper={\widowpenalties=3 10000 10000 150}
}
\tikzset{
/Dynkin diagram,
edge length=1cm,
ordering=Carter,
vertical shift=0}
\tikzset{
background rectangle/.style={
shade,
top color=olive!20,
bottom color=white,
draw=olive!15,
very thick,
rounded corners},
}
\begin{document}
\maketitle
\begin{center}%
\begin{tikzpicture}[show background rectangle]
\hasse[
edge/.style={},
root radius=.02cm,
edge length=.5cm,
edge quotes/.style={opacity=0}%
]{E}{8}%
\end{tikzpicture}%
\end{center}%
\begin{center}
\begin{varwidth}{\textwidth}
\tableofcontents
\end{varwidth}
\end{center}
\setlength{\arrayrulewidth}{1.5pt}
\section{Quick introduction}
This package draws the Hasse diagram of the poset of the positive simple roots of each complex simple Lie group, as drawn by Ringel \cite{Ringel:2013}.
\begin{tcolorbox}[title={Load the package}]
\begin{Verbatim}
\documentclass{article}
\usepackage{lie-hasse}
\begin{document}
The Hasse diagram of \(F_4\) is
\begin{center}
\hasse[edge length=1cm]{F}{4}
\end{center}
\end{document}
\end{Verbatim}
\end{tcolorbox}
\par\noindent{}The Hasse diagram of \(F_4\) is
\begin{center}
\hasse[edge length=1cm]{F}{4}
\end{center}
Each edge is labelled with the simple root by which vertices differ.
\begin{tcblisting}{title={Inside a \TikZ statement}}
\(B_4\) has Dynkin diagram \tikz \dynkin[edge length=.35cm]{B}{4};, Hasse diagram
\begin{center}
\hasse[edge length=1cm]{B}{4}
\end{center}
\end{tcblisting}
\begin{tcblisting}{title={Inside a Dynkin diagram environment, diagrams fit together}}
The Hasse diagram of \(B_4\) is
\begin{dynkinDiagram}[vertical shift=0,edge length=1cm]{B}{4}
\hasse{B}{4}
\end{dynkinDiagram}
\end{tcblisting}
We shut off the default vertical shift of the Dynkin diagram, so that it starts at the origin.
There is an option to \verb!\hasse! for this:
\begin{tcblisting}{title={Attaching the Dynkin diagram}}
The Hasse diagram of \(B_4\) is
\begin{center}
\hasse[attach Dynkin diagram=true]{B}{4}
\end{center}
\end{tcblisting}
Unfortunately, attaching a Dynkin diagram looks terrible for \(D\) or \(E\) series, so a Dynkin diagram appears below.
\begin{tcblisting}{title={Attaching the Dynkin diagram}}
The Hasse diagram of \(D_5\) is
\begin{center}
\hasse[attach Dynkin diagram=true]{D}{5}
\end{center}
\end{tcblisting}
\begin{tcblisting}{title={Inside a \TikZ environment}}
\begin{tikzpicture}
\hasse{A}{4}
\draw (4;1) circle (5pt);
\draw[red] (2;3) circle (5pt);
\end{tikzpicture}
\end{tcblisting}
In this example, we see that the roots of the Hasse diagram are \TikZ{} nodes labelled \(g;i\) for grade \(g\) (i.e. \(g\) units up the page) and index \(i\) (i.e. \(i^{\text{th}}\) root of grade \(g\) drawn on the page, starting from the left).
\section{Inherited options}
The Lie Hasse package inherits options from the Dynkin diagrams package: the edge lengths are set with
\begin{Verbatim}
\tikzset{/Dynkin diagram/edge lengths=1.2cm}
\end{Verbatim}
and similarly the ordering of roots with
\begin{Verbatim}
\tikzset{/Dynkin diagram/ordering=Bourbaki}
\end{Verbatim}
\section{Prettier}
The package includes a more elaborate \verb!\hasseDiagrams! command, taking a list of semicolon separated Dynkin diagram identfiers.
\begin{tcolorbox}[title={With some global options to make prettier diagrams}]
\begin{Verbatim}
\tikzset{
background rectangle/.style={
shade,
top color=olive!20,
bottom color=white,
draw=olive!15,
very thick,
rounded corners},
/Lie Hasse diagram,
edge length=1.2cm,
show name=true,
vertical shift=0}
\hasseDiagrams{A4;B4;C4}
\end{Verbatim}
\end{tcolorbox}
\begingroup
\tikzset{
background rectangle/.style={
shade,
top color=olive!20,
bottom color=white,
draw=olive!15,
very thick,
rounded corners},
/Lie Hasse diagram,
edge length=1.2cm,
show name=true,
vertical shift=0}
\hasseDiagrams{A4;B4;C4}
\endgroup
Global options:
\begin{verbatim}
edge/.style={ultra thick},
edge quotes/.style={/Dynkin diagram/text style,auto,inner sep=2pt},
\end{verbatim}
allow to change the edges, and to change the way that labels are printed, and how close labels are to the edges.
\section{Root order}
We order the roots as in the Dynkin diagram package: with orderings Adams, Bourbaki, Carter, Dynkin and Kac.
\emph{Warning:} the default is Carter, \emph{not} Bourbaki; the default in the Dynkin diagram package is Bourbaki.
We can use this like:
\begin{Verbatim}
\tikzset{/Lie Hasse diagram,show name=true,show ordering=true}
\hasseDiagrams{[ordering=Adams]E6;[ordering=Bourbaki]E6}
\hasseDiagrams{[ordering=Carter]E6;[ordering=Dynkin]E6}
\hasseDiagrams{[ordering=Kac]E6}
\end{Verbatim}
\begingroup
\tikzset{/Lie Hasse diagram,show name=true,show ordering=true}
\hasseDiagrams{[ordering=Adams]E6;[ordering=Bourbaki]E6}
\hasseDiagrams{[ordering=Carter]E6;[ordering=Dynkin]E6}
\hasseDiagrams{[ordering=Kac]E6}
\endgroup
\section{Graph height and width}
The \emph{height} of a Hasse diagram is the number of grades.
The \emph{width} of each grade is the number of vertices on that grade.
We recover these with
\begin{Verbatim}
\newcount\h
\rootSystemHeight[G][2]{\h}
\end{Verbatim}
to store the height of \(G_2\) in a counter called \verb!\h!, and
\begin{Verbatim}
\newcount\w
\rootSystemWidthAtGrade[G][2]{3}{\w}%
\end{Verbatim}
to store the width of \(G_2\) at grade \(3\) in a counter called \verb!\w!.
Once you use \verb!\dynkin{G}{2}! or \verb!\hasse{G}{2}! or the other commands, like
\begin{Verbatim}
\rootSystemHeight[G][2]{\h}
\end{Verbatim}
the system stores that your default root system is \(G_2\).
Subsequently calls to
\begin{Verbatim}
\rootSystemHeight{\h}
\end{Verbatim}
and
\begin{Verbatim}
\rootSystemWidthAtGrade{3}{\w}
\end{Verbatim}
do not need to specify the root system.
\begingroup
The \verb!show height! option:
\begin{Verbatim}
\tikzset{/Lie Hasse diagram,show name=true,show height=true}
\hasseDiagrams{G2}
\end{Verbatim}
\tikzset{/Lie Hasse diagram,show name=true,show height=true}
\hasseDiagrams{G2}
The \verb!show widths! option:
\begin{Verbatim}
\tikzset{/Lie Hasse diagram/show widths=true}
\hasseDiagrams{G2}
\end{Verbatim}
\tikzset{/Lie Hasse diagram/show widths=true}
\hasseDiagrams{G2}
\tikzset{/Lie Hasse diagram/show height=false}
\tikzset{/Lie Hasse diagram/show widths=false}
\endgroup
\section{Root decompositions}
Each positive root in a root system is a unique nonnegative integer linear combination of positive simple roots.
We can recover this expression as
\begin{Verbatim}
\rootSum[G][2]{5}{1}{\rs}
\end{Verbatim}
which, for the root system \(G_2\), and the root at position \(5;1\) in our Hasse diagram, stores in the variable \verb!\rs! a string which looks like \rootSum[G][2]{5}{1}{\rs}\texttt{\rs}.
This is a comma separated list of the integer coefficients.
\emph{Warning:} for the moment, this list of coefficients is in Carter ordering.
If we omit \verb![G][2]!, the current default root system is implied.
Here is the Dynkin diagram of \(E_8\), indicating the order of the roots in Carter ordering.
\begin{Verbatim}
\dynkin[label,ordering=Carter,edge length=.35cm]{E}{8}
\end{Verbatim}
\begin{center}
\dynkin[label,ordering=Carter,edge length=.35cm]{E}{8}
\end{center}
Here is the same Dynkin diagram, except showing, at each simple root, the coefficient of that simple root in the highest root.
\begin{Verbatim}
\rootSum[E][8]{29}{1}{\rs}
\dynkin[labels=\rs,ordering=Carter,edge length=.35cm]{E}{8}
\end{Verbatim}
\rootSum[E][8]{29}{1}{\rs}
\begin{center}
\dynkin[labels=\rs,ordering=Carter,edge length=.35cm]{E}{8}
\end{center}
The option \verb!for all roots! allows execution of code once on every root.
\begin{Verbatim}
\tikzset{/Lie Hasse diagram,
edge length=3.2cm,
compact root/.code={},
noncompact root/.code={},
edge quotes/.style={opacity=0},
embedded Dynkin diagram/.style={
edge length=.4cm,
root radius=.05cm
},
for all roots/.code 2 args={\drawRootAsDynkinSum{#1}{#2}}}
\hasseDiagrams{D5}
\end{Verbatim}
\begingroup
\tikzset{/Lie Hasse diagram,
edge length=3.2cm,
compact root/.code={},
noncompact root/.code={},
edge quotes/.style={opacity=0},
embedded Dynkin diagram/.style={
edge length=.4cm,
root radius=.05cm
},
for all roots/.code 2 args={\drawRootAsDynkinSum{#1}{#2}}}
\hasseDiagrams{D5}
\endgroup
See more below on compact versus noncompact roots; the code \verb!compact! is applied to draw all of the compact roots, and the code \verb!noncompact! to draw the noncompact roots.
Setting those codes to be empty, and setting \verb!edge quotes! to be transparent, we get a much simpler Hasse diagram, so that we can see the embedded Dynkin diagrams more clearly.
\section{\texorpdfstring{For all roots \ldots}{For all roots ...}}
You can make your own macros loop over all of the roots: you define a macro \verb!\foo{g}{i}!, which is fed the grade \(g\) of each root in the diagram, and the \emph{index} \(i\).
A simple example:
\begin{Verbatim}
\newcommand{\foo}[2]%
{%
\node[below,scale=.5] at (#1;#2) {\(#1,#2\)};%
}%
\end{Verbatim}
\newcommand{\foo}[2]%
{%
\node[below,scale=.75] at (#1;#2) {\(#1,#2\)};%
}%
Inside a \TikZ{} or \verb!dynkinDiagram! environment:
\begin{Verbatim}
\tikzset{/Lie Hasse diagram/edge quotes/.style={opacity=0},
/Dynkin diagram/edge length=1.5cm}
\begin{tikzpicture}
\hasse{D}{6}%
\forAllPositiveRootsInHasseDiagram{\foo}%
\end{tikzpicture}
\end{Verbatim}
\begingroup
\tikzset{/Lie Hasse diagram/edge quotes/.style={opacity=0},
/Dynkin diagram/edge length=1.5cm}
\begin{tikzpicture}
\hasse{D}{6}%
\forAllPositiveRootsInHasseDiagram{\foo}%
\end{tikzpicture}
If you put this into the \verb!for all roots! option, it executes on its own:
\begin{Verbatim}
\tikzset{/Lie Hasse diagram/for all roots/.code 2 args={\foo{#1}{#2}}}
\hasseDiagrams{C4;D4}
\end{Verbatim}
\begingroup
\tikzset{/Lie Hasse diagram/for all roots/.code 2 args={\foo{#1}{#2}}}
\hasseDiagrams{C4;D4}
\endgroup
\endgroup
\section{Three dimensional effect}
We draw the \(D,E,F\) Hasse diagrams, following Ringel \cite{Ringel:2013}, as an arrangement of cubes.
Nutma \cite{Nutma:2010} draws the Hasse diagrams using a more elementary approach, but including also the affine Kac--Moody algebras.
Opposite sides of any square have the same edge label, by commutativity of addition.
Hence we don't need to see every edge perfectly.
The three dimensional effect is the default:
\begin{Verbatim}
\hasse{D}{4}\hasse{E}{6}
\end{Verbatim}
\begin{center}
\hasse{D}{4}\hasse{E}{6}
\end{center}
We can turn it off:
\begin{Verbatim}
\hasse[three D=false]{D}{4}
\hasse[three D=false]{E}{6}
\end{Verbatim}
\begin{center}
\hasse[three D=false]{D}{4}
\hasse[three D=false]{E}{6}
\end{center}
or globally with \verb!\tikzset{/Lie Hasse diagram/three D=false}!.
The astute reader will perhaps notice that the three dimensional effect is not realistic.
To be Hasse diagrams, the roots have to line up horizontally by grade.
This is inconsistent with three dimensional projection of our cubes.
We have also tried to use only a small number of layers in the three dimensional geometry, so the images are not perfect, but easy enough to read.
We can change the \verb!z shift! to slant the three dimensional images to the right:
\begingroup
\begin{Verbatim}
\hasse[z shift=.1]F4\hasse[z shift=.2]F4\hasse[z shift=.3]F4\hasse[z shift=.4]F4
\end{Verbatim}
\hasse[z shift=.1]F4\hasse[z shift=.2]F4\hasse[z shift=.3]F4\hasse[z shift=.4]F4
\endgroup
We only use three colours and opacities for the faces:
\begin{Verbatim}
top/.style={black!20,opacity=.4},
left/.style={black!20,opacity=.9},
right/.style={black!20,opacity=.6},
\end{Verbatim}
You can change these:
\begin{Verbatim}
\hasse[
top/.style={red,opacity=.1},
right/.style={red,opacity=.2},
left/.style={red,opacity=.4}]E6
\end{Verbatim}
\begin{center}
\hasse[
top/.style={red,opacity=.1},
right/.style={red,opacity=.2},
left/.style={red,opacity=.4}]E6
\end{center}
\section{Label the simple roots}
Ringel \cite{Ringel:2013} labels his edges like
\begin{Verbatim}
\hasseDiagrams{[labels={f,e,d,c,u,b,a}]E7}
\end{Verbatim}
\hasseDiagrams{[labels={f,e,d,c,u,b,a}]E7}
\section{Parabolic subgroups}
This package offers nothing over Ringel's original pictures, except that the user can pick some simple roots whose associated edges are drawn differently.
The chosen simple roots are called \emph{compact}, following terminology from the theory of parabolic subgroups.
We let the reader explore the notation for parabolic subgroups in the Dynkin diagrams package, and use this to declare various roots compact.
\begin{Verbatim}
\tikzset{/Lie Hasse diagram,attach Dynkin diagram=true,three D=false}
\hasseDiagrams{D{**x*x*x*}}
\end{Verbatim}
\begingroup
\tikzset{/Lie Hasse diagram,attach Dynkin diagram=true,three D=false}
\hasseDiagrams{D{**x*x*x*}}
\endgroup
Our motivation comes from trying to identify the invariant vector subbundles of the tangent bundle of a rational homogeneous variety \cite{MathOverflow:123801}.
Such diagrams are often unreadable if we don't turn off the three dimensional graphics.
By default, noncompact root edges are not drawn.
\begingroup
\tikzset{/Lie Hasse diagram,attach Dynkin diagram=true,show name=false,three D=false}
\begin{Verbatim}
\hasseDiagrams{E{*xx*x*}}
\end{Verbatim}
\hasseDiagrams{E{*xx*x*}}
\begin{Verbatim}
\hasseDiagrams{A{x*x*}}
\end{Verbatim}
\hasseDiagrams{A{x*x*}}
\begin{Verbatim}
\hasseDiagrams{[parabolic=113]B8}
\end{Verbatim}
\hasseDiagrams{[parabolic=113]B8}
\begin{Verbatim}
\hasseDiagrams{C{**xx*x**}}
\end{Verbatim}
\hasseDiagrams{C{**xx*x**}}
\newpage
\begin{Verbatim}
\hasseDiagrams{E{*x*x*x**}}
\end{Verbatim}
\hasseDiagrams{E{*x*x*x**}}
\newpage
\begin{Verbatim}
\hasseDiagrams{F{**xx}}
\end{Verbatim}
\hasseDiagrams{F{**xx}}
\begin{Verbatim}
\hasseDiagrams{G{*x}}
\end{Verbatim}
\hasseDiagrams{G{*x}}
\endgroup
\section{Examples}
\begingroup
\tikzset{/Lie Hasse diagram,attach Dynkin diagram=true,show name=true}
\begin{Verbatim}
\hasseDiagrams{A1;A2;A3;A4;A5;A6}
\hasseDiagrams{B3;B4;B5}
\hasseDiagrams{C2;C3;C4}
\hasseDiagrams{C5;C6}
\hasseDiagrams{E6;E7}
\hasseDiagrams{E8}
\hasseDiagrams{F4;G2}
\end{Verbatim}
\hasseDiagrams{A1;A2;A3;A4;A5;A6}
\hasseDiagrams{B3;B4;B5}
\hasseDiagrams{C2;C3;C4}
\hasseDiagrams{C5;C6}
\hasseDiagrams{E6;E7}
\hasseDiagrams{E8}
\hasseDiagrams{F4;G2}
\endgroup
\section{Black and white}
Publishing in colour on paper can be expensive.
Simple global options:
\begin{Verbatim}
\tikzset{
background rectangle/.style={
shade,
top color=gray!15,
bottom color=white,
draw=gray!5,
very thick,
rounded corners},
/Dynkin diagram/text style/.style={black,scale=.75},
/Lie Hasse diagram,
edge length=1cm,
edge/.style={draw=black!50,ultra thick},
edge quotes/.style={black,auto,inner sep=3pt,scale=.75},
three D=true,
show name=true}
\end{Verbatim}
\begingroup
\tikzset{
background rectangle/.style={
shade,
top color=gray!15,
bottom color=white,
draw=gray!5,
very thick,
rounded corners},
/Dynkin diagram/text style/.style={black,scale=.75},
/Lie Hasse diagram,
edge length=1cm,
edge/.style={draw=black!50,ultra thick},
edge quotes/.style={black,auto,inner sep=3pt,scale=.75},
three D=true,
show name=true}%
change our examples to
\hasseDiagrams{A1;A2;A3;A4;A5;A6}
\hasseDiagrams{B3;B4;B5}
\hasseDiagrams{C2;C3;C4}
\hasseDiagrams{C5;C6}
\hasseDiagrams{E6;E7}
\hasseDiagrams{E8}
\hasseDiagrams{F4;G2}
\endgroup
\bibliographystyle{amsplain}
\bibliography{lie-hasse}
\end{document}
|