1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
|
%% forest-doc.tex
%% `forest-doc.tex` is a main documentation source of package `forest`.
%%
%% Copyright (c) 2012-2017 Saso Zivanovic
%% (Sa\v{s}o \v{Z}ivanovi\'{c})
%% saso.zivanovic@guest.arnes.si
%%
%% This work may be distributed and/or modified under the
%% conditions of the LaTeX Project Public License, either version 1.3
%% of this license or (at your option) any later version.
%% The latest versionx of this license is in
%%
%% http://www.latex-project.org/lppl.txt
%%
%% and version 1.3 or later is part of all distributions of LaTeX
%% version 2005/12/01 or later.
%%
%% This work has the LPPL maintenance status `author-maintained'.
%%
%% This file is a part of package `forest'. For the list of files
%% constituting the package see main source file of the package,
%% `forest.dtx', or the derived `forest.sty'.
%%
\documentclass{ltxdoc}
\usepackage[a4paper,
top=2cm,bottom=2.5cm,
reversemarginpar,marginparwidth=2cm,
right=1.5cm,
nohead
]{geometry}
\immediate\write18{makeindex -s forest-doc.ist forest-doc}
\def\indexlettertotoc#1\relax{%
\phantomsection\addcontentsline{toc}{subsection}{#1}%
#1%
}
\makeatletter
\c@IndexColumns=2 \makeatother
\IndexPrologue{Color legend: \textcolor{red}{definition}, \textcolor{darkgreen}{example}, \textcolor{blue}{other}. If an entry belongs to a library, the library name is given in parenthesis. All page numbers are hyperlinks, and definitions in text are hyperlinked to this index.}
\makeindex
\makeatletter
\def\bigbadforlist{}
\def\forest@@doc@@hook@bigbadforlist{\aftergroup\forest@@doc@@hook@bigbadforlist@}
\def\forest@@doc@@hook@bigbadforlist@{%
\forestset{define long step/.append code={%
\ifforest@nodewalkstephandler@makefor
\appto\bigbadforlist{[##1]}%
\fi
}%
}%
}
\def\bigbadprocesslist{}
\makeatother
\usepackage[external]{forest}
\useforestlibrary{edges}
\useforestlibrary{linguistics}
% \tikzexternalize
% forest-tikzexternalize either contains \tikzexternalize or not ... make adjusts this
\IfFileExists{forest-doc.tex-externalize.tex}{%
\input forest-doc.tex-externalize\relax
}{}
\tikzset{
external/prefix={forest.for.dir/},
external/system call={
pdflatex \tikzexternalcheckshellescape -halt-on-error -interaction=nonstopmode -jobname "\image" "\texsource"},
external/up to date check=simple,
}
\usepackage{forest-doc}
% \usepackage{patchpgf}
% \newcommand\pgfprofilenewforcommandcs[2]{%
% \expandafter\pgfprofilenewforcommand\expandafter{\csname #1\endcsname}{#2}}
% \newcommand\pgfprofilenewforpgfkey[1]{%
% \edef\marshal{%
% \noexpand\pgfprofilenewforcommandpattern[#1]{\expandonce{\csname pgfk@#1/.@cmd\endcsname}}{####1\noexpand\pgfeov}{####1\noexpand\pgfeov}
% }\marshal
% }
% \usetikzlibrary{profiler}
% \makeatletter
% \pgfprofilenewforcommand{\forestindex@index}{3}
% \pgfprofilenewforcommand{\pgfmathparse}{1}
% \pgfprofilenewforpgfkey{/forest/split}
% \pgfprofilenewforpgfkey{/forest/nodewalk/reverse}
% \pgfprofilenewforcommand{\forest@Nodewalk}{2}
% \pgfprofilenewforcommand{\pgfkeysalso}{1}
% \makeatother
\usepackage{hyperref}
\hypersetup{unicode=true,colorlinks=true,linkcolor=blue,citecolor=blue,hyperindex=false}
\usepackage{url}
\usepackage[numbers]{natbib}
\usepackage[multiple]{footmisc}
\usepackage{tipa}
\usepackage[inline,shortlabels]{enumitem}
\newlist{compactitem}{itemize}{2}
\setlist[compactitem]{nosep,label=\textbullet}
\newlist{arguments}{enumerate}{1}
\setlist[arguments]{nosep,label=\textbf{\#\arabic*}}
\renewcommand\DescribeMacro[1]{\texttt{\detokenize{#1}}\marginpar{\hfill\small\strut\texttt{\detokenize{#1}}}}
\usepackage{printlen}
\usepackage{tabularx}
\DeleteShortVerb\|
\newcommand\OR{\ensuremath{\,|\,}}%
\usepackage{multicol}
%\usepackage[silent]{trace-pgfkeys} % silent, stack, trace, verbose
%\pgfkeystracelevel{trace}
%%% begin listing region: index_macro_style
\forestset{
detokenize/.style={result=\protect\detokenize{##1}},
tt/.style={result=\protect\texttt{##1}},
macro/.style={detokenize, +result={\char\escapechar}, tt, print in color, hyper},
}
%%% end listing region: index_macro_style
\forestset{
pgfkey/.style={tt,print in color,hyper},
path/.style={+result={/},pgfkey},
handler/.style={+result={.},pgfkey},
option value/.style={
format={tt,result+={ value}},
for first={format=pgfkey},
},
environment/.style={
detokenize,
tt,
print in color,
if stage={index}{}{
if index entry type={definition}{
temptoksa/.register=result,
hyper,
result/.process=ROw2{result}{argument}{%
\texttt{\string\begin\char`\{##1\char`\}}%
##2%
\texttt{\string\end\char`\{##1\char`\}}%
}
}{
hyper
}
}
},
empty/.style={result={{}}},
meta/.style={result=\protect\meta{##1},print in color,hyper},
index library/.style={
if index entry type={definition}{
for first leaf'={
index format+={
result+'={\space
{\protect\scriptsize
(\protect\texttt{\protect\hyperrefnocolor[sec:library-#1]{#1}})%
}%
}
}
},
}{}
},
margin/.style={print format={result=\marginpar{\strut##1}}},
also margin/.style={print format={result=##1\marginpar{\strut##1}}},
}
\let\origmeta\meta
\renewcommand\meta[1]{\origmeta{\rm\ignorespaces#1}}
\renewcommand\rstyle{\color{red}}
\newcommand\hyperrefnocolor[2][]{{\hypersetup{linkcolor=black}\hyperref[#1]{#2}}}
\newcommand\librarysection[1]{%
\subsection{\protect\texttt{#1}}%
\label{sec:library-#1}%
\forestset{every index end/.style={set={index library={#1}}}}%
}
\newcommand\reflibrary[1]{\hyperref[sec:library-#1]{\texttt{#1}}}
\index[not print,not index,set={
index key=unknown,
form={\textbf{unknown!!}},
for first={format={
result/.expanded=\noexpand\textbf{\forestregister{result}??},
print in color}}}
]>{@unknown}
\indexset
[print form={},for first={format=pgfkey}]
>{node key}
\indexset
[for first={format={+result={/tikz/},pgfkey}}]
>{tikz key}
\indexset
[for first={format=pgfkey}]
>{option,readonly option,bracket key,nodewalk key,register,propagator,style,nodewalk style,stage,dynamic tree,step,loop,conditional,anchor,package option}
%%% begin listing region: index_macro_category
\indexset
[for first={format=macro}]
>{macro}
%%% end listing region: index_macro_category
\indexset
[for first={format=environment}]
>{environment}
\indexset
[format=empty]>{empty}
\indexset
[index form={type (of options and registers)},for first={format=meta}]
>{type}
\indexset
[for first={format=handler}]
>{handler}
\indexset
[format={aggregate function},for first={format=handler}]
>{aggregate}
\indexset
[form={\texttt{pgfmath} function},for first={format={detokenize,pgfkey}}]
>{pgfmath}
\indexset
[for first={format=path}]
>{path}
\indexset[
form={},
index key={},
for first={
for first={
key+/.option=!parent.argument,
index format={
result+/.process={Ow1} {!parent.argument} {\protect\meta{##1 option}},
},
print format={
if argument={}{}{
result+/.option=argument
},
},
format={
pgfkey
},
}
}
]>{prefix}
\indexset[
form={},
index key={},
for first={
for first={
+key/.option=!parent.argument,
index format={
+result/.process={Ow1} {!parent.argument} {\protect\meta{##1 option}},
},
print format={
if argument={}{}{
+result/.option=argument
},
},
format={
pgfkey
},
}
}
]>{suffix}
\indexset[
form={},
index key={},
for first={
for first={
key/.process={OOw2} {key} {!parent,parent.argument} {##1 ##2},
index format={
result+/.process={Ow1} {!parent,parent.argument} {\space\protect\meta{##1}},
},
print format={
if argument={}{}{
result+={\space},
result+/.option=argument
}
},
format={
pgfkey
},
}
}
]>{word prefix}
\indexset[
form={},
index key={},
for first={
for first={
key/.process={OOw2} {key} {!parent,parent.argument} {##2 ##1},
index format={
+result/.process={Ow1} {!parent,parent.argument} {\protect\meta{##1}\space},
},
print format={
if argument={}{}{
+result={\space},
+result/.option=argument
}
},
format={
pgfkey
},
}
}
]>{word suffix}
\indexset[%option values
index key format={result/.expanded=\forestoption{argument} value},
format={result/.expanded=\noexpand\texttt{\forestoption{argument}} value},
for first={format=pgfkey}
]>{value of}
\indexset[
index key format={result/.expanded=\forestoption{argument} option},
format={result/.expanded=\noexpand\texttt{\forestoption{argument}} option},
for first={format=pgfkey}
]>{option of}
\indexset
[form={},for first={
print format={if argument={}{}{
result+={:\ },
result+/.option=argument,
}},
format=meta,
}]>{meta}
\indexset[
for first={+key={{cs }},format={pgfkey}}
]>{forest cs}
\indexset[
for first={+key={{ss }},format={pgfkey}}
]>{short step}
\indexset
[for first={format=pgfkey}]
>{named nodewalk}
\indexset[
format={result/.expanded=\noexpand\texttt{process instruction}},
for first={format=pgfkey}
]>{processor}
{\makeatletter % an dirty patch: \lst@nolig can sneak in the name...
\gdef\myexampleindex#1{{\def\lst@nolig{}\lstaspectindex{#1}{}}}
}
\lstset{indexstyle={[1]\myexampleindex}}
%%% end lst-related stuff
\EnableCrossrefs
\setlength\hfuzz{15pt} % dont make so many
\hbadness=7000 % over and under full box warnings
\usetikzlibrary{intersections}
\tikzset{>=latex}
\forestset{
background tree/.style={
for tree={text opacity=0.2,draw opacity=0.2,edge={draw opacity=0.2}}}
}
\title{\FoRest;: a \PGF;/\TikZ;-based package for drawing linguistic trees\\\normalsize\forestversion}
\author{Sa\v so \v Zivanovi\'c\footnote{e-mail:
\href{mailto:saso.zivanovic@guest.arnes.si}{saso.zivanovic@guest.arnes.si};
web:
\href{http://spj.ff.uni-lj.si/zivanovic/}{http://spj.ff.uni-lj.si/zivanovic/}}}
%\usepackage[verbose]{trace-pgfkeys} % silent, stack, trace, verbose
%\pgfkeystracelevel{trace}
\begin{document}
\typeout{)}% hacking auctex's error finding routing
% short verbatim: | (changes spaces into _)
\DeleteShortVerb\|
\def\indexpipe{|}
{\catcode`\_=12 \def\marshal{%
\lstMakeShortInline[basicstyle=\ttfamily,literate={_}{ }1 {__}{_}1]}%
\expandafter}\marshal |
\IfFileExists{forest-doc-test.tex}{%
\input forest-doc-test\relax
}{}
\newbox\treebox
\newbox\codebox
{\settodayfromforestdate\maketitle}
\begin{abstract}
\FoRest; is a \PGF;/\TikZ;-based package for drawing linguistic (and
other kinds of) trees. Its main features are
\begin{enumerate*}[(i)]
\item a packing algorithm which can produce very compact trees;
\item a user-friendly interface consisting of the familiar bracket encoding of trees plus the
key--value interface to option-setting;
\item many tree-formatting options, with control over option values of individual nodes and
mechanisms for their manipulation;
\item a powerful mechanism for traversing the tree;
\item the possibility to decorate the tree using the full power of \PGF;/\TikZ;;
\item an externalization mechanism sensitive to code-changes.
\end{enumerate*}
\end{abstract}
\vspace{1cm}
\begin{forestexample}[basicstyle=\ttfamily\scriptsize,layout=tree on top,no label,v sep=1cm,index={content,pgfmath,conditional>if,repeat,append,before drawing tree,y,alias,for step,step>children,edge,before typesetting nodes,tree,s sep,dimen+,option>l,ancestors,typeset node,nodewalk,readonly option>level,sort by,step>min}]
\pgfmathsetseed{14285}
\begin{forest}
random tree/.style n args={3}{% #1 = max levels, #2 = max children, #3 = max content
content/.pgfmath={random(0,#3)},
if={#1>0}{repeat={random(0,#2)}{append={[,random tree={#1-1}{#2}{#3}]}}}{}},
before typesetting nodes={for tree={draw,s sep=2pt,rotate={int(30*rand)},l+={5*rand},
if={isodd(level())}{fill=green}{fill=yellow}}},
important/.style={draw=red,line width=1.5pt,edge={red,line width=1.5pt}},
before drawing tree={sort by=y, for nodewalk={min=tree,ancestors}{important,typeset node}}
[,random tree={9}{3}{100}]
\end{forest}
\end{forestexample}%
\begin{center}\mbox{}\box\treebox\\\box\codebox\end{center}
\newpage
{%
\parskip 0pt
\begin{multicols}{2}
\tableofcontents
\end{multicols}
}
\newpage
\section{Introduction}
Over several years, I had been a grateful user of various packages
for typesetting linguistic trees. My main experience was with
|qtree| and |synttree|, but as far as I can tell, all of the tools
on the market had the same problem: sometimes, the trees were just
too wide. They looked something like the tree on the left,
while I wanted something like the tree on the right.
\begin{center}
\begin{forest}
baseline,
for tree={parent anchor=south,child anchor=north,l=7ex,s sep=10pt},
for children={fit=rectangle}
[CP
[DP
[D][NP[N][CP[C][TP[T][vP[v][VP[DP][V'[V][DP]]]]]]]]
[TP
[T][vP[v][VP[DP][V'[V][DP]]]]]
]
\end{forest}
\hfill
\begin{forest}
baseline,
for tree={parent anchor=south,child anchor=north,l=7ex,s sep=10pt},
[CP
[DP
[D][NP[N][CP[C][TP[T][vP[v][VP[DP][V'[V][DP]]]]]]]]
[TP
[T][vP[v][VP[DP][V'[V][DP]]]]]
]
\end{forest}
\end{center}
Luckily, it was possible to tweak some parameters by hand to get a
narrower tree, but as I quite dislike constant manual adjustments, I
eventually started to develop \foRest;. It started out as
|xyforest|, but lost the |xy| prefix as I became increasingly fond
of \PGF;/\TikZ;, which offered not only a drawing package but also a
`programming paradigm.' It is due to the awesome power of the
supplementary facilities of \PGF;/\TikZ; that \foRest; is now, I
believe, the most flexible tree typesetting package for \LaTeX\ you can get.
The latest stable version of \FoRest; is \href{http://www.ctan.org/pkg/forest}{available at CTAN}.
Development version(s) can be found \href{https://github.com/sasozivanovic/forest}{at GitHub}.
Comments, criticism, suggestions and code are all very welcome! If you find the package useful, you
can show your appreciation by making a PayPal donation to \url{saso.zivanovic@guest.arnes.si}.
\section{Tutorial}
\label{sec:tutorial}
This short tutorial progresses from basic through useful to obscure \dots fortunately, it is not the
only newcomer's source of information on \foRest;: check out
\href{http://mirrors.ctan.org/info/forest-quickstart/ForestQuickstart.pdf}{Forest Quickstart Guide
for Linguists}. Another very useful source of information (and help!) about \foRest; and \TeX\ in
general is \href{http://tex.stackexchange.com}{\TeX\ StackExchange}. Check out the questions tagged
\href{http://tex.stackexchange.com/questions/tagged/forest}{\texttt{forest}}!
\subsection{Basic usage}
\label{tut:basic-usage}
A tree is input by enclosing its specification in a \index{forest}
environment. The tree is encoded by \emph{the bracket syntax}:
every node is enclosed in square brackets; the children of a
node are given within its brackets, after its content.
{\lstdefinelanguage[my]{TeX}[LaTeX]{TeX}{keywords=forest,
otherkeywords={[,]},keywordstyle=\pstyle,texcsstyle={}}%
\lstset{language={[my]TeX}}%
\begin{forestexample}
\begin{forest}
[VP
[DP]
[V'
[V]
[DP]
]
]
\end{forest}
\end{forestexample}}
Binary trees are nice, but not the only thing this package can draw.
Note that by default, the children are vertically centered with
respect to their parent, i.e.\ the parent is vertically aligned with the midpoint between the
first and the last child.
\begin{forestexample}
\begin{forest}
[VP
[DP[John]]
[V'
[V[sent]]
[DP[Mary]]
[DP[D[a]][NP[letter]]]
]
]
\end{forest}
\end{forestexample}
Spaces around brackets are ignored --- format your code as you
desire!
\begin{forestexample}
\begin{forest}
[VP[DP][V'[V][DP]]]
\end{forest}
\quad
\begin{forest}[VP
[DP ] [ V'[V][ DP]]
]\end{forest}
\end{forestexample}
If you need a square bracket as part of a node's content, use
braces. The same is true for the other characters which have a
special meaning in the \foRest; package, like comma
|,| and equality sign |=|.
\begin{forestexample}
\begin{forest}
[V{P,}
[{[DP]}]
[V'
[V]
[{===DP===}]]]
\end{forest}
\end{forestexample}
Macros in a node specification will be expanded when the node is
drawn --- you can freely use formatting commands inside nodes!
\begin{forestexample}
\begin{forest}
[VP
[{~\textbf~{DP}}]
[V'
[V]
[DP]]]
\end{forest}
\end{forestexample}
All the examples given above produced top-down trees with centered children. The other sections
of this manual explain how various properties of a tree can be changed, making it possible to
typeset radically different-looking trees. However, you don't have to learn everything about this
package to profit from its power. Using styles, you can draw predefined types of trees with ease.
For example, a phonologist can use the \index{GP1} style from library \reflibrary{linguistics} to easily
typeset (Government Phonology) phonological representations. The style is applied simply by
writing its name before the first (opening) bracket of the tree.
\begin{forestexample}[label=ex:gp1-frost,code prefix={\def\usepackage[##1]##2{}}]
\usepackage[~linguistics~]{forest}
% ...
\begin{forest} ~GP1~ [
[O[x[f]][x[r]]]
[R[N[x[o]]][x[s]]]
[O[x[t]]]
[R[N[x]]]
]\end{forest}
\end{forestexample}
Of course, someone needs to develop the style --- you, me, your local \TeX nician \dots\@
Fortunately, designing styles is not very difficult once you get the hang of \foRest;, if you
write one, please contribute! Some macros relating to various fields are collected in
\emph{libraries} that are distributed alongside the main package. This is the case for the
\index{GP1} style used above, which is defined in the |linguistics| library. The simplest way to
load a library is as shown in the example, by loading the package with an optional argument. For
more information on loading libraries, see \S\ref{ref:package-options}.
\subsection{Options}
\label{tut:options}
A node can be given various options, which control various
properties of the node and the tree. For example, at the end of
section~\ref{tut:basic-usage}, we have seen that the \index{GP1} style
vertically aligns the parent with the first
child. This is achieved by setting option \index{calign} (for
\emph{c}hild-\emph{align}ment) to \index{value of=calign>first} (child).
Let's try. Options are given inside the brackets, following the
content, but separated from it by a comma. (If multiple options are
given, they are also separated by commas.) A single option
assignment takes the form \meta{option name}|=|\meta{option value}. (There are
also options which do not require a value or have a default value:
these are given simply as \meta{option name}.)
\begin{forestexample}[label=ex:numerals-simple,index={calign,value of=align>first}]
\begin{forest}
[\LaTeX\ numerals, ~calign=first~
[arabic[1][2][3][4]]
[roman[i][ii][iii][iv]]
[alph[a][b][c][d]]
]
\end{forest}
\end{forestexample}
The experiment has succeeded only partially. The root node's
children are aligned as desired (so \index{calign}|=|\index{value of=calign>first} applied to the
root node), but the value of the \index{calign} option didn't get
automatically assigned to the root's children! \emph{An option given
at some node applies only to that node.} In \foRest;, the options
are passed to the node's relatives via special keys, called
\emph{propagators}. What we need above is the \index{for step=\index{tree}}
propagator. Observe:
\begin{forestexample}[label=ex:numerals-manual]
\begin{forest}
[\LaTeX\ numerals,
~for tree~={calign=first}
[arabic[1][2][3][4]]
[roman[i][ii][iii][iv]]
[alph[a][b][c][d]]
]
\end{forest}
\end{forestexample}
The value of propagator \index{for step=\index{tree}} is a list of keys that we
want to process. This keylist is propagated to all the nodes in
the subtree\footnote{It might be more precise to call \index{for step=\index{tree}}
\texttt{for subtree} \dots\@ but this name at least saves some typing.}
rooted in the current node (i.e.\ the node where \index{for step=\index{tree}} was
given), including the node itself. (Propagator \index{for step=\index{descendants}} is
just like \index{for step=\index{tree}}, only that it excludes the node itself. There
are many other \index{for step=\meta{step}} propagators; for the complete list, see
sections~\ref{ref:spatial-propagators} and \ref{ref:nodewalks}.)
Some other useful options are \index{option>parent anchor}, \index{option>child anchor} and
\index{tier}. The \index{option>parent anchor} and \index{option>child anchor} options tell
where the parent's and child's endpoint of the edge between them should be, respectively: usually,
the value is either empty (meaning a smartly determined border point
\citep[see][\S16.11]{tikzpgf2.10}; this is the default) or a compass direction
\citep[see][\S16.5.1]{tikzpgf2.10}. (Note: the \index{option>parent anchor} determines where the edge
from the child will arrive to this node, not where the node's edge to its parent will start!)
Option \index{tier} is what makes the
skeletal points $\times$ in example (\ref{ex:gp1-frost}) align horizontally although they
occur at different levels in the logical structure of the tree.
Using option \index{tier} is very simple: just set |tier=tier_name| at
all the nodes that you want to align horizontally. Any tier name
will do, as long as the tier names of different tiers are
different \dots\@ (Yes, you can have multiple tiers!)
\begin{forestexample}[point={tier},index={option>parent anchor,option>child anchor,tier},label=ex:tier-manual]
\begin{forest}
[VP, for tree={~parent anchor~=south, ~child anchor~=north}
[DP[John,tier=word]]
[V'
[V[sent,tier=word]]
[DP[Mary,tier=word]]
[DP[D[a,tier=word]][NP[letter,tier=word]]]
]
]
\end{forest}
\end{forestexample}
Before discussing the variety of \foRest;'s options, it is worth
mentioning that \foRest;'s node accepts all options \citep[see
\S16]{tikzpgf2.10} that \TikZ;'s node does --- mostly, it just passes
them on to \TikZ;. For example, you can easily encircle a node like
this:\footnote{If option \texttt{draw} was not given, the shape of the node
would still be circular, but the edge would not be drawn. For
details, see \cite[\S16]{tikzpgf2.10}.}
\begin{forestexample}
\begin{forest}
[VP,~circle~,~draw~
[DP][V'[V][DP]]
]
\end{forest}
\end{forestexample}
Let's have another look at example (\ref{ex:gp1-frost}). You will note that the skeletal
positions were input by typing |x|s, while the result looks like
this: $\times$ (input as |\times| in math mode). Obviously, the
content of the node can be changed. Even more, it can be
manipulated: added to, doubled, boldened, emphasized, etc. We will
demonstrate this by making example (\ref{ex:numerals-manual}) a bit
fancier: we'll write the input in the arabic numbers and have
\LaTeX\ convert it to the other formats. We'll start with the
easiest case of roman numerals: to get them, we can use the (plain)
\TeX\ command |\romannumeral|. To change the content of the node,
we use option \index{content}. When specifying its new value, we can use
|#1| to insert the current content.\footnote{This mechanism is called
\emph{wrapping}. By default, \index{content} is the only \index{autowrapped toks} option,
i.e.\ option where wrapping works implicitely (simply
because I assume that wrapping will be almost exclusively used with this option). To wrap values
of other options, use handler \index{wrap value}; see~\S\ref{ref:handlers}.}
\begin{forestexample}[point={content,delay},index={for step,step>children,content,delay},label=ex:romannumeral]
\begin{forest}
[roman, delay={for children={content=\romannumeral#1}}
[1][2][3][4]
]
\end{forest}
\end{forestexample}
This example introduces another option: \index{delay}. Without it, the example wouldn't work: we
would get arabic numerals. This is so because of the order in which the options are processed.
First, the processing proceeds through the tree in a depth-first, parent-first fashion (first the
parent is processed, and then its children, recursively; but see \index{processing order}). Next,
the option string of a node is processed linearly, in the order they were given. Option
\index{content} is specified implicitely and is always the first. If a propagator is encountered,
the options given as its value are propagated \emph{immediately}. The net effect is that if the
above example contained simply |roman,for_children={content=...}|, the \index{content} option
given there would be processed \emph{before} the implicit content options given to the children
(i.e.\ numbers |1|, |2|, |3| and |4|). Thus, there would be nothing for the |\romannumeral| to
change --- it would actually crash; more generally, the content assigned in such a way would get
overridden by the implicit content. Key \index{delay} is true to its name. It delays the
processing of the keylist given as its argument until the whole tree was processed. In other words, it
introduces cyclical option processing. Whatever is delayed in one cycle, gets processed in the next
one. The number of cycles is not limited --- you can nest \index{delay}s as deep as you need.
Unlike \index{for step=\meta{step}} keys we have met before, \index{delay} is not a
spatial, but a temporal propagator. Several other temporal propagators options exist, see
\S\ref{ref:stages}.
We are now ready to learn about simple conditionals.\footnote{See \S\ref{ref:conditionals} for
further information on conditionals, including the generic \index{if} and \index{where}.} Every
node option has the corresponding \index{if option=\meta{option}} and \index{where
option=\meta{option}} keys. \index{if option=\meta{option}}|=|\meta{value}\meta{true
options}\meta{false options} checks whether the value of \meta{option} equals \meta{value}. If
so, \meta{true options} are processed, otherwise \meta{false options}. The \index{where
option=\meta{option}} keys are the same, but do this for the every node in the subtree; informally
speaking, |where| = |for_tree| + |if|. To see this in action, consider the rewrite of the
\index{tier} example (\ref{ex:tier-manual}) from above. We don't set the tiers manually, but rather
put the terminal nodes (option \index{n children} is a read-only option containing the number of
children) on tier \keyname{word}.\footnote{We could omit the braces around \texttt{0} because it is
a single character. If we were hunting for nodes with 42 children, we'd have to write
\texttt{where n children=\{42\}...}.}
\begin{forestexample}[index={tier,where option,n children}]
\begin{forest}
~where n children~=0{tier=word}{}
[VP
[DP[John]]
[V'
[V[sent]]
[DP[Mary]]
[DP[D[a]][NP[letter]]]
]
]
\end{forest}
\end{forestexample}
\begin{advise}
\item Note that you usually don't want to embed a \index{where option=...} conditional in a \index{for
step=\index{tree}}, as this will lead to a multiple traversal of many nodes, resulting in a
slower execution. If you're inside a \index{for step=\index{tree}}, you probably want to use
\index{if}.
\end{advise}
Finally, let's talk about styles.
(They are not actually defined in the \foRest; package, but rather
inherited from |pgfkeys|.)
At the first approximation, styles are abbreviations: if you
often want to have non-default parent/child anchors, say south/north as in example
(\ref{ex:tier-manual}), you could save some typing by defining a style. Styles are defined using
\PGF;'s handler |.style|, like shown below.\footnote{Style \index{sn edges} is actually already
defined by library \reflibrary{linguistics}. The definition there is a bit more generic.}
\begin{forestexample}[index={tier,option>parent anchor,option>child anchor}]
\begin{forest}
~sn edges~/~.style~={for tree={
parent anchor=south, child anchor=north}},
~sn edges~
[VP,
[DP[John,tier=word]]
[V'
[V[sent,tier=word]]
[DP[Mary,tier=word]]
[DP[D[a,tier=word]][NP[letter,tier=word]]]]]
\end{forest}
\end{forestexample}
If you want to use a style in more than one tree, you have to define it outside the \index{forest}
environment. Use macro \index{forestset} to do this.
\begin{lstlisting}
~\forestset~{
sn edges/.style={for tree={parent anchor=south, child anchor=north}},
background tree/.style={for tree={
text opacity=0.2,draw opacity=0.2,edge={draw opacity=0.2}}}
}
\end{lstlisting}
You might have noticed that in the last two examples, some keys occurred even before the
first opening bracket, contradicting was said at the beginning of this section. This is mainly
just syntactic sugar (it can separate the design and the content): such \emph{preamble}
keys behave as if they were given in the root node, the only difference (which often does not
matter) being that they get processed before all other root node options, even the implicit
\index{content}.
If you find yourself writing the same preamble for every tree in your document,
consider modifying \index{default preamble}, which is implicitely included at the beginning
of every preamble.
\begin{forestexample}[index={default preamble}]
\forestset{
~default preamble~={
font=\Huge,
for tree={circle,draw}
}
}
\begin{forest} [A[B][C]] \end{forest}
\begin{forest} red [D[E][F]] \end{forest}
\begin{forest} for tree={dotted} [G[H][I]] \end{forest}
\end{forestexample}
\subsection{Decorating the tree}
\label{tut:decorating}
The tree can be decorated (think movement arrows) with arbitrary
\TikZ; code.
\begin{forestexample}
\begin{forest}
[XP
[specifier]
[X$'$
[X$^0$]
[complement]
]
]
~\node at (current bounding box.south)
[below=1ex,draw,cloud,aspect=6,cloud puffs=30]
{\emph{Figure 1: The X' template}};~
\end{forest}
\end{forestexample}
However, decorating the tree would make little sense if one could
not refer to the nodes. The simplest way to do so is to give them a
\TikZ; name using the \index{option>name} option, and then use this name in \TikZ;
code as any other (\TikZ;) node name.
\begin{forestexample}[point=name,index={option>phantom,option>name}]
\begin{forest}
[CP
[DP,name=spec CP]
[\dots
[,phantom]
[VP
[DP]
[V'
[V]
[DP,name=object]]]]]
\draw[->,dotted] ~(object)~ to[out=south west,in=south] ~(spec CP)~;
\end{forest}
\end{forestexample}
It gets better than this, however! In the previous examples, we put
the \TikZ; code after the tree specification, i.e.\ after the closing
bracket of the root node. In fact, you can put \TikZ; code after
\emph{any} closing bracket, and \foRest; will know what the current
node is. (Putting the code after a node's bracket is actually just a
special way to provide a value for option \index{tikz} of that node.) To
refer to the current node, simply use an empty node name. This works both with and without
anchors \citep[see][\S16.11]{tikzpgf2.10}: below, |(.south east)| and |()|.
\begin{forestexample}[index={option>phantom,option>name}]
\begin{forest}
[CP
[DP,name=spec CP]
[\dots
[,phantom]
[VP
[DP]
[V'
[V]
[DP,draw] ~{~
\draw[->,dotted] ~()~ to[out=south west,in=south] (spec CP);
\draw[<-,red] ~(.south east)~--++(0em,-4ex)--++(-2em,0pt)
node[anchor=east,align=center]{This guy\\has moved!};
~}~
]]]]
\end{forest}
\end{forestexample}
Important: \emph{the \TikZ; code should usually be enclosed in braces} to hide
it from the bracket parser. You don't want all the bracketed code
(e.g.\ |[->,dotted]|) to become tree nodes, right? (Well, they
probably wouldn't anyway, because \TeX\ would spit out a thousand
errors.)
\bigskip
Finally, the most powerful tool in the node reference toolbox:
\emph{relative nodes}. It is possible to refer to other nodes which stand
in some (most often geometrical) relation to the current node. To
do this, follow the node's name with a \index>{!} and a \emph{nodewalk}
specification.
A nodewalk is a concise\footnote{Actually, \foRest; distinguishes two kinds of steps in node walks:
long-form and short-form steps. This section introduces only short-form steps. See
\S\ref{ref:nodewalks}.} way of expressing node relations. It is simply a string of steps, which
are represented by single characters, where: \index{ss u} stands for the parent node (up); \index{ss
p} for the previous sibling; \index{ss n} for the next sibling; \index{ss s} for \emph{the}
sibling (useful only in binary trees); \index{ss 1}, \index{ss 2}, \index[not print]{ss 3,ss 4,ss
5,ss 6,ss 7,ss 8}\dots\ \index{ss 9} for first, second, \dots\ ninth child; \index{ss l}, for the
last child, etc. For the complete specification, see section~\ref{ref:short-form-steps}.
To see the nodewalk in action, consider the following examples.
In the first example, the agree arrow connects the V node, specified
simply as |()|, since the \TikZ; code follows |[V]|, and the DP node,
which is described as ``a sister of V's parent'': |!us| = up +
sibling.
\begin{forestexample}[index>={!}]
\begin{forest}
[VP
[DP]
[V'
[V] {\draw[<->] ~()~
.. controls +(left:1cm) and +(south west:0.4cm) ..
node[very near start,below,sloped]{\tiny agree}
~(!us)~;}
[DP]
]
]
\end{forest}
\end{forestexample}
\begingroup
\footnotesize
\begin{forestexample}[index={option>phantom,tikz,fit to,tree},layout=export,basicstyle=\footnotesize\ttfamily]
\begin{forest}
[CP
[DP$_1$]
[\dots
[,phantom]
[VP,tikz={\node [draw,red,inner sep=0,~fit to~=tree]{};}
[DP$_2$]
[V'
[V]
[DP$_3$]
]]]]
\end{forest}
\end{forestexample}%
\endgroup
The second example uses \TikZ;'s fitting library (automatically loaded by \foRest;) to compute the
smallest rectangle containing node VP, its first child (DP$_2$) and its last grandchild (DP$_3$).
The example also illustrates that the \TikZ; code
can be specified via the ``normal'' option syntax, i.e.\ as a value
to option \index{tikz}.\footnote{\label{fn:fit-to-tree}Actually, there's a simpler way to do this: use \index{fit to}\keyname{=}\index{tree}!\forestexampleimport}
\begin{forestexample}[point=tikz,index={option>phantom,tikz},index>={!}]
\begin{forest}
[CP
[DP$_1$]
[\dots
[,phantom]
[VP,tikz={\node [draw,red,fit=~()(!1)(!ll)~] {};}
[DP$_2$]
[V'
[V]
[DP$_3$]
]]]]
\end{forest}
\end{forestexample}
\subsection{Node positioning}
\label{tut:node-positioning}
\FoRest; positions the nodes by a recursive bottom-up algorithm which, for every non-terminal node,
computes the positions of the node's children relative to their parent. By default, all the
children will be aligned horizontally some distance down from their parent: the ``normal'' tree
grows down. More generally, however, the direction of growth can change from node to node; this is
controlled by option \index{grow}=\meta{direction}.\footnote{The direction can be specified either in
degrees (following the standard mathematical convention that $0$ degrees is to the right, and that
degrees increase counter-clockwise) or by the compass directions: \texttt{east}, \texttt{north east},
\texttt{north}, etc.} The system computes and stores the positions of children using a
coordinate system dependent on the parent, called an \emph{ls-coordinate system}: the origin is the
parent's anchor; l-axis is in the direction of growth in the parent; s-axis is orthogonal to the
l-axis (positive side in the counter-clockwise direction from $l$-axis); l stands for \emph{l}evel,
s for \emph{s}ibling. The example shows the ls-coordinate system for a node with
|grow=45|.\footnote{The axes are drawn using coordinates given in \texttt{forest cs} coordinate
system; the ``manually'' given polar coordinate equivalent is shown in the comment.}
\begin{forestexample}[point=grow,index={grow}]
\begin{forest} background tree
[parent, grow=45
[child 1][child 2][child 3][child 4][child 5]
]
%\draw[,->](-135:1cm)--(45:3cm) node[below]{$l$};
\draw[,->](forest cs:l=-1cm,s=0)--(forest cs:l=3cm,s=0) node[below]{$l$};
%\draw[,->](-45:1cm)--(135:3cm) node[right]{$s$};
\draw[,->](forest cs:s=-1cm,l=0)--(forest cs:s=3cm,l=0) node[right]{$s$};
\end{forest}
\end{forestexample}
\begin{forestexample}[basicstyle=\scriptsize\ttfamily,layout=export]
\newcommand\measurexdistance[5][####1]{\measurexorydistance{#2}{#3}{#4}{#5}{\x}{-|}{(5pt,0)}{#1}}
\newcommand\measureydistance[5][####1]{\measurexorydistance{#2}{#3}{#4}{#5}{\y}{|-}{(0,5pt)}{#1}}
\tikzset{dimension/.style={<->,>=latex,thin,every rectangle node/.style={midway,font=\scriptsize}},
guideline/.style=dotted}
\newdimen\absmd
\def\measurexorydistance#1#2#3#4#5#6#7#8{%
\path #1 #3 #6 coordinate(md1) #1; \draw[guideline] #1 -- (md1);
\path (md1) #6 coordinate(md2) #2; \draw[guideline] #2 -- (md2);
\path let \p1=($(md1)-(md2)$), \n1={abs(#51)} in \pgfextra{\xdef\md{#51}\global\absmd=\n1\relax};
\def\distancelabelwrapper##1{#8}%
\ifdim\absmd>5mm
\draw[dimension] (md1)--(md2) node[#4]{\distancelabelwrapper{\uselengthunit{mm}\rndprintlength\absmd}};
\else
\ifdim\md>0pt
\draw[dimension,<-] (md1)--+#7; \draw[dimension,<-] let \p1=($(0,0)-#7$) in (md2)--+(\p1);
\else
\draw[dimension,<-] let \p1=($(0,0)-#7$) in (md1)--+(\p1); \draw[dimension,<-] (md2)--+#7;
\fi
\draw[dimension,-] (md1)--(md2) node[#4]{\distancelabelwrapper{\uselengthunit{mm}\rndprintlength\absmd}};
\fi}
\end{forestexample}
\input{\jobname.tmp}
The l-coordinate of children is (almost) completely under your control, i.e.\ you set what is often
called the level distance by yourself. Simply set option \index{option>l} to change the distance of
a node from its parent.\footnote{If setting \index{option>l} seems to have no effect, read about
\index{l sep} further down this section.} More precisely, \index{option>l}, and the related option
\index{option>s}, control the distance between the (node) anchors of a node and its parent. The
anchor of a node can be changed using option \index{option>anchor}: by default, nodes are anchored
at their base; see \cite[\S16.5.1]{tikzpgf2.10}.) In the example below, positions of the anchors
are shown by dots: observe that anchors of nodes with the same \index{option>l} are aligned and that
the distances between the anchors of the children and the parent are as specified in the
code.\footnote{Here are the definitons of the macros for measuring distances. Args: the x or y
distance between points \#2 and \#3 is measured; \#4 is where the distance line starts (given as
an absolute coordinate or an offset to \#2); \#5 are node options; the optional arg \#1 is the
format of label. (Lengths are printed using package \texttt{printlen}.)
\box\codebox}
\begin{forestexample}[layout=tree on top,index={for step,tree,tikz,option>l,option>anchor},index>={!}]
\begin{forest} background tree,
for tree={draw,tikz={\fill[](.anchor)circle[radius=1pt];}}
[parent
[child 1, ~l~=10mm, ~anchor~=north west]
[child 2, ~l~=10mm, ~anchor~=south west]
[child 3, ~l~=12mm, ~anchor~=south]
[child 4, ~l~=12mm, ~anchor~=base east]
]
\measureydistance[\texttt{l(child)}=#1]{(!2.anchor)}{(.anchor)}{(!1.anchor)+(-5mm,0)}{left}
\measureydistance[\texttt{l(child)}=#1]{(!3.anchor)}{(.anchor)}{(!4.anchor)+(5mm,0)}{right}
\measurexdistance[\texttt{s sep(parent)}=#1]{(!1.south east)}{(!2.south west)}{+(0,-5mm)}{below}
\measurexdistance[\texttt{s sep(parent)}=#1]{(!2.south east)}{(!3.south west)}{+(0,-5mm)}{below}
\measurexdistance[\texttt{s sep(parent)}=#1]{(!3.south east)}{(!4.south west)}{+(0,-8mm)}{below}
\end{forest}
\end{forestexample}
Positioning the chilren in the s-dimension is the job and \emph{raison d'etre} of the package. As a
first approximation: the children are positioned so that the distance between them is at least the
value of option \index{s sep} (s-separation), which defaults to double \PGF;'s |inner_xsep| (and this
is 0.3333em by default). As you can see from the example above, s-separation is the distance
between the borders of the nodes, not their anchors!
A fuller story is that \index{s sep} does not control the s-distance between two siblings, but rather
the distance between the subtrees rooted in the siblings. When the green and the yellow child of
the white node are s-positioned in the example below, the horizontal
distance between the green and the yellow subtree is computed. It can be seen with the naked eye
that the closest nodes of the subtrees are the TP and the DP with a red border. Thus, the children
of the root CP (top green DP and top yellow TP) are positioned so that the horizontal distance
between the red-bordered TP and DP equals \index{s sep}.
\begin{forestexample}[index={for step,tree,s sep}]
\begin{forest}
important/.style={name=#1,draw={red,thick}}
[CP, ~s sep~=3mm, for tree=draw
[DP, for tree={fill=green}
[D][NP[N][CP[C][TP,important=left
[T][vP[v][VP[DP][V'[V][DP]]]]]]]]
[TP,for tree={fill=yellow}
[T][vP[v][VP[DP,important=right][V'[V][DP]]]]]
]
\measurexdistance[\texttt{s sep(root)}=#1]
{(left.north east)}{(right.north west)}{(.north)+(0,3mm)}{above}
\end{forest}
\end{forestexample}
Note that \foRest; computes the same distances between nodes
regardless of whether the nodes are filled or not, or whether their
border is drawn or not. Filling the node or drawing its border does
not change its size. You can change the size by adjusting \TikZ;'s
|inner_sep| and |outer_sep| \citep[\S16.2.2]{tikzpgf2.10}, as shown
below:
\begin{forestexample}[index={for step,tree,s sep}]
\begin{forest}
important/.style={name=#1,draw={red,thick}}
[CP, s sep=3mm, for tree=draw
[DP, for tree={fill=green,~inner sep~=0}
[D][NP,important=left[N][CP[C][TP[T][vP[v]
[VP[DP][V'[V][DP]]]]]]]]
[TP,for tree={fill=yellow,~outer sep~=2pt}
[T,important=right][vP[v][VP[DP][V'[V][DP]]]]]
]
\measurexdistance[\texttt{s sep(root)}=#1]
{(left.north east)}{(right.north west)}{(.north)+(0,3mm)}{above}
\end{forest}
\end{forestexample}
(This looks ugly!) Observe that having increased |outer sep| makes the edges stop touching
borders of the nodes. By (\PGF;'s) default, the |outer sep| is exactly half of the border
line width, so that the edges start and finish precisely at the border.
Let's play a bit and change the \index{option>l} of the root of the yellow subtree. Below, we set the
vertical
distance of the yellow TP to its parent to 3\,cm: and the yellow submarine sinks diagonally \dots\@
Now, the closest nodes are the higher yellow DP and the green VP.
\begin{forestexample}[index={option>l,s sep,for step,tree}]
\begin{forest}
important/.style={name=#1,draw={red,thick}}
[CP, s sep=3mm, for tree=draw
[DP, for tree={fill=green}
[D][NP[N][CP[C][TP
[T][vP[v][VP,important=left[DP][V'[V][DP]]]]]]]]
[TP,for tree={fill=yellow}, l=3cm
[T][vP[v][VP[DP,important=right][V'[V][DP]]]]]
]
\measurexdistance[\texttt{s sep(root)}=#1]
{(left.north east)}{(right.north west)}{(.north)+(0,3mm)}{above}
\end{forest}
\end{forestexample}
Note that the yellow and green nodes are not vertically aligned anymore. The positioning algorithm
has no problem with that. But you, as a user, might have, so here's a neat trick. (This only works
in the ``normal'' circumstances, which are easier to see than describe.)
\begin{forestexample}[label=ex:l*,index={dimen*=l,option>phantom,for step,tree}]
\begin{forest}
[CP, for tree=draw
[DP, for tree={fill=green},~l*~=3
[D][NP]]
[TP,for tree={fill=yellow}
[T][VP[DP][V'[V][DP]]]]
]
\end{forest}
\end{forestexample}
We have changed DP's \index{option>l}'s value via ``augmented assignment'' known from
many programming languages: above, we have used |l*=3| to triple
\index{option>l}'s value; we could have also said |l+=5mm| or |l-=5mm| to
increase or decrease its value by 5\,mm, respectively. This
mechanism works for every numeric and dimensional option in \foRest;.
Let's now play with option \index{s sep}.
\begin{forestexample}[index={s sep,option>l,dimen*=l,for step,tree}]
\begin{forest}
[CP, for tree=draw, ~s sep~=0
[DP, for tree={fill=green},l*=3
[D][NP]]
[TP,for tree={fill=yellow}
[T][VP[DP][V'[V][DP]]]]
]
\end{forest}
\end{forestexample}
Surprised? You shouldn't be. The value of \index{s sep} at a given node controls the s-distance
\emph{between the subtrees rooted in the children of that node}! It has no influence over the
internal geometry of these subtrees. In the above example, we have set |s_sep=0| only for the root
node, so the green and the yellow subtree are touching, although internally, their nodes are not.
Let's play a bit more. In the following example, we set the \index{s sep} to: $0$ at the last
branching level (level 3; the root is level 0), to 2\,mm at level 2, to 4\,mm at level 1 and to
6\,mm at level 0.
\begin{forestexample}[label=ex:spread-s,point={level},index={readonly option>level,for step,tree,s sep},index>={!}]
\begin{forest}
for tree={~s sep~=(3-level)*2mm}
[CP, for tree=draw
[DP, for tree={fill=green},l*=3
[D][NP]]
[TP,for tree={fill=yellow}
[T][VP[DP][V'[V][DP]]]]
]
\measurexdistance{(!11.south east)}{(!12.south west)}{+(0,-5mm)}{below}
\path(md2)-|coordinate(md)(!221.south east);
\measurexdistance{(!221.south east)}{(!222.south west)}{(md)}{below}
\measurexdistance{(!21.north east)}{(!22.north west)}{+(0,2cm)}{above}
\measurexdistance{(!1.north east)}{(!221.north west)}{+(0,-2.4cm)}{below}
\end{forest}
\end{forestexample}
As we go up the tree, the nodes ``spread.'' At the lowest level, V and DP are touching. In the
third level, the \index{s sep} of level 2 applies, so DP and V' are 2\,mm apart. At the second
level we
have two pairs of nodes, D and NP, and T and TP: they are 4\,mm apart. Finally, at level 1, the
\index{s sep} of level 0 applies, so the green and yellow DP are 6\,mm apart. (Note that D and NP are
at level 2, not 4! Level is a matter of structure, not geometry.)
As you have probably noticed, this example also demostrated that we can compute the value of an
option using an (arbitrarily complex) formula. This is thanks to \PGF;'s module |pgfmath|.
\FoRest; provides an interface to |pgfmath| by defining |pgfmath| functions for every node option,
and some other information, like the \index{readonly option>level} we have used above, the number of children
\index{n children}, the sequential number of the child \index{readonly option>n}, etc. For details, see
\S\ref{ref:pgfmath}.
The final separation parameter is \index{l sep}. It determines the minimal
separation of a
node from its descendants. It the value of \index{option>l} is too small, then \emph{all} the
children (and thus their subtrees)
are pushed
away from the parent (by increasing their \index{option>l}s), so that the distance between the node's
and each child's subtree
boundary is at least \index{l sep}. The initial \index{option>l} can be too small for
two reasons: either
some child is too high, or the parent is too deep. The first problem is easier to see: we force the
situation using a bottom-aligned multiline node. (Multiline nodes can be easily created using |\\|
as a line-separator. However, you must first specify the horizontal alignment using option
\index{align} (see \S\ref{ref:node-appearance}).
Bottom vertical alignment is achieved by setting \index{base}|=|\index{value of=base>bottom};
the default, unlike in \TikZ;, is \index{base}|=|\index{value of=base>top}).
\begin{forestexample}[point={align,base},index={align,base}]
\begin{forest}
[parent
[child]
[child]
[a very\\tall\\child, align=center, base=bottom]
]
\end{forest}
\end{forestexample}
The defaults for \index{option>l} and \index{l sep} are set so that they ``cooperate.''
What this
means and why it is necessary is a complex issue explained in \S\ref{tut:defaults}, which you will
hopefully never have to read \dots\@ You might be out of luck, however. What if you
needed to decrease the level distance? And nothing happened, like below on the left? Or, what if
you used lots of parenthesis in your nodes? And got a strange vertical misalignment, like below
on the right? Then rest assured that these (at least) are features not bugs and read
\S\ref{tut:defaults}.
\begin{forestexample}[layout=tree on top,v sep=-55ex,code left skip=-3cm,label=ex:misalignments,index={option>phantom,for step,step>children,fit,baseline,edge,descendants,content,pgfmath,ss 1}]
\begin{forest}
[,phantom,for children={l sep=1ex,fit=band,
for 1={edge'=,l=0},baseline}
[{l+=5mm},for descendants/.pgfmath=content
[AdjP[AdvP][Adj'[Adj][PP]]]]
[default
[AdjP[AdvP][Adj'[Adj][PP]]]]
[{l-=5mm},for descendants/.pgfmath=content
[AdjP[AdvP][Adj'[Adj][PP]]]]
]
\path (current bounding box.west)|-coordinate(l1)(!212.base);
\path (current bounding box.west)|-coordinate(l2)(!2121.base);
\path (current bounding box.east)|-coordinate(r1)(!212.base);
\path (current bounding box.east)|-coordinate(r2)(!2121.base);
\draw[dotted] (l1)--(r1) (l2)--(r2);
\end{forest}
\hspace{5cm}
\begin{forest}
[x forest, baseline
[x[x[x[x[x[x[x[x[x[x[x[x[x]]]]]]]]]]]]]
[(x)[(x)[(x)[(x)[(x)[(x)[(x)[(x)[(x)[(x)[(x)[(x)[(x)]]]]]]]]]]]]]
]
\end{forest}
\end{forestexample}
\subsubsection{The defaults, or the hairy details of vertical alignment}
\label{tut:defaults}
In this section we discuss the default values of options controlling the l-alignment of the nodes.
The defaults are set with top-down trees in mind, so l-alignment is actually vertical alignment.
There are two desired effects of the defaults. First, the spacing between the nodes of a tree
should adjust to the current font size. Second, the nodes of a given level should be vertically
aligned (at the base), if possible.
Let us start with the base alignment: \TikZ;'s default is to anchor the nodes at their center,
while \foRest;, given the usual content of nodes in linguistic representations, rather anchors them
at the base \cite[\S16.5.1]{tikzpgf2.10}. The difference is particularly clear for a ``phonological''
representation:
\begin{forestexample}[index={for step,tree,option>anchor}]
\begin{forest} for tree={anchor=center}
[maybe[m][a][y][b][e]]
\end{forest}\quad
\begin{forest}
[maybe[m][a][y][b][e]]
\end{forest}
\end{forestexample}
The following example shows that the vertical distance between nodes depends on the current font size.
\begin{forestexample}
\hbox{\small A small tree
\begin{forest} baseline
[VP[DP][V'[V][DP]]]
\end{forest}
\normalsize and
\large
a large tree
\begin{forest} baseline
[VP[DP][V'[V][DP]]]
\end{forest}}
\end{forestexample}
Furthermore, the distance between nodes also depends on the value of \PGF;'s |inner_sep| (which
also depends on the font size by default: it equals 0.3333\,em).
\[\index{l sep}=\mbox{height}(\mbox{strut})+\mbox{\texttt{inner ysep}}\]
The default value of \index{s sep} depends on |inner_xsep|: more precisely, it equals double
|inner_xsep|).
\begin{forestexample}[index={baseline,for step,tree}]
\begin{forest} baseline,for tree=draw
[VP[DP][V'[V][DP]]]
\end{forest}
\pgfkeys{/pgf/inner sep=0.6666em}
\begin{forest} baseline,for tree=draw
[VP[DP][V'[V][DP]]]
\end{forest}
\end{forestexample}
Now a hairy detail: the formula for the default \index{option>l}.
\[\index{option>l}=\index{l sep}+2\cdot\mbox{\texttt{outer ysep}}+\mbox{total
height}(\mbox{`dj'})\]
To understand what this is all about we must first explain why it is necessary to set the default
\index{option>l} at all? Wouldn't it be enough to simply set \index{l sep} (leaving
\index{option>l} at 0)?
The problem is that not all letters have the same height and depth. A tree where the vertical
position of the nodes would be controlled solely by (a constant) \index{l sep} could
result in a ragged tree (although the height of the child--parent edges would be constant).
\begin{forestexample}[index={baseline,for step,step>children,no edge,option>name,descendants,option>l}]
\begin{forest}
[default,baseline,for children={no edge}
[DP
[AdjP[Adj]]
[D'[D][NP,name=np]]]]
\path (current bounding box.west)|-coordinate(l)(np.base);
\path (current bounding box.east)|-coordinate(r)(np.base);
\draw[dotted] (l)--(r);
\end{forest}
\begin{forest}
[{l=0},baseline,for children={no edge}
[DP,for descendants={l=0}
[AdjP[Adj]]
[D'[D][NP,name=np]]]]
\path (current bounding box.west)|-coordinate(l)(np.base);
\path (current bounding box.east)|-coordinate(r)(np.base);
\draw[dotted] (l)--(r);
\end{forest}
\end{forestexample}
The vertical misalignment of Adj in the right tree is a consequence of the fact that letter j is the
only letter with non-zero depth in the tree. Since only \index{l sep} (which is constant
throughout the tree) controls the vertical positioning, Adj, child of Ad\emph{j}P, is pushed lower
than the other nodes on level 2. If the content of the nodes is variable enough (various heights
and depths), the cumulative effect can be quite strong, see the right tree of example
(\ref{ex:misalignments}).
Setting only a default \index{l sep} thus does not work well enough in general. The same
is true for the reverse possibility, setting a default \index{option>l} (and leaving \index{l sep} at 0). In the example below, the depth of the multiline node (anchored at the top
line) is such that the child--parent edges are just too short if the level distance is kept constant.
Sometimes, misalignment is much preferred \dots
\begin{forestexample}[index={align,{value of=align>center},for step,tree,l sep}]
\mbox{}\begin{forest}
[default,baseline
[first child[a][b][c]]
[{second child\\[-1ex]\scriptsize(a copy)},
align=center[a][b][c]]
]
\end{forest}\quad
\begin{forest} for tree={l sep=0}
[{\texttt{l sep}=0},baseline
[first child[a][b][c]]
[{second child\\[-1ex]\scriptsize(a copy)},
align=center[a][b][c]]
]
\end{forest}
\end{forestexample}
Thus, the idea is to make \index{option>l} and \index{l sep} work as a team:
\index{option>l} prevents
misalignments, if possible, while \index{l sep} determines the minimal vertical distance
between levels. Each of the two options deals with a certain kind of a ``deviant'' node, i.e.\ a
node which is too high or too deep, or a node which is not high or deep enough, so we need to
postulate what a \emph{standard} node is, and synchronize them so that their effect on standard
nodes is the same.
By default, \foRest; sets the standard node to be a node containing letters d and j. Linguistic
representations consist mainly of letters, and in the \TeX's default Computer Modern font, d is the
highest letter (not character!), and j the deepest, so this decision guarantees that trees
containing only letters will look nice. If the tree contains many parentheses, like the right
tree of example (\ref{ex:misalignments}), the default will of course fail
and the standard node needs to be modified. But for many applications, including nodes with
indices, the default works.
The standard node can be changed using macro \index{forestStandardNode};
see \ref{ref:standard-node}.
% TODO: primer? ali raje po spremembi interfaceja
\subsection{Advanced option setting}
\label{tut:advanced-option-setting}
We have already seen that the value of options can be manipulated: in (\ref{ex:romannumeral}), we
have converted numeric content from arabic into roman numerals using the \emph{wrapping} mechanism
|content=\romannumeral#1|; in (\ref{ex:l*}), we have tripled the value of |l| by saying |l*=3|. In
this section, we will learn more about the mechanisms for setting options and referring to their
values.
One other way to access an option value is using macro \index{forestoption}. The macro takes a
single argument: an option name. In the
following example, the node's child sequence number is appended to the existing content. (This is
therefore also an example of wrapping.)
\begin{forestexample}[label=ex:forestoption,index={option>phantom,delay,for step,descendants,content,readonly option>n,forestoption}]
\begin{forest}
[,phantom,delay={for descendants={
content=#1$_{~\forestoption~{n}}$}}
[c][o][u][n][t]]
\end{forest}
\end{forestexample}
However, only options of the current node can be accessed using \index{forestoption}. Possibly the simplest way to
access option values of other nodes is to use \foRest;'s extensions to the \PGF;'s mathematical library
|pgfmath|, documented in \citep[part VI]{tikzpgf2.10}. To see |pgfmath| in action,
first take a look at the crazy tree on the title page, and observe how the nodes are
rotated: the value given to option \index{rotate} is a full-fledged |pgfmath| expression
yielding an integer
in the range from $-30$ to $30$. Similiarly, \index{dimen+=l} adds a random float
in the $[-5,5]$ range to the current value of \index{option>l}.
Example (\ref{ex:spread-s}) demonstrated that information about
the node, like the node's level, can be accessed within |pgfmath| expressions. All
options are accessible in this way, i.e.\ every option has a corresponding |pgfmath| function.
For example, we could rotate the node based on its content:
\begin{forestexample}[index={delay,for step,tree,content}]
\begin{forest}
delay={for tree={~rotate=content~}}
[30[-10[5][0]][-90[180]][90[-60][90]]]
\end{forest}
\end{forestexample}
All numeric, dimensional and boolean options of \foRest; automatically pass the given value
through |pgfmath|. If you need pass the value through |pgfmath|
for a string option, use the \index{pgfmath} handler. The following example sets the node's
content to its child sequence number (the root has child sequence number 0).
\begin{forestexample}[index={delay,for step,tree,content,readonly option>n,pgfmath}]
\begin{forest}
delay={for tree={content/~.pgfmath~=int(n)}}
[[[][][]][[][]]]
\end{forest}
\end{forestexample}
As mentioned above, using |pgfmath| it is possible to access options of non-current nodes. This
is achieved by providing the option function with a \index{relative node name}
(see~\S\ref{ref:relative-node-names}) argument.\footnote{The form without
parentheses \texttt{option\string_name} that we have been using until now to refer to an option of
the
current node is just a short-hand notation for \texttt{option\string_name()} --- note that in some
contexts, like preceding \texttt{+} or \texttt{-}, the short form does not work! (The same
seems to be true for all pgfmath functions with ``optional'' arguments.)} In the next example, we
rotate the node based on the content of its parent (\index{short step>u} means `up').
\begin{forestexample}[index={delay,for step,descendants,content,ss u},index>={!}]
\begin{forest}
delay={for descendants={rotate=content~("!u")~}}
[30[-10[5][0]][-90[180]][90[-60][90]]]
\end{forest}
\end{forestexample}
Note that the argument of the option function is surrounded by double quotation marks: this is
to prevent evaluation of the relative node name as a |pgfmath| function --- which it is not.
For further ways to access option values, see \S\ref{tut:wrapping}. Here, we continue by introducing
\emph{relative node setting}: write \index{relative node name}|.|\meta{option}|=|\meta{value} to set
the value of \meta{option} of the specified relative node. Important: computation of the value is
done in the context of the original node. The following example defines style \keyname{move} which
not only draws an arrow from the source (the current node) to the target, but also moves the content
of the source to the target (leaving a trace). Note the difference between |#1| and |##1|: |#1| is
the argument of the style \keyname{move} (a node walk determining the target), while |##1| is the
original option (in this case, \indexex{option>content}) value.
\begin{forestexample}[index={for step,tree,calign,tikz,delay,content},index>={!}]
\begin{forest}
for tree={calign=fixed edge angles},
move/.style={
tikz={\draw[->] () to[out=south west,in=south] (#1);},
delay={~#1.content~={##1},content=$t$}},
[CP[][C'[C][\dots[,phantom][VP[DP][V'[V][DP,move=!r1]]]]]]
\end{forest}
\end{forestexample}
\begin{forestexample}[index={if option,n children,content,for step,step>children,delay,pgfmath},index>={!},basicstyle=\scriptsize\ttfamily,layout=export]
\begin{forest}
calc/.style={if n children={0}{}{content=0,for children={calc,~!u.content~/.pgfmath=int(content("!u")+content())}}},
delay=calc,
[[[3][4][5]][[3][9]][8][[[1][2][3]]]]
\end{forest}
\end{forestexample}
In the following example, the content of the branching nodes is computed by \foRest;: a branching
node is a sum of its children. The algorithm visits each node (but the root node) and adds its
content to the content of the parent. Note that as the computation must proceed bottom-up,
\index{for step=\index{descendants children-first}} propagator is used to walk through the
tree.\footnote{It would be possible to emulate \index{for step=\index{descendants children-first}}
by defining a recursive style, as was done in this manual for versions of the package prior to
introduction of the bottom-up propagator. The following code produces identical result as the code
in the main text.
\box\codebox}
\begin{forestexample}[index={if option,n children,content,for step,step>children,delay,pgfmath},index>={!}]
\begin{forest}
delay={
where n children={0}{}{content=0},
for descendants children-first={
~!u.content~/.pgfmath=int(content("!u")+content())}
}
[[[3][4][5]][[3][9]][8][[[1][2][3]]]]
\end{forest}
\end{forestexample}
Actually, for common computations such as summing things up, \foRest; provides an easier way to do it: aggregate functions (\S\ref{ref:aggregate-functions}). Below, aggregate function \index{sum}, defined as |pgfkeys| handler, walks through the \index{step>children} (second argument) of the current node, summing up their \index{content} (first argument) and stores the result as the \index{content} of the current node (because \index{content} is the handled key).
\begin{forestexample}[index={sum,aggregate postparse,for step,tree children-first,delay,n children,if option,content,step>children}]
\begin{forest}
delay={
aggregate postparse=int,
for tree children-first={
if n children={0}{}{
content/~.sum~={content}{children}
}
}
}
[[[3][4][5]][[3][9]][8][[[1][2][3]]]]
\end{forest}
\end{forestexample}
\subsection{Wrapping}
\label{tut:wrapping}
We have already seen examples of inserting option values into other expressions. In example
(\ref{ex:romannumeral}), we have wrapped the value of the option being assigned to (|#1| stood for
the current value of option \index{content}); example (\ref{ex:forestoption}) additionally wrapped
the value of option \index{readonly option>n} (of the current node) using macro \index{forestoption}. In general,
\foRest; offers two ways to perform computations (from simple option value lookups to
complicated formulas) and insert their results into another expression (of any kind: \TeX\ code,
|pgfkeys| keylist, |pgfmath| expression, etc.).
Historically, the first \foRest;'s mechanism that offered wrapping of computed values were handlers
\index{wrap pgfmath arg} and \index{wrap $n$ pgfmath args} (for $n=2,\dots,8$), which combine the
wrapping mechanism with the |pgfmath| evaluation. The idea is to compute (most often, just access
option values) arguments using |pgfmath| and then wrap them into the given macro body (marked below)
using \TeX's parameters (|#1| etc.). Below, this is used to subscript the contents of a node with
its sequential number and the number of parent's children.
\begin{forestexample}[index={option>phantom,delay,for step,descendants,content,readonly option>n,n children,wrap $n$ pgfmath args},index>={!},label=ex:pgfmathwrap]
\begin{forest} [,phantom,delay={for descendants={
content/.wrap 3 pgfmath args=
~{#1$_{#2/#3}$}~
{content}{n}{n_children("!u")}}}
[c][o][u][n][t]]
\end{forest}
\end{forestexample}
Note the underscore |__| character in |n__children|: in |pgfmath| function names, spaces,
apostrophes and other non-alphanumeric characters from option names are all replaced by
underscores.
As another example, let's make the numerals example (\ref{ex:numerals-simple}) a bit fancier.
The numeral type is read off the parent's content and used to construct the appropriate control
sequence (|\@arabic|, |\@roman| and |\@alph|). (The numbers are not specified in content
anymore: we simply read the sequence number \index{readonly option>n}.)
\begin{forestexample}[index={delay,where option,readonly option>level,content,readonly option>n,for step,step>children,option>l,wrap $n$ pgfmath args},index>={!}]
\begin{forest}
delay={where level={2}{content/.wrap 2 pgfmath args=
{\csname @#1\endcsname{#2}}
{content("!u")}{n}}{}},
for children={l*=n},
[\LaTeX\ numerals,
[arabic[][][][]]
[roman[][][][]]
[alph[][][][]]
]
\end{forest}
\end{forestexample}
Invoking |pgfmath| is fairly time consuming and using it to do nothing but retrieve an option value
seems a bit of an overkill. To remedy the situation, argument processor
(\S\ref{ref:argument-processor}) was introduced in \FoRest; v2.0 and considerably expanded in v2.1.
One way to invoke it is using handler \index{handler>process}.
The argument processor takes a sequence of instructions and an arbitrary number of arguments,
transforms the given arguments according to the instructions, and feeds the resulting list of
arguments into the handled key.
An instruction is given by a single-character code. The simplest instructions are:
\index{processor>O}, which expects its argument to be an option name (possibly preceded by a
\index{relative node name}|.| to access the option value of a non-current node) and returns the
value of the option; \index{processor>R}, which does the same for registers; and \index{processor>noop}, which
leaves the argument unchanged.
In the following example, we define style |test| taking four arguments and call it by providing
the arguments via \index{handler>process}. The instruction string |ROO__| tells the argument processor that
the first argument is the value of (scratch) register \indexex{temptoksa}, the second the value of
option \indexex{n children} at the current node, the third the value of option \indexex{content} of
the second child of the current node, and the fourth just a plain string. Macro |test| is thus
actually invoked with argument list |{Hello}{3}{Jane}{Goodbye}|.
\begin{forestexample}[index={handler>process,processor>noop,processor>R,processor>O,delay,content,n
children,temptoksa}]
\begin{forest}
test/.style n args={4}{align=center,
content={#1!\\I have #2 children.\\One of them is #3.\\#4!}}
[,delay={temptoksa=Hello,
test/.process={~ROO_~}{temptoksa}{n children}{!2.content}{Goodbye}}
[John][Jane][Joe]]
\end{forest}
\end{forestexample}
To wrap using the argument processor, use instruction \index{processor>w}. Unless wrapping a single
argument, this instruction should be followed by a number indicating the number of arguments
consumed. \index{processor>w} will take the required number of arguments from the list of already
processed arguments and wrap them in the macro body given as the next (yet unprocessed) argument.
The following example has the same result as example (\ref{ex:pgfmathwrap}). Note that the
order of the wrapper-macro body and the arguments is different for \index{handler>process} and \index{wrap
$n$ pgfmath args}. (Experience shows that \index{handler>process}'s order is easier on the eyes.) The
example also illustrates that (i) the instructions need not be enclosed in braces and (ii) that
repetition of an argument processor instruction can be indicated by appending a number to the
instruction: thus |O3| below means the same as |OOO|.
\begin{forestexample}[index={option>phantom,delay,for step,descendants,content,readonly option>n,n children},index>={!}]
\begin{forest} [,phantom,delay={for descendants={
content/.process=~O3 w3~
{content}{n}{!u.n children}
{#1$_{#2/#3}$}
}}
[c][o][u][n][t]]
\end{forest}
\end{forestexample}
Note that the order of the wrapper-macro body and the arguments is different for
\index{handler>process} and \index{wrap $n$ pgfmath args}. Experience shows that
\index{handler>process}'s order is easier on the eyes. The example also illustrates that the
instructions need not be enclosed in braces and that repetition of an argument processor instruction
can be indicated by appending a number to the instruction: |O3| above is equivalent to |OOO|.
% \begin{forestexample}[index={process,processor>w}]
% \begin{forest}
% [root,delay={align=center,
% content/.process={OO ~w2~}
% {n children}{content}
% {This node has #1 children.\\It's original content is ``#2''.}
% }]
% \end{forest}
% \end{forestexample}
\index{wrap $n$ pgfmath args} always returns a single braced expression and is thus a bit cumbersome
to use when the handled key expects multiple arguments: the trick is to enclose the expected
argument list in extra braces (marked in the code below). As \index{handler>process} can return multiple
arguments, there is no need for such a workaround. See the following example for comparison of the
two methods.
\begin{forestexample}[index={for step,step>name,handler>process,processor>O,processor>w,wrap $n$ pgfmath args}]
\begin{forest}
[,phantom
[pgfmath[2,delay={for n/.wrap 2 pgfmath args=
~{~{#1}{content=#2,draw}~}~
{content}{content("!u")}
} [x][x][x][x]]]
[process[3, delay={for n/.process=
{O Ow1}{content}
{!u.content}{content=#1,draw}
} [x][x][x][x]]]
]
\end{forest}
\end{forestexample}
A single \index{handler>process} invocation can perform multiple wrappings. The numbering of arguments of
each wrapping starts at |#1|. In the example below, \index{for step=\index{nodewalk}} takes two
arguments, a nodewalk and a list of nodekeys. Each is produced by an independent wrapping (wrap bodies
are marked in the code).
\begin{forestexample}[index={handler>process,processor>R,processor>w,for step,nodewalk,+toks,content}]
\begin{forest}
declare toks register=prefix,
declare count register=level to prefix,
prefix=X-,
level to prefix=1,
delay={
for nodewalk/.process=Rw Rw
{level to prefix}{~level=#1~}
{prefix}{~+content=#1~}
}
[0[1[2]][3[4][5]][6[7][8][9]]]
\end{forest}
\end{forestexample}
\subsection{Externalization}
\label{tut:externalization}
\FoRest; can be quite slow, due to the slowness of both \PGF;/\TikZ; and its own computations.
However, using \emph{externalization}, the amount of time spent in \foRest; in everyday life can
be reduced dramatically. The idea is to typeset the trees only once, saving them in separate
PDFs, and then, on the subsequent compilations of the document, simply include these PDFs instead
of doing the lenghty tree-typesetting all over again.
\FoRest;'s externalization mechanism is built on top of \TikZ;'s |external| library. It
enhances it by automatically detecting the code and context changes: the tree is recompiled if and
only if either the code in the \index{forest} environment or the context (arbitrary parameters; by
default, the parameters of the standard node) changes.
To use \foRest;'s externalization facilities, say:\footnote{When you switch on
the externalization for a document containing many \keyname{forest} environments, the first
compilation can take quite a while, much more than the compilation without externalization. (For
example, more than ten minutes for the document you are reading!) Subsequent compilations,
however, will be very fast.}\index[not print]{external}
\begin{lstlisting}[point=external]
\usepackage[external]{forest}
~\tikzexternalize~
\end{lstlisting}
If your \index{forest} environment contains some macro, you will probably want the externalized
tree to be recompiled when the definition of the macro changes. To achieve this, use
\index{forestset}|{|\index{external/depends on macro}|=|\cmdname{macro}|}|. The effect is
local to the \TeX\ group.
\TikZ;'s externalization library promises a |\label| inside the externalized graphics to work
out-of-box, while |\ref| inside the externalized graphics should work only if the externalization
is run manually or by |make| \citep[\S32.4.1]{tikzpgf2.10}. A bit surprisingly perhaps, the
situation is roughly reversed in \foRest;. |\ref| inside the externalized graphics will work
out-of-box. |\label| inside the externalized graphics will not work at all. Sorry. (The reason
is that \foRest; prepares the node content in advance, before merging it in the whole tree, which
is when \TikZ;'s externalization is used.)
\subsection{Expansion control in the bracket parser}
\label{tut:bracket}
By default, macros in the bracket encoding of a tree are not
expanded until nodes are being drawn --- this way, node
specification can contain formatting instructions, as illustrated in
section~\ref{tut:basic-usage}. However, sometimes it is useful to
expand macros while parsing the bracket representation, for example to
define tree templates such as the X-bar template, familiar
to generative grammarians:\footnote{Honestly, dynamic node creation might be a better way to do
this; see~\S\ref{ref:dynamic}.}
\begin{forestexample}[index={bracketset,action character}]
~\bracketset{action character=@}~
\def\XP#1#2#3{#1P[#2][#1'[#1][#3]]}
\begin{forest}
[~@~\XP T{DP}{~@~\XP V{DP}{DP}}]
\end{forest}
\end{forestexample}
In the above example, the |\XP| macro is preceded by the \emph{action character} |@|: as
the result, the token following the action character was expanded before the parsing proceeded.
The action character is not hard coded into \foRest;. Actually, there is no action character by
default. (There's enough special characters in \foRest; already, anyway, and the situations where
controlling the expansion is preferable to using the |pgfkeys| interface are not numerous.) It is
defined at the top of the example by processing key \index{action character} in the
|/bracket| path; the definition is local to the \TeX\ group.
Let us continue with the description of the expansion control facilities of the bracket parser.
The expandable token following the
action character is expanded only once. Thus, if one defined macro
|\VP| in terms of the general |\XP| and tried to use it in the same
fashion as |\XP| above, he would fail. The correct way is to follow
the action character by a braced expression: the braced expression
is fully expanded before bracket-parsing is resumed.
\begin{forestexample}[index={bracketset,action character}]
\bracketset{action character=@}
\def\XP#1#2#3{#1P[#2][#1'[#1][#3]]}
\def\VP#1#2{\XP V{#1}{#2}}
\begin{forest}
[@\XP T{DP}{~@{~\VP{DP}{DP}~}~}]
\end{forest}
\end{forestexample}
In some applications, the need for macro expansion might be much
more common than the need to embed formatting instructions.
Therefore, the bracket parser provides commands |@+| and |@-|: |@+|
switches to full expansion mode --- all tokens are fully expanded
before parsing them; |@-| switches back to the default mode, where
nothing is automatically expanded.
\begin{forestexample}[index={bracketset,action character}]
\bracketset{action character=@}
\def\XP#1#2#3{#1P[#2][#1'[#1][#3]]}
\def\VP#1#2{\XP V{#1}{#2}}
\begin{forest} ~@+~
[\XP T{DP}{\VP{DP}{DP}}]
\end{forest}
\end{forestexample}
All the action commands discussed above were dealing only with
\TeX's macro expansion. There is one final action command, |@@|,
which yields control to the user code and expects it to call
|\bracketResume| to resume parsing. This is useful to e.g.\
implement automatic node enumeration:
\begin{forestexample}[index={bracketset,action character,option>phantom,delay,where option,readonly option>level,content}]
\bracketset{action character=@}
\newcount\xcount
\def\x#1{~@@~\advance\xcount1
\edef\xtemp{[$\noexpand\times_{\the\xcount}$[#1]]}%
\expandafter\bracketResume\xtemp
}
\begin{forest}
phantom,
delay={where level=1{content={\strut #1}}{}}
~@+~
[\x{f}\x{o}\x{r}\x{e}\x{s}\x{t}]
\end{forest}
\end{forestexample}
This example is fairly complex, so let's discuss how it works. |@+| switches to the full
expansion mode, so that macro |\x| can be easily run. The real magic hides in this macro. In
order to be able to advance the node counter |\xcount|, the macro takes control from \foRest; by
the |@@| command. Since we're already in control, we can use |\edef| to define the node content.
Finally, the |\xtemp| macro containing the node specification is expanded with the resume command
sticked in front of the expansion.
\section{Reference}
\label{sec:reference}
This section documents all publicly exposed keys and macros defined by the core package. All other
commands defined by the package (see the implementation typeset in |forest.pdf|) are considered
internal and might change without prior notice or compatibility support.
\subsection{Package loading and options}
\label{ref:package-options}
Load the package by writing |\usepackage{forest}| in the document preamble.
Field-specific definitions and defaults are stored in separate libraries. Use
|\usepackage[|\meta{library name}|]{forest}| to load library \meta{library name} and its defaults
alongside the main package. Loading several libraries in this way is allowed: however, if you need
more control over loading the defaults, use the following macros.
\begin{syntax}
\indexitem{macro>useforestlibrary}[|*|][|[|\meta{options}|]|]|{|\meta{library}|,...}|
Loads the given libraries.
The starred version applies their defaults as well, while the starless does not. Multiple library
names can be given, separated by commas. Libraries can receive \meta{options}. This macro can only
be used in the preamble.
\indexitem{macro>forestapplylibrarydefaults}|{|\meta{library name},...|}|
Loads the default settings of \meta{library}.
Multiple library names can be given, separated by commas. This macro can be used either in the
preamble or in the document body. Its effect is local to the current \TeX\ scope.
\end{syntax}
For example, the |linguistics| library defines c-command related nodewalks, changes the default
parent--child edges to south--north (the main package default is border--border) and sets the
baseline to the root\footnote{For details, see \S\ref{sec:library-linguistics}.} node. Thus, if you write |\usepackage[linguistics]{forest}| in your preamble,
or use macro \cmdname{forestapplylibrarydefaults} like below, you get the following:
\begin{forestexample}[tree bin=minipage,index={for step,c-commanded}]
package defaults:
\begin{forest}
[VP % cannot use "for c-commanded" below!
[DP, for sibling={for tree=red}]
[V'[V][DP]]
]
\end{forest}\\[1ex]
|linguistics| library defaults:
~\forestapplylibrarydefaults{linguistics}~
\begin{forest}
[VP
[DP, ~for c-commanded~={red}]
[V'[V][DP]]
]
\end{forest}
\end{forestexample}
\begin{syntax}
\indexitem(false){package option>external}|=|\alternative{true,false}
Enable/disable externalization, see \S\ref{ref:externalization}.
\indexitem(most){package option>compat}|=|\meta{keylist}
Enter compatibility mode with previous versions of the package.
If at all possible, each backwards incompatible change is given a key in the |compat| path, e.g.\
|compat=|\index{1.0-forstep} reverts to the old behaviour of spatial propagators \index{for
step=\meta{step}}, where a propagator could not fail.
While each compatibility feature can be enabled individually, they are grouped for ease of use. To
load compatibility features since the last version of form
|x|[|.y|[|.z|]], write |compat=x|[|.y|[|.z|]]|-all| or
|compat=x|[|.y|[|.z|]]|-most|. The former enables all compatibility features since that release, the
latter only those that are guaranteed to not disrupt any new functionality of the package.
To load all compatibility features since the last major release (|x| in |x.y.z|), write
|compat=|\indexdef{value of=compat>all}; to load most of them, write |compat=|\indexdef{value of=compat>most} or simply |compat|.
To enable multiple compatibility features, either use this option multiple times, or provide it with
a comma-separated list of compatibility features. (Surround the list by braces.)
Specifying this option also defines macro \indexdef{macro>forestcompat} (taking the same arguments
as the package option) which can be used to enable compatibility features locally, within the
document body. To enable compatibility mode but not enable any specific compatibility feature for
the entire document, write |compat=|\indexdef{value of=compat>none} as a package option.
For a list of compatibility features, see \S\ref{sec:changelog}.
By default, the package warns when a compatibility feature is used. Disable this behaviour by
|compat=|\indexdef{value of=compat>silent}.
\indexitem(true){package option>tikzcshack}|=|\alternative{true,false}
Enable/disable the hack into \TikZ;'s implicit coordinate syntax, see
\S\ref{ref:relative-node-names}.
\indexitem(true){package option>tikzinstallkeys}|=|\alternative{true,false}
Install certain keys into the \keyname{/tikz} path. Currently: \index{fit to}.
\indexitem{package option>debug}|=|\meta{debug category}[, \meta{debug category}]*
Prints out some debugging info to the log file. When given no argument, prints out all the
available information, otherwise only the information on the listed (comma-separated) debug categories. The available categories are listed below.
\begin{syntax}
\indexitem{value of=debug>nodewalks}
\indexitem{value of=debug>dynamics}
\indexitem{value of=debug>process}
\end{syntax}
\end{syntax}
\subsection{Invocation}
\label{sec:invocation}
\begin{syntax}
%%% begin listing region: forest_environment_doc
\indexitem{environment>forest={[\texttt{(}\meta{config}\texttt{)}]\meta{tree}}}
%%% end listing region: forest_environment_doc
\indexitem{macro>Forest}[*][|(|\meta{config}|)|]\marg{tree}
The environment and the starless version of the macro introduce a group; the starred macro does
not, so the created nodes can be used afterwards, like in the example below. (Note that this will
leave a lot of temporary macros lying around. This shouldn't be a problem, however, since all of
them reside in the |\forest| ``namespace''.)
{\tikzexternaldisable
\begin{forestexample}
We create a
~\Forest*~{
[DP,name=DP,baseline
[D]
[NP]
]
}
and merge it into a
~\Forest*~{
[VP,baseline
[V]
[,replace by=DP
]
]
}
\end{forestexample}}
\meta{config} is a keylist that configures the behaviour of the environment/macro. The
configuration is the first operation that the environment/macro does; it precedes even the reading
of the tree specification. Currently, \meta{config} accepts only one key:
\begin{syntax}
\indexitem{option of=forest>stages}|=|\meta{keylist}
By default, after reading the tree specification, \foRest; executes style \index{style>stages}.
If key |stages| is used in \meta{config}, \meta{keylist} is executed instead.
\end{syntax}
\indexitem{macro>forestset}\marg{keylist}
Execute \meta{keylist} (of node keys) with the default path set to \keyname{/forest}.
\begin{advise}
\item This macro is usually used to define \foRest; styles.
\item Usually, no current node is set when this macro is called. Thus, executing most node keys
in this place will fail. However, if you have some nodes lying around, you can use
propagator \index{for step=\index{option>name}}|=|\meta{node name} to set the node with the given name as
current.
\end{advise}
\end{syntax}
\subsection{The bracket representation}
\label{ref:bracket}
A bracket representation of a tree is a token list with the following syntax:
\begin{eqnarray*}
\meta{tree}&=&\left[\meta{preamble}\right]\meta{node}\\
\meta{node}&=&\texttt{[}\left[\meta{content}\right]\left[\texttt{,}\meta{keylist}\right]
\left[\meta{children}\right]\texttt{]}\meta{afterthought}\\
\meta{preamble}&=&\meta{keylist}\\
\meta{keylist}&=&\meta{key--value}\left[,\meta{keylist}\right]\\
\meta{key--value}&=&\meta{key}\OR\meta{key}\texttt{=}\meta{value}\\
\meta{children}&=&\meta{node}\left[\meta{children}\right]
\end{eqnarray*}
The \meta{preamble} keylist is stored into keylist register \index{preamble}. The \meta{keylist} of
a \meta{node} is stored into keylist option \index{given options}. \meta{content} and
\meta{afterthought} are normally stored by prepending and appending
\index{content}|'=|\meta{content} and \index{afterthought}|=|\meta{afterthought} to \index{given
options}, respectively; this is customizable via \index{content to} and redefining style
\index{afterthought}.
Normally, the tokens in the bracket representation are not expanded while the input is parsed.
However, it is possible to control expansion. Expansion control sequences of \foRest;'s bracket
parser are shown below. Note that by default, there is no \index{action character}.
\begin{center}
\begin{tabular}{ll}
\rstyle\meta{action character}\texttt{-}&no-expansion mode (default): nothing is expanded\\
\rstyle\meta{action character}\texttt{+}&expansion mode: everything is fully expanded\\
\rstyle\meta{action character}\texttt{}\meta{token}&expand \meta{token}\\
\rstyle\meta{action character}\texttt{}\meta{\TeX-group}&fully expand \meta{\TeX-group}\\
\rstyle\meta{action character}\meta{action character}&yield control;\\&upon finishing its job,
user's code should call \indexdef{macro>bracketResume}
\end{tabular}
\end{center}
To customize the bracket parser, call
\indexdef{macro>bracketset}\meta{keylist}, where the keys can be the following.
\begin{syntax}
\indexitem({{[%]
}}){bracket key>opening bracket}|=|\meta{character}
\indexitem({{{{%[
]}}}}){bracket key>closing bracket}|=|\meta{character}
\indexitem(none){bracket key>action character}|=|\meta{character}
\end{syntax}
\begin{advise}
\item Careful when setting the \index{opening bracket} to |(|, %)
as an initial |(| %)
is understood as the delimiter of the optional \meta{config} argument of the
\index{environment>forest} environment or \index{macro>Forest} macro. The workaround is to either
provide an empty \meta{config} argument |()|, or put some whitespace (e.g.\ a newline) before the
tree specification.
\end{advise}
By redefining the following two keys, the bracket parser can be used outside \foRest;.
\begin{syntax}
\indexitem{bracket key>new node}|=|\meta{preamble}\meta{node specification}\meta{csname}.
Required semantics: create a new node given the preamble (in the case of a new
root node) and the node specification and store the new node's id into \meta{csname}.
\indexitem{bracket key>set afterthought}|=|\meta{afterthought}\meta{node id}.
Required semantics: store the afterthought in the node with given id.
\end{syntax}
\subsection{The workflow}
\label{sec:workflow}
\subsubsection{Stages}
\label{ref:stages}
\FoRest; does its job in several stages. The default course of events is the following:
\begin{enumerate}
\item\label{step:parsing-bracket} The bracket representation of the tree (\S\ref{ref:bracket}) is
parsed and stored in a data structure.
\item\label{step:given-options} The keys given in the bracket representation are processed. In
detail, \index{default preamble} is processed first, then the given \index{preamble} (both in the
context of the (formal) root node) and finally the keylists given to individual nodes. The latter
are processed recursively, in a depth-first, parent-first fashion.
\item\label{step:typeset-nodes} Each node is typeset in its own |tikzpicture| environment, saved
in a box and its measures are taken.
\item\label{step:pack} The nodes of the tree are \emph{packed}, i.e.\ the relative positions of the nodes are
computed so that the nodes don't overlap. That's difficult. The result: option \index{option>s} is
set for all nodes. (Sometimes, the value of \index{option>l} is adjusted as well.)
\item\label{step:compute-xy} Absolute positions, or rather, positions of the nodes relative to the
root node are computed. That's easy. The result: options \index{option>x} and \index{y} are
set.
\item\label{step:draw-tree} The \TikZ; code that will draw the tree is produced and executed. (The nodes are
drawn by using the boxes typeset in step~\ref{step:typeset-nodes}.)
\end{enumerate}
Stage~\ref{step:parsing-bracket} collects user input and is thus ``fixed''. However, the other
stages, which do the actual work, are under user's control.
First, hooks exist between the individual stages which make it possible (and easy) to change the
properties of the tree between the processing stages. For a simple example, see
example~(\ref{ex:adjustxy}): the manual adjustment of \index{y} can only be done after the absolute
positions have been computed, so the processing of this option is deferred by \index{before drawing
tree}. For a more realistic example, see the definition of style \index{GP1}: before packing,
\texttt{outer xsep} is set to a high (user determined) value to keep the $\times$s uniformly spaced;
before drawing the tree, the \texttt{outer xsep} is set to \texttt{0pt} to make the arrows look
better.
Second, the execution of the processing stages \ref{step:given-options}--\ref{step:draw-tree} is
\emph{completely} under user's control. To facilitate adjusting the processing flow, the approach
is twofold. The outer level: \foRest; initiates the processing by executing style \index{style>stages},
which by default executes the processing stages \ref{step:given-options}--\ref{step:draw-tree},
preceding the execution of each but the first stage by processing the keys embedded in temporal
propagators \keyname{before ...} (see \S\ref{ref:temporal-propagators}). The inner level: each
processing step is the sole resident of a stage-style, which makes it easy to adjust the workings of
a single step. What follows is the default content of style \keyname{stages}, including the default
content of the individual stage-styles. Both nicely readable and ready to copy-paste versions are given.
\begin{syntax}
\indexitem{style>stages}
\begin{syntax}
\item \index{for step=\index{root'}}|={|
\item | |\index{process keylist register}|=|\index{default preamble}|,|
\item | |\index{process keylist register}|=|\index{preamble}
\item |}|
\item \index{process keylist}|=|\index{given options}
\item \index{process keylist}|=|\index{before typesetting nodes}
\indexitem{style>typeset nodes stage}\hfill
|{|\index{for step=\index{root'}}|=|\index{typeset nodes}|}|
\item \index{process keylist}|=|\index{before packing}
\indexitem{style>pack stage}\hfill
|{|\index{for step=\index{root'}}|=|\index{pack}|}|
\item \index{process keylist}|=|\index{before computing xy}
\indexitem{style>compute xy stage}\hfill
|{|\index{for step=\index{root'}}|=|\index{compute xy}|}|
\item \index{process keylist}|=|\index{before drawing tree}
\indexitem{style>draw tree stage}\hfill
|{|\index{for step=\index{root'}}|=|\index{draw tree}|}|
\end{syntax}
\end{syntax}
\lstinputregion{forest.dtx}{stages}
Both style \keyname{stages} and the individual stage-styles may be freely modified by the user.
Obviously, as a style must be redefined before it is processed, |stages| should be redefined (using
macro \index{forestset}) outside the \index{forest} environment; alternatively, stages can be given
as the (parenthesized) optional argument of the environment (see~\S\ref{sec:invocation}). A stage
style can also be redefined in the preamble or in any of the keylists processed prior to entering
that stage.
Here's the list of keys used either in the default processing or useful in an alternative
processing flow.
\begin{syntax}
\indexitem{stage>typeset nodes}
\itemnosep
\indexitem{stage>typeset nodes'}
Typesets each node of the current node's subtree in its own |tikzpicture| environment. The result
is saved in a box (which is used later, in the \index{draw tree stage}) and its measures are
taken.
In the |typeset_nodes'| variant, the node box's content is not overwritten if the box already
exists.
The order in which the nodes are typeset is controlled by nodewalk style \indexdef{nodewalk
style>typeset nodes processing order} or, if this style is not defined, by \index{processing
order}.
\indexitem{node key>typeset node} Typesets the \emph{current} node, saving the result in the node box.
This key can be useful also in the default \index{style>stages}. If, for example, the node's content
is changed and the node retypeset just before drawing the tree, the node will be positioned as if
it contained the ``old'' content, but have the new content: this is how the constant distance
between $\times$s is implemented in the \index{GP1} style.
\indexitem{stage>pack} The nodes of the tree are \emph{packed}, i.e.\ the relative positions of
the nodes are computed so that the nodes don't overlap. The result: option \index{option>s} is set
for all nodes; sometimes (in tier alignment and for some values of \index{calign}), the value
of some nodes' \index{option>l} is adjusted as well.
\indexitem{node key>pack'} ``Non-recursive'' packing: packs the children of the current node only.
(Experimental, use with care, especially when combining with tier alignment.)
\indexitem{stage>compute xy} Computes the positions of the nodes in the subtree relative to the
current node. The results are stored into options \index{option>x} and \index{y}. The current node's
\index{option>x} and \index{y} remain unchanged.
\indexitem{stage>draw tree}
\itemnosep
\indexitem{stage>draw tree'}
Produces and executes the \TikZ; code that draws the (sub)tree rooted in the current node.
The procedure uses the node boxes typeset by \index{typeset nodes} or friends. The |'| variant
includes the node boxes in the picture using \cmdname{copy}, not \cmdname{box}, thereby preserving
them.
For details and customization, see \S\ref{sec:draw-tree}.
\indexitem{node key>draw tree box}|=|[\meta{\TeX\ box}] The picture drawn by the subsequent
invocations of \index{draw tree} and \index{draw tree'} is put into \meta{\TeX\ box}. If
the argument is omitted, the subsequent pictures are typeset normally (the default).
\indexitem{node key>process keylist}|=|\meta{keylist option}
For each node in the entire tree, the keylist saved in \meta{keylist option} of the node is
processed (in the context of that node).
Note that this key is not sensitive to the current node: it processes the keylists for the whole
tree. Actually, it is possible to control which nodes are visited: \index{keylist option
processing order=\meta{keylist option}} is walked if it is defined, otherwise \index{processing
order}. In both cases, the processing nodewalk starts at the formal root of the tree (see
\index{root'} and \index{set root}), which is reevaluated at the beginning of each internal cycle
(see below). By default, \index{keylist option processing order=\meta{keylist option}} is indeed
undefined, while the \index{processing order} defauls to \index{tree}, which means that \emph{all
the nodes in the entire tree} are processed.
Keylist-processing proceeds in cycles. In a given cycle, the value of option \meta{keylist option
name} is processed for every node visited by the processing nodewalk. During a cycle, keys may
be \emph{delayed} using key \index{delay}. Keys delayed in a cycle are processed in the next
cycle. The number of cycles in unlimited.
Dynamic creation of nodes happens between the cycles. The options given to the dynamically
created nodes are implicitely delayed and thus processed at the end of the next cycle.
This key is primarily intended for use within \index{style>stages}.
The calls of this key should \emph{not} be nested, and it should not be embedded under
\index{process keylist'} or \index{process keylist register}.
When changing the processing nodewalk, note that delayed keys will be executed only for nodes
visited by the processing nodewalk. Delayed spatially propagated keys will be remembered,
though, and executed when the given keylist is processed for the target node. Using spatial
propagators without delaying cannot result in a non-processed key.
\indexitem{node key>process keylist'}|=|\meta{keylist option}\meta{nodewalk}
This key is a variant of \index{process keylist}. The differences are as follows.
The processing nodewalk is given explicitely (by \meta{nodewalk}) and starts at the current node
(in each internal cycle).
There is no dynamic creation of nodes between the delay cycles. Any dynamic node
instructions will be remembered and executed after the next cycle of \index{process keylist}, or
an explicit call to \index{do dynamics}.
It is safe to embed this key within \index{process keylist} and (all) friends.
\indexitem{node key>process keylist''}|=|\meta{keylist option}\meta{nodewalk}
This key is a variant of \index{process keylist} which executes neither dynamic node operations nor
delayed keys (there are thus no internal cycles). Any delayed keys will not be processed
during the execution of this key. They will be remembered and executed at the end of the next cycle
of \index{process keylist} or \index{process keylist'}.
As for \index{process keylist'}, the processing nodewalk is given explicitely (by \meta{nodewalk})
and starts at the current node.
It is safe to embed this key within \index{process keylist} and (all) friends.
\indexitem{node key>process keylist register}|=|\meta{register}
Process the keylist saved in \meta{register} in the context of the current node.
Any delayed keys will not be processed during the execution of this key. They will be
remembered and executed at the end of the next cycle of \index{process keylist} or
\index{process keylist'}.
It is safe to embed this key within \index{process keylist} or \index{process keylist'}.
\indexitem{node key>process delayed}|=|\meta{nodewalk} Process delayed keys.
Keylist \index{delay} cannot be processed using \index{process keylist} or \index{process
keylist'}. Thus this key.
Like \index{process keylist} or \index{process keylist'}, this key uses internal cycles. Thus,
any embedded \index{delay}s will be processed.
There is no dynamic creation of nodes between the delay cycles. Any dynamic node instructions will
be remembered and executed after the next cycle of \index{process keylist} or \index{process
keylist'}, or an explicit call to \index{do dynamics}.
This key is safe to use within \index{process keylist}, \index{process keylist'} and
\index{process keylist register}.
\indexitem(tree){nodewalk style>processing order}|/.nodewalk style=|\meta{nodewalk}
Redefine this style to change the default order in which \index{process keylist} processes a keylist
option. For example, to process the nodes in a child-first fashion, write
\begin{lstlisting}
processing order/.nodewalk style=tree children first
\end{lstlisting}
Note that this is a \emph{nodewalk} style, so it must be defined either using |.style| handler
during a nodewalk or using \index{nodewalk style}.
\indexitem(processing order)[form={processing order}]{word suffix=keylist option>nodewalk style>processing order=\meta{keylist option}}|/.nodewalk style=|\meta{nodewalk}
Redefine this style to change the \index{process keylist} processing order for a specific
\meta{keylist option}. For example, to process \index{before drawing tree} options in the
child-first fashion, leaving the processing of other |before ...| keylists untouched, write
\begin{lstlisting}
before drawing tree processing order/.nodewalk style=tree children first
\end{lstlisting}
\indexitem{node key>do dynamics} Experimental. Perform pending dynamic tree operations.
Do not use this key within \index{process keylist} or \index{process keylist'}.
\end{syntax}
\subsubsection{Temporal propagators}
\label{ref:temporal-propagators}
Temporal propagators delay processing of given keys until some other point in the processing of the
tree. There are three kinds of temporal propagators. Most of the propagators have the form
|before_...| and defer the processing of the given keys to a hook just before some stage in the
workflow (\S\ref{ref:stages}). \index{before packing node} and \index{after packing node} are
special as they fire \emph{during} the packing stage. The \index{delay} propagator is
``internal'' to the current hook: the keys in the hook are processed cyclically, and \keyname{delay}
delays the processing of the given keys until the next cycle.
Formally, temporal propagators are keylist options (except \index{delay n}, which is a style), so
augmented assignments are possible (\S\ref{sec:option-setting}).
All temporal propagators can be nested without limit.
\begin{advise}
\item A note on typos.
By default, all keys unknown to \foRest; are appended to keylist option \index{node options} The
value of \index{node options} is fed to \TikZ; when typesetting a node, so any typos are caught by
\TikZ;. However, as nodes are normally typeset in stage \index{typeset nodes stage}, any typos in
keys temporally propagated past that stage will not be noticed, simply because noone will use the
value of \index{node options} where they end up (the exception being nodes which are explicitely
retypeset by the user using \index{typeset node}).
To sum up, typos in any keys temporally propagated by \index{before packing}, \index{before
packing node}, \index{after packing node}, \index{before computing xy} and \index{before drawing
tree} will be silently ignored. This is probably not what you want, so double-check everything
you write there.
Using \index{unknown to}|=|\index{unknown key error}, it is possible to change the default
behaviour. You will catch all typos if you append the command to \index{pack stage}, as shown
below. This can be done either in the tree or by \index{forestset}.
\begin{lstlisting}
typeset nodes stage/.append style={unknown to=unknown key error}
\end{lstlisting}
Of course, this makes it impossible to write simply
|before_drawing_tree={inner_sep=5pt,_typeset_node}|. Any |tikz|'s options must be given
explicitely via \index{node options}:
|before_drawing_tree={node_options={inner_sep=5pt},_typeset_node}|.
\end{advise}
\begin{syntax}
\indexitem{propagator>delay}|=|\meta{keylist} Defers the processing of the \meta{keylist} until the next
cycle.
Internally, |delay| is a keylist option, so augmented operators of the \index{keylist} type can be
used.
To check whether any keys were delayed, use conditional \index{if have delayed}.
\indexitem{propagator>delay n}|=|\meta{integer}\meta{keylist} Defers the processing of the
\meta{keylist} for $n$ cycles. $n$ may be $0$, and it may be given as a |pgfmath| expression.
\indexitem{propagator>given options}
When \index{style>stages} processing starts, this list holds the keys given by the user in the
bracket representation.
\indexitem{propagator>before typesetting nodes}|=|\meta{keylist} Defers the processing of the
\meta{keylist} to until just before the nodes are typeset.
\indexitem{propagator>before packing}|=|\meta{keylist}
\indexitem{propagator>before packing node}|=|\meta{keylist}
Defers the processing of the \meta{keylist} given to the node to until just before/after the
subtree of \emph{this specific node} is packed. Even before packing node, the (subtrees of the)
children of the node have already been packed.\footnote{\FoRest; employs two variants of the
packing algorithm: the faster one is used for (parts of) trees with uniform growth, i.e.\
subtrees where \index{grow} does not change; the slower, generic variant is used in where this
is not the case. Now, the fast method works by dealing with l and s dimension separately, and
it is able to do this for the entire (sub)tree, without needing to invoke the packing method for
its constituents. The consequence is that there is no place where \index{before packing node}
could be called meaningfully, as the node's constituents are not packed individually, ``just
before packing the current node'' is the same as ``just before packing the tree'', and for many
nodes packing is not called anyway in the fast method. As the rationale behind \index{before
packing node} is to be able to adjust the options of the subtree based on the information
gained by packing its constituents, specifying \index{before packing node} automatically
switches to the generic method.} \indexitem{propagator>after packing node}|=|\meta{keylist} Defers
the processing of the \meta{keylist} given to the node to until just after \emph{this specific
node} is packed.
\begin{forestexample}[index={after packing node,no edge,calign,value of=calign>first,option>l,l sep,content format,content,if option,n children,pgfmath,option>s,max x,min x,for step,step>children,wrap pgfmath arg,typeset node,dimen+=s}]
\forestset{box/.style={
draw, no edge, l=0, l sep=1.5ex,
calign=first, anchor=base west,
content format={\strut\forestoption{content}},
if n children=0{}{
~after packing node~={
minimum width/.pgfmath=
{s("!l")+max_x("!l")-s("!1")-min_x("!1")},
for children/.wrap pgfmath arg={s+={##1}}{0},
typeset node}}}}
\begin{forest} for tree={box} [/
[home[saso[Download][TeX]][alja][joe]]
[usr[bin][share]]]
\end{forest}
\end{forestexample}
\begin{advise}
\item Remember to typeset or pack the node using \index{pack'} if you have changed options
influencing the typesetting or packing process.
\end{advise}
\indexitem{propagator>before computing xy}|=|\meta{keylist} Defers the processing of the
\meta{keylist} to until just before the absolute positions of the nodes are computed.
\indexitem{propagator>before drawing tree}|=|\meta{keylist} Defers the processing of the
\meta{keylist} to until just before the tree is drawn.
\end{syntax}
\subsubsection{Drawing the tree}
\label{sec:draw-tree}
This section provides a detailed description of how \index{draw tree} and friends draw the tree.
First, here's the default course of events. \index{draw tree} is called from style \index{draw tree
stage} in the context of the formal root node. It does not draw the tree directly, but rather
produces \TikZ; code that actually does the drawing. The tree-drawing instructions are enclosed in
a |tikzpicture| environment and come in three parts: the (non-phantom) nodes are drawn first,
followed by edges between the drawn nodes and finally the custom \TikZ; code (of all, including
phantom nodes). Each of those is drawn for the entire (sub)tree of the current node, in recursive,
depth-first parent-first first-child-first order.
Most parts of the tree drawing procedure are customizable. Zooming in from the invocation of
\index{draw tree} to the keys that produce the drawing code, the customization options are as
follows.
There are two ways the invocation of \index{draw tree} can differ from the default. First,
\index{draw tree} can be called within the context of any node. As a first approximation, that node
will become the root of the tree that is being drawn; for the whole truth, see \index{draw tree
method}. Second, \index{draw tree} can be called not only at \index{draw tree stage}, but any
time after the nodes to be drawn have been typeset (see \index{typeset nodes stage}) and their
absolute coordinates (\index{option>x} and \index{option>y}) computed (see \index{compute xy stage}).
\begin{syntax}
\indexitem(\begin{tikzpicture}){node key>begin draw}|/.code=|\meta{toks: \TeX\ code} \vspace{-\parskip}
\indexitem(\end{tikzpicture}){node key>end draw}|/.code=|\meta{toks: \TeX\ code}
The code produced by \index{draw tree} is put in the environment specified by \keyname{begin
draw} and \keyname{end draw}. Thus, it is this environment, normally a |tikzpicture|, that does
the actual drawing.
A common use of these keys might be to enclose the |tikzpicture| environment in a |center|
environment, thereby automatically centering all trees; or, to provide the \TikZ; code to execute
at the beginning and/or end of the picture.
Note that \keyname{begin draw} and \keyname{end draw} are \emph{not} node options: they are
|\pgfkeys|' code-storing keys \citep[\S55.4.3--4]{tikzpgf2.10}.
\end{syntax}
Repeating from (\S\ref{ref:stages}), there are two variants of \index{draw tree}, which differ in
how they use the node boxes created by \index{typeset nodes}: \index{draw tree} includes them using
\cmdname{box}, so they are gone; \index{draw tree'} uses \cmdname{copy}, so they are preserved.
Next, setting \index{draw tree box} will cause the tree to be drawn in the given \TeX\ box.
\begin{syntax}
\indexitem{style>draw tree method}
This is the heart of the tree-drawing procedure: it determines which parts of the tree are drawn
and in what order. What this style does by default was already described above, but is actually
best seen from the definition itself:
\lstinputregion{forest.dtx}{draw_tree_method}
This style may be modified by the user, but it is and should be invoked only within \index{draw
tree}, by the package: \emph{do not execute this style directly!}
The nodewalks occurring in the default definition of this style are, with the exception of
\index{processing order}, not used anywhere else in the package.
\indexitem{nodewalk style>draw tree nodes processing order}
\itemnosep
\indexitem{nodewalk style>draw tree edges processing order}
\itemnosep
\indexitem{nodewalk style>draw tree tikz processing order}
For each of these nodewalk styles the following holds. If it is defined, it determines which nodes
/ edges / pieces of \index{tikz} code are drawn and in which order. If any of these styles is not
defined, its function is taken over by \index{draw tree processing order}. By default, none of
them are defined.
\indexitem{nodewalk style>draw tree processing order}
If this nodewalk is defined, it functions as a fallback for node-, edge- and tikz-code-specific
nodewalks. If it is not defined (the default situation), it has its own fallback:
\index{processing order} (which defaults to \index{tree}).
\indexitem{node key>draw tree node}
\itemnosep
\indexitem{node key>draw tree node'}
Draws the current node at location specified by \index{option>x} and \index{option>y}. The |'|
variant draws the node even if it's \index{phantom}.
These keys should only be used only within the definition of \index{draw tree method}.
\indexitem{conditional>if node drawn}|=|\meta{nodewalk}\meta{true keylist}\meta{false keylist}
Execute \meta{true keylist} if the node at the end of \meta{nodewalk} was already drawn in the
current invocation of \index{draw tree}; otherwise, execute \meta{false keylist}.
\indexitem{node key>draw tree edge}
\itemnosep
\indexitem{node key>draw tree edge'}
Draws the edge from the current node to its parent, using the information in \index{edge path} and
\index{edge}.
The variant without |'| variant tries to be smart: it draws the edge only if both the current node
and its parent have been drawn in the current invocation of \index{draw tree}. (This prevents
drawing the edge from the root node and edges from or to phantom nodes.) The |'| variant is dumb.
These keys should only be used only within the definition of \index{draw tree method}.
\indexitem(draw tree tikz'){style>draw tree tikz}
\itemnosep
\indexitem{node key>draw tree tikz'}
Executes the custom code stored in option \index{tikz} of the current node.
By default, both keys execute the code without performing any checks. Specifically, \index{tikz}
code of phantom nodes is executed. To change this behaviour easily, the user can redefine
\index{draw tree tikz}, which is a style; probably, the definition will employ \index{draw tree
tikz'}. For example, to execute \index{tikz} code only if the node is not \index{phantom}, write
\begin{lstlisting}
draw tree tikz/.style={if phantom={draw tree tikz'}{}}
\end{lstlisting}
These keys should only be used only within the definition of \index{draw tree method}.
\end{syntax}
\subsection{Node keys}
\label{ref:node-keys}
\FoRest; is mostly controlled using \PGF;'s key management utility |pgfkeys|
\citep[\S55]{tikzpgf2.10}. Most of the keys can be given next to the content in the bracket
representation of a tree (\S\ref{ref:bracket}): we call these \emph{node keys}. Some keys,
notably \emph{nodewalk steps} (\S\ref{ref:nodewalks}), must be used as arguments of specific
commands.
Most node keys perform some operation on the \emph{current node}. When the keylist given after the
content of a node is processed, the current node is set to that node. However, the current node can
be temporarily changed, for example by spatial propagators (\S\ref{ref:spatial-propagators}) or,
more genarally, nodewalks (\S\ref{ref:nodewalks}).
The most common function that node keys perform is to set or modify an \emph{option} of the current
node (\S\ref{sec:options-and-registers}), usually to determine the appearance or position of the
node and its edge (\S\ref{sec:formatting-tree}), but there are also several kinds of more exotic
keys like spatial (\S\ref{ref:spatial-propagators}) propagators, which temporarily change the
current node, temporal (\S\ref{ref:temporal-propagators}) propagators, which delay the processing of
the keylist until some other stage in the workflow, keys that dynamically create and move nodes
(\S\ref{ref:dynamic}), keys that control the way \foRest; processes the tree (\S\ref{ref:stages})
etc. Finally, users can also define their own keys, either by defining |pgfkeys| styles\footnote{%
Styles are a feature of the \keyname{pgfkeys} package. They are named keylists, whose usage
ranges from mere abbreviations through templates to devices implementing recursion. To define a
style, use \PGF;'s handler \keyname{.style} \citep[\S55.4.4]{tikzpgf2.10}: \meta{style
name}\keyname{/.style=}\meta{keylist}.} \citep[\S55.4.4]{tikzpgf2.10} or using \foRest;'s option
declaration mechanism (\S\ref{sec:option-declaring}).
\begin{advise}
\item The style definitions and option declarations given among the other keys in the bracket
specification are local to the current tree (but note that \foRest;'s keylist processing,
including temporal and spatial propagation, introduces no groups). To define globally accessible
styles and options (well, they are always local to the current \TeX\ group), use
macro \cmdname{forestset} outside the \index{forest} environment, e.g.\ in the preamble of the
document. (Although \index{forestset}\meta{keylist} is currently equivalent to
\cmdname{pgfkeys}\texttt{\{/forest,}\meta{keylist}\texttt{\}}, don't rely on this as it will
change in some (near) future version of the package, as there is a plan to introduce namespaces
\dots)
\end{advise}
By default, unknown keys are assumed to be \TikZ; keys and are forwarded to \index{node options}.
This behaviour can be changed using \index{unknown to}.
The following subsections list the node keys which are not described elsewhere (see above): spatial
propagators (\S\ref{ref:spatial-propagators}) and general-purpose node keys, i.e.\ those which don't
deal with tree formatting (\S\ref{sec:node-keys-various}).
\subsubsection{Spatial propagators}
\label{ref:spatial-propagators}
Spatial propagators pass the given \meta{keylist} to other node(s) in the tree.
Spatial propagation does not change the current node: after visiting the nodes the keys are
propagated to, a spatial propagator (silently, using a so-called fake step) returns to the origin of
the embedded nodewalk.
\FoRest; provides many spatial propagators. Almost all of them are built from long-form nodewalk
steps using prefix \index{for step}. This is why the list below is so short: it only documents this
prefix and the exceptions. For the list of nodewalk steps, see \S\ref{ref:nodewalks}, in particular
\S\ref{ref:single-step-keys} for single-step keys and \S\ref{ref:multi-step-keys} for multi-step
keys.
\begin{syntax}
\indexitem{word prefix=step>propagator>for=\meta{step}}|=|\meta{arg$_1$}|...|\meta{arg$_n$}\meta{keylist: every-step}
\itemnosep
\indexitem[not short]{word prefix=step>propagator>for=\index{nodewalk}}|=|\meta{nodewalk}\meta{keylist: every-step}
\itemnosep
\indexitem[not short]{word prefix=step>propagator>for=\index{nodewalk key>Nodewalk}}|=|\meta{keylist: config}\meta{nodewalk}\meta{keylist: every-step}
Walks the (single- or multi-step) \meta{step} from the current node and executes the given
\meta{keylist} at every visited node. The current node remains unchanged.
\meta{step} must be a long-form nodewalk step. If it has any arguments, they
(\meta{arg$_1$}|...|\meta{arg$_n$}) should be given before every-step \meta{keylist}, with two
exceptions: embedded nodewalk steps (\index{step>Nodewalk} and \index{nodewalk}) already require
the \meta{keylist: every-step} argument, so it should be omitted, as it makes no sense to provide
the every-step keylist twice.
Examples:
\begin{itemize}
\item |for_parent={l_sep+=3mm}|
\item |for_n=2{circle,draw}|
\item |for_nodewalk={uu2}{blue}|
\item |for_tree={s_sep+=1em}|
\end{itemize}
\long\def\printbigbadforlist#1{%
{%
\tikzexternaldisable
\bracketset{action character=!}%
\begin{forest}(stages={
process keylist=given options,
for root'={
sort by={>O+t+c{content}},
%sort=children,
temptoksa={},
for sort={children}{
TeX and memoize/.process=ROw2{temptoksa}{content}{####1\texttt{for\space}\index{step>####2}},
temptoksa={,\space},
},
}
})
[!\bigbadforlist[nodewalk][nodewalk'][Nodewalk]]
\end{forest}%
}%
}%
\makeatletter
\forest@memoize\printbigbadforlist
\makeatother
{\tolerance=10000
Here's the big list of all spatial propagators built with prefix |for|:
% to update,
% - uncomment \appto\bigbadforlist{[#1]} in define long step in forest.dtx
% - delete line \forest@memo@load {forest@memo@\printbigbadforlist ... in forest-doc.memo
\printbigbadforlist{}.
For details on nodewalk steps, see \S\ref{ref:nodewalks}.
}
\indexitem{propagator>for tree'}|=|\meta{keylist 1}\meta{keylist 2} A ``combination'' of
\index{for step=\index{tree children-first}} and \index{for step=\index{tree}}.
Passes the keylists to the current node and its the descendants. At each node, the \meta{keylist
1} is processed first; then, children are processed recursively; finally, \meta{keylist 2}
is processed.
For an example, see the definition of \index{draw brackets} from \reflibrary{linguistics}.
\indexitem{propagator>for 1}, \dots\indexdef[not print]{propagator>for 2}\indexdef[not print]{propagator>for 3}\indexdef[not print]{propagator>for 4}\indexdef[not print]{propagator>for 5}\indexdef[not print]{propagator>for 6}\indexdef[not print]{propagator>for 7}\indexdef[not print]{propagator>for 8}, \indexdef{propagator>for 9}|=|\meta{keylist}
\itemnosep
\indexitem{propagator>for -1}, \dots\indexdef[not print]{propagator>for -2}\indexdef[not print]{propagator>for -3}\indexdef[not print]{propagator>for -4}\indexdef[not print]{propagator>for -5}\indexdef[not print]{propagator>for -6}\indexdef[not print]{propagator>for -7}\indexdef[not print]{propagator>for -8}, \indexdef{propagator>for -9}|=|\meta{keylist}
Although \index{for step} normally cannot precede short forms of steps, an exception is made
for \index{ss 1}\index[not print]{ss 2,ss 3,ss 4,ss 5,ss 6,ss 7,ss 8}, \dots, \index{ss 9}. (These keys will work even if the short steps are redefined.)
|for |$n$ passes the \meta{keylist} to the $n$th child of the current node. |for -|$n$ starts counting at the last child.
\indexitem{node key>Nodewalk}|=|\meta{keylist: config}\meta{nodewalk}\meta{keylist: every-step}
Configures and executes the \meta{nodewalk}. This key is a nodekey-space copy of nodewalk step
\index{step>Nodewalk}.
\begin{advise}
\item Use this key carefully as it can change the current node!
\item The envisioned purpose of this key is to change the current node within the every-step
keylist of (an outer) nodewalk, where only node keys are accepted. The config defaults
(independent every-step, shared history) are set to facilitate that purpose. But it can also be
used as a simple node key, of course.
\end{advise}
\indexitem{node key>node walk}|=|\meta{node walk} \textbf{Deprecated!!!} Requires
\index{compat}|=1.0-nodewalk|. Please use \index{for step=\index{nodewalk}} in new code. From the
old documentation:
\begin{quote}
This is the most general way to use a \meta{node walk}.
Before starting the \meta{node walk}, key \indexdef{node key>node walk/before walk} is processed.
Then, the \meta{step}s composing the \meta{node walk} are processed: making a step (normally)
changes the current node. After every step, key \indexdef{node key>node walk/every step} is
processed. After the walk, key \indexdef{node key>node walk/after walk} is processed.
\keyname{node walk/before walk}, \keyname{node walk/every step} and \keyname{node walk/after
walk} are processed with \keyname{/forest} as the default path: thus, \foRest;'s node keys can
be used normally inside their definitions.
\begin{advise}
\item Node walks can be tail-recursive, i.e.\ you can call another node walk from \keyname{node
walk/after walk} --- embedding another node walk in \keyname{node walk/before walk} or
\keyname{node walk/every step} will probably fail, because the three node walk styles are not
saved and restored (a node walk doesn't create a \TeX\ group).
\item \keyname{every step} and \keyname{after walk} can be redefined even during the walk.
Obviously, redefining \keyname{before walk} during the walk has no effect (in the current
walk).
\end{advise}
\end{quote}
\end{syntax}
\subsubsection{Various}
\label{sec:node-keys-various}
\begin{syntax}
\indexitem{style>afterthought}|=|\meta{toks} Provides the afterthought explicitely.
This key is normally not used by the end-user, but rather called by the bracket parser. By
default, this key is a style defined by |afterthought/.style={tikz+={#1}}|: afterthoughts are
interpreted as (cumulative) \TikZ; code. If you'd like to use afterthoughts for some other
purpose, redefine this style --- this will take effect even if you do it in the tree preamble.
\indexitem{node key>also}|=|\meta{keylist} Execute the keys in the given \meta{keylist}.
If we are currently processing node keys, \meta{keylist} should contain node keys. If we are
in a nodewalk, \meta{keylist} should (or rather, may also) contain nodewalk keys.
For example, to execute, during a nodewalk, a nodewalk keylist stored in register |tempkeylista|,
write |also/.register=|\indexex{tempkeylista}. Note that no embedded nodewalk will be introduced.
\indexitem{node key>autoforward}|=|\meta{option}\meta{keylist}, \indexdef{node key>autoforward register}|=|\meta{register}\meta{keylist}
\itemnosep
\indexitem{node key>autoforward'}|=|\meta{option}\meta{keylist}, \indexdef{node key>autoforward register'}|=|\meta{register}\meta{keylist}
Whenever the value of an autoforwarded option or register is given or changed (via an augmented
assignment), \meta{option}|=|\meta{new value} or \meta{register}|=|\meta{new value} is appended to
\meta{keylist}. This can be used to ``intercept and remember'' \TikZ; options, like \index{option>anchor}
and \index{rotate}.
The |autoforward'| variant keeps only a single instance of \meta{option} in \meta{keylist}.
If you ever need to use the non-forwarded version of the key, prefix it with word |autoforwarded|,
e.g.\ |autoforwarded_rotate|. Autoforwarding is limited to the current \TeX\ group.
\indexitem{node key>Autoforward}|=|\meta{option}\meta{style definition}, \indexdef{node key>Autoforward register}|=|\meta{register}\meta{style definition}
This is a more generic variant of autoforwarding. After the value of an option or register
autoforwarded with this key is changed, the style defined by \meta{style definition} is called with
the new option/register value as its argument.
\begin{forestexample}[index={Autoforward,content,node options}]
\forestset{~Autoforward~={content}{node options={#1}}}
\begin{forest}
[red[blue][green]]
\end{forest}
\end{forestexample}
\indexitem{node key>unautoforward}|=|\meta{option or register} Undoes the autoforwarding of the
option or register made by any of the autoforwarding keys.
\indexitem{node key>content to}|=|\meta{key} When parsing the bracket representation of the tree,
store the given content using \meta{key}|=|\meta{content}.
\indexitem{node key>copy command key}|=|\meta{pgfkey: source}\meta{pgfkey: destination}
Copies the |pgf| key in a way that |.add code| and |.add style| handlers still work.
\indexitem({{{{{}}}}}){register>default preamble}|=|\meta{keylist}
\itemnosep
\indexitem{register>preamble}|=|\meta{keylist}
These registers hold the content of the default preamble and the preamble of the current tree.
|preamble| is set by the bracket parser. Set |default preamble| outside the \index{forest}
environment using \index{forestset}.
As |default preamble| and |preamble| are not styles but keylist registers, the |#| characters do
not need to be doubled: you can freely copy and paste your keylists between the node options of
the root node, the preamble and the default preamble. The only difference will be the order of
execution: first default preamble, then preamble, and finally the root node's options.
\indexitem{node key>save and restore register}|=|\meta{register}\meta{keylist}
Restores the current value of \meta{register} after executing the \meta{keylist}.
\indexitem{node key>split}|=|\meta{toks}\meta{separator}\meta{keylist}
\itemnosep
\indexitem{node key>split option}|=|\meta{option}\meta{separator}\meta{keylist}
\itemnosep
\indexitem{node key>split register}|=|\meta{register}\meta{separator}\meta{keylist}
Split \meta{toks} or the value of \meta{option} or \meta{register} at occurrences of
\meta{separator} (which must be a single token), and process the keys in \meta{keylist} with the
pieces of the split token list as arguments, in the order given.
\meta{option} can be either a simple \meta{option name} or a \meta{relative node name}\texttt{.}\meta{option name}.
The difference in the number of split values and given keys is handled gracefully. If there is
not enough values, the superfluous keys are not processed; if there are too many values, the last
key is called repeatedly.
The keys in \meta{keylist} can be any valid keys, including augmented assignments, non-current
option assignments, even \index{TeX} or user-defined styles. Actually, as |split| works by simply
appending |={|\meta{current value}|}| to the relevant given key, it is possible for the key to be
a (sub)keylist ending in a simple, non-valued key, like shown below.
\begin{advise}
\item Pay attention to |%| characters around the subkeylist. In order for it to actually function
as a sublist, its braces should be stripped, but this can only happen if no spaces surround it.
\end{advise}
\begin{forestexample}[point=split option,index={delay,content,split option,process args},label=ex:split option]
\begin{forest}
[
{1,2,3,4}
[,delay={
~split option~=
{!parent.content}
{,}
{
content',%
{content+={+},content+}%
},
tempcounta'/.process={O+n}{content},
content+={=},
content+/.register=tempcounta,
}
]
]
\end{forest}
\end{forestexample}
\indexitem{node key>TeX}|=|\meta{toks: \TeX\ code} The given code is executed immediately.
This can be used for e.g.\ enumerating nodes:
\begin{forestexample}[point=TeX,index={TeX,delay,where option,tier,content,GP1},label=ex:enumerate]
\newcount\xcount
\begin{forest} GP1,
delay={TeX={\xcount=0},
where tier={x}{TeX={\advance\xcount1},
content/.expanded={##1$_{\the\xcount}$}}{}}
[
[O[x[f]]]
[R[N[x[o]]]]
[O[x[r]]]
[R[N[x[e]]][x[s]]]
[O[x[t]]]
[R[N[x]]]
]
\end{forest}
\end{forestexample}
\indexitem{node key>TeX'}|=|\meta{toks: \TeX\ code} This key is a combination of keys \index{TeX}
and \index{TeX''}: the given code is both executed and externalized.
\indexitem{node key>TeX''}|=|\meta{toks: \TeX\ code} The given code is externalized, i.e.\ it will be
executed when the externalized images are loaded.
The image-loading and \keyname{TeX'(')} produced code are intertwined.
\indexitem{node key>typeout}|=|\meta{toks} A \foRest; version of \LaTeX\ macro |\typeout|. Useful
for debugging, trust me on this one.
\indexitem(node options){node key>unknown to}|=|\meta{key} Forward unknown keys to \meta{key}.
\begin{advise}
\item Do \emph{not} use handler |.unknown| to deal with unknown keys, as it is used internally by
\foRest;, and is set up to make it possible to set options of non-current nodes (see
\S\ref{sec:option-setting}).
\end{advise}
\indexitem{node key>unknown key error}|=|\meta{keyval} Produces an error.
Write \index{unknown to}|=unknown key error| to produce an error when a key unknown to \foRest; is
used.
\end{syntax}
\subsection{Options and registers}
\label{sec:options-and-registers}
\FoRest; introduces two types of data storage: \emph{node options} (or just \emph{options} for
short) and \emph{registers}.
Options store data related to particular nodes. Each node has its own set of option values, i.e.\
the value of an option at some node is independent of its value at other nodes: in particular,
setting an option of a node does \emph{not} set this option for the node's descendants. Register
values are not associated to nodes.
Note that option and register keys share the same ``namespace'' (|pgfkeys| path and |pgfmath|
function names) so it is not possible to have an option and a register of the same name!
\subsubsection{Setting}
\label{sec:option-setting}
The simplest way to set the value of an option or a register is to use the key of the same name.
\begin{syntax}
\indexitem[index key={@@@opt},form={}]{prefix>assignment>current node=\meta{option}}|=|\meta{value}
Sets the value of \meta{option} of the current node to \meta{value}.
Note that option types \index{keylist} and \index{autowrapped toks} redefine this basic key.
\indexitem[index key={@@@reg},form={}]{prefix>assignment>current node=\meta{register}}|=|\meta{value}
Sets the value of \meta{register} to \meta{value}.
Note that register types \index{keylist} and \index{autowrapped toks} redefine this basic key.
\end{syntax}
Options can also be set for the non-current node:
\begin{syntax}
% \indexitem[index key={@@@.},form={.},+print format={+result={\index(not print){relative node name}\index(not index)[+print format=definition]{relative node name}}},+index format={+result={\meta{relative node name}}}]{prefix>assignment>relative node=\meta{option}}|=|\meta{value}
\indexitem[index key={@@@.},form={.},+print format={+result={\index{relative node name}}},+index format={+result={\meta{relative node name}}}]{prefix>assignment>relative node=\meta{option}}|=|\meta{value}
Sets the value of \meta{option} of the node specified by \meta{relative node name} to \meta{value}.
Notes: \begin{enumerate*}[(i)]
\item\emph{\meta{value} is evaluated in the context of the current node.}
\item In general, the resolution of \meta{relative node name} depends on the
current node; see \S\ref{ref:relative-node-names}.
\item \meta{option} can also be an ``augmented assignment operator'' (see below) or, indeed, any
node key.
\end{enumerate*}
\end{syntax}
Additional keys for setting and modifying the value of an option or a register exist, depending on
its data type. Informally, you can think of these keys as \emph{augmented operators} known from
various programming languages.
\begin{syntax}
\indexitem{type>toks} contains \TeX's \meta{balanced text} \citep[275]{texbook}.
A toks \meta{option} additionally defines the following keys:
\begin{syntax}
\indexitem{suffix>augmented assignment=toks>+=\meta{option}}|=|\meta{toks} appends the given \meta{toks} to the
current value of the option.
\indexitem{prefix>augmented assignment=toks>+=\meta{option}}|=|\meta{toks} prepends the given \meta{toks} to the
current value of the option.
% \item \index{if in toks option=\meta{toks option}}| =|\meta{toks}\meta{true
% keylist}\meta{false keylist} checks if \meta{toks} occurs in the option value; if it does,
% \meta{true keylist} are executed, otherwise \meta{false keylist}.
% \item \index{where in toks option=\meta{toks option}}| =|\meta{toks}\meta{true
% keylist}\meta{false keylist} is a style equivalent to \index{for step=\index{tree}}|={|\keyname{if in }\meta{option}=\meta{toks}\meta{true keylist}\meta{false keylist}|}|: for every node in
% the subtree rooted in the current node, \keyname{if in }\meta{option} is executed in
% the context of that node.
\end{syntax}
\indexitem{type>autowrapped toks} is a subtype of \index{toks} and contains \TeX's \meta{balanced
text} \citep[275]{texbook}.
{\rstyle\meta{option}}|=|\meta{toks} of an autowrapped \meta{option} is redefined to
\meta{option}|/|\index{wrap value}|=|\meta{toks} of a normal \meta{toks} option.
Keyvals \indexdef{suffix>augmented assignment=autowrapped toks>+=\meta{option}}|=|\meta{toks} and
\indexdef{prefix>augmented assignment=autowrapped toks>+=\meta{option}}|=|\meta{toks} are redefined to
\index{toks+=\meta{option}}|/|\index{wrap value}|=|\meta{toks} and
\index{+toks=\meta{option}}|/|\index{wrap value}|=|\meta{toks}, respectively. The normal toks
behaviour can be accessed via keys \indexdef{suffix>augmented assignment=autowrapped toks>'=\meta{option}},
\indexdef{suffix>augmented assignment=autowrapped toks>+'=\meta{option}}, and
\indexdef[set={print format={result/.expanded=+\forestoption{argument}',pgfkey},index form=+\meta{autowrapped toks option}',index format=pgfkey,index key=+'}]{augmented assignment>+autowrapped toks'=\meta{option}}.
\indexitem{type>keylist} is a subtype of \index{toks} and contains a comma-separated list of
\meta{key}[|=|\meta{value}] pairs.
Augmented assignment operators \indexdef{suffix>augmented assignment=keylist>+=\meta{option}} and
\indexdef{prefix>augmented assignment=keylist>+=\meta{option}} automatically insert a comma
before/after the appended/prepended material.
Augmented assignment operator \indexdef{suffix>augmented assignment=keylist>-=\meta{option}}|=|\meta{keylist} deletes the keys
from keylist \meta{option}. \meta{keylist} specifies which keys to delete. If a key is given no
value, all occurrences of that key will be deleted. If a key is given a value, only occurrences
with that value will be deleted. To delete occurrences without value, use special value
\indexdef{macro>forestnovalue}. (Note: if you include a key in \meta{keylist} more than once,
only the last occurrence counts.)
{\rstyle\meta{option}}|=|\meta{keylist} of a keylist option is redefined to
\meta{option}\keyname{+}|=|\meta{keylist}. In other words, keylists behave additively by
default. The rationale is that one usually wants to add keys to a keylist. The usual,
non-additive behaviour can be accessed by \indexdef{suffix>augmented assignment=keylist>'=\meta{option}}|=|\meta{keylist}.
Manipulating the keylist option using augmented assignments might have the side-effect of adding
an empty key to the list.
\indexitem{type>dimen} contains a dimension.
The value given to a dimension option is automatically evaluated by |pgfmath|. In other words,
{\rstyle\meta{option}}|=|\meta{value} is implicitly understood as
\meta{option}|/|\index{pgfmath}|=|\meta{value}.
For a \meta{dimen} option \meta{option}, the following additional keys (``augmented
assignments'') are defined:
\begin{syntax}
\indexitem{suffix>augmented assignment=dimen>+=\meta{option}}|=|\meta{value} is equivalent to \meta{option}|=|\meta{option}|()+|\meta{value}
\indexitem{suffix>augmented assignment=dimen>-=\meta{option}}|=|\meta{value} is equivalent to \meta{option}|=|\meta{option}|()-|\meta{value}
\indexitem{suffix>augmented assignment=dimen>*=\meta{option}}|=|\meta{value} is equivalent to \meta{option}|=|\meta{option}|()*|\meta{value}
\indexitem{suffix>augmented assignment=dimen>:=\meta{option}}|=|\meta{value} is equivalent to \meta{option}|=|\meta{option}|()/|\meta{value}
\end{syntax}
The evaluation of \meta{pgfmath} can be quite slow. There are two tricks to speed things up
\emph{if} the \meta{pgfmath} expression is simple, i.e.\ just a \TeX\ \meta{dimen}:
\begin{enumerate}
\item |pgfmath| evaluation of simple values can be sped up by prepending |+| to the value
\citep[\S62.1]{tikzpgf2.10};
\item use the key \indexdef{suffix>augmented assignment=dimen>'=\meta{option}}|=|\meta{value} to invoke a normal \TeX\ assignment.
\end{enumerate}
The two above-mentioned speed-up tricks work for the augmented assignments as well. The keys for
the second, \TeX-only trick are: \indexdef{suffix>augmented assignment=dimen>'+}, \indexdef{suffix>augmented assignment=dimen>'-}, \indexdef{suffix>augmented assignment=dimen>'*}, \indexdef{suffix>augmented assignment=dimen>':} --- note that for the latter two,
the value should be an integer.
\indexitem{type>count} contains an integer.
The additional keys and their behaviour are the same as for the \meta{dimen} options.%
\indexdef[not print]{suffix>augmented assignment=count>+}%
\indexdef[not print]{suffix>augmented assignment=count>-}%
\indexdef[not print]{suffix>augmented assignment=count>*}%
\indexdef[not print]{suffix>augmented assignment=count>:}%
\indexdef[not print]{suffix>augmented assignment=count>'}%
\indexdef[not print]{suffix>augmented assignment=count>'+}%
\indexdef[not print]{suffix>augmented assignment=count>'-}%
\indexdef[not print]{suffix>augmented assignment=count>'*}%
\indexdef[not print]{suffix>augmented assignment=count>':}%
\indexitem{type>boolean} contains $0$ (false) or $1$ (true).
In the general case, the value given to a \meta{boolean} option is automatically
parsed by |pgfmath| (just as for \meta{count} and \meta{dimen}): if the computed value is
non-zero, $1$ is stored; otherwise, $0$ is stored. Note that |pgfmath| recognizes constants
|true| and |false|, so it is possible to write \meta{option}|=true| and
\meta{option}|=false|.
If key \meta{option} is given no argument, pgfmath evaluation does not apply and a true value is
set. To quickly set a false value, use key \indexdef{word prefix=boolean option>>not=\meta{option}} (with no arguments).
\end{syntax}
\subsubsection{Reading}
\label{sec:option-reading}
Option and register values can be accessed using the four macros listed below, handlers
\index{handler>option} and \index{handler>register} (\S\ref{ref:handlers}) and |pgfmath| functions
(\ref{ref:pgfmath}).
\begin{syntax}
\indexitem{macro>forestoption}|{|\meta{option}|}|
\itemnosep
\indexitem{macro>foresteoption}|{|\meta{option}|}|
\itemnosep
\indexitem{macro>forestregister}|{|\meta{register}|}|
\itemnosep
\indexitem{macro>foresteregister}|{|\meta{register}|}|
These macros expand to the value of the given option or register. Note that
\index{macro>forestoption} and \index{macro>foresteoption} expand to the value of the given option
of the \emph{current node}; to access option values of a non-current node, use |pgfmath|
functions.
In the context of |\edef|, \cmdname{forestoption} and \cmdname{forestregister} expand precisely to
the token list of the option value, while \cmdname{foresteoption} and \cmdname{foresteregister}
fully expand the value.
\begin{advise}
\item These macros can be useful in \TeX\ code introduced by \index{TeX} or \PGF;'s handler
|.expanded| \citep[\S55.4.6]{tikzpgf2.10}.
\end{advise}
\end{syntax}
\subsubsection{Declaring}
\label{sec:option-declaring}
Using the following keys, users can also declare their own options and registers. The new options
and registers will behave exactly like the predefined ones.
Note that the declaration of an option must provide a default value, while the declaration of a
register must not do that (registers are initialized to the empty string, |0pt| or |0|, as
appropriate for the type). The default value of an option will be assigned to any newly created
nodes; the existing nodes are not affected.
\begin{syntax}
\indexitem{node key>declare toks}|=|\meta{option name}\meta{default value}
Declares a \meta{toks} option.
\indexitem{node key>declare autowrapped toks}|=|\meta{option name}\meta{default value}
Declares an \meta{autowrapped toks} option.
\indexitem{node key>declare keylist}|=|\meta{option name}\meta{default value}
Declares a \meta{keylist} option.
\indexitem{node key>declare dimen}|=|\meta{option name}\meta{default value}
Declares a \meta{dimen} option. The default value is processed by \index{forestmath}.
\indexitem{node key>declare count}|=|\meta{option name}\meta{default value}
Declares a \meta{count} option. The default value is processed by \index{forestmath}.
\indexitem{node key>declare boolean}|=|\meta{option name}\meta{default value}
Declares a \meta{boolean} option. The default value is processed by \index{forestmath}.
\indexitem{node key>declare toks register}|=|\meta{register name}
Declares a \meta{toks} register.
\indexitem{node key>declare autowrapped toks register}|=|\meta{register name}
Declares an \meta{autowrapped toks} register.
\indexitem{node key>declare keylist register}|=|\meta{register name}
Declares a \meta{keylist} register.
\indexitem{node key>declare dimen register}|=|\meta{register name}
Declares a \meta{dimen} register.
\indexitem{node key>declare count register}|=|\meta{register name}
Declares a \meta{count} register.
\indexitem{node key>declare boolean register}|=|\meta{register name}
Declares a \meta{boolean} register.
\end{syntax}
Several scratch registers are predefined:
\begin{syntax}
\indexitem{register>temptoksa}, \indexdef{register>temptoksb}, \indexdef{register>temptoksc}, \indexdef{register>temptoksd} Predefined \meta{toks} registers.
\indexitem{register>tempkeylista}, \indexdef{register>tempkeylistb}, \indexdef{register>tempkeylistc}, \indexdef{register>tempkeylistd} Predefined \meta{keylist} registers.
\indexitem{register>tempdima}, \indexdef{register>tempdimb}, \indexdef{register>tempdimc}, \indexdef{register>tempdimd}, \indexdef{register>tempdimx}, \indexdef{register>tempdimy}, \indexdef{register>tempdiml}, \indexdef{register>tempdims}, \indexdef{register>tempdimxa}, \indexdef{register>tempdimya}, \indexdef{register>tempdimla}, \indexdef{register>tempdimsa}, \indexdef{register>tempdimxb}, \indexdef{register>tempdimyb}, \indexdef{register>tempdimlb}, \indexdef{register>tempdimsb} Predefined \meta{dimen} registers.
\indexitem{register>tempcounta}, \indexdef{register>tempcountb}, \indexdef{register>tempcountc}, \indexdef{register>tempcountd} Predefined \meta{count} registers.
\indexitem{register>tempboola}, \indexdef{register>tempboolb}, \indexdef{register>tempboolc}, \indexdef{register>tempboold} Predefined \meta{boolean} registers.
\end{syntax}
\subsection{Formatting the tree}
\label{sec:formatting-tree}
\subsubsection{Node appearance}
\label{ref:node-appearance}
The following options apply at stage \index{typeset nodes}. Changing them
afterwards has no effect in the normal course of events.
\begin{syntax}
\indexitem({{{{{}}}}}){option>align}|=|\index{value of=align>left}\OR\index{value of=align>center}\OR\index{value of=align>right}\OR\meta{toks: tabular header}
Creates a left/center/right-aligned multiline node, or a tabular node. In the
\index{content} option, the lines of the node should separated by |\\| and the columns (if
any) by |&|, as usual.
The vertical alignment of the multiline/tabular node can be specified by option \index{base}.
\begin{forestexample}[index={l sep,align,base}]
\begin{forest} l sep+=2ex
[special value&actual value\\\hline
\indexdef{value of=align>left}&||\texttt{@\{\}l@\{\}}\\
\indexdef{value of=align>center}&||\texttt{@\{\}c@\{\}}\\
\indexdef{value of=align>right}&||\texttt{@\{\}r@\{\}}\\
,~align~=ll,draw
[top base\\right aligned, ~align~=right,~base~=top]
[left aligned\\bottom base, ~align~=left,~base~=bottom]
]
\end{forest}
\end{forestexample}
Internally, setting this option has two effects:
\begin{enumerate}
\item The option value (a |tabular| environment header specification) is set. The special
values \keyname{left}, \keyname{center} and \keyname{right} invoke styles setting the actual
header to the value shown in the above example.
\begin{advise}
\item If you know that the \keyname{align} was set with a special value, you can easily check
the value using \index{if in toks option=\index{align}}.
\end{advise}
\item Option \index{content format} is set to the following value:
\begin{lstlisting}
\noexpand\begin{tabular}[\forestoption{base}]{\forestoption{align}}%
\forestoption{content}%
\noexpand\end{tabular}%
\end{lstlisting}
As you can see, it is this value that determines that options \keyname{base}, \keyname{align} and
\keyname{content} specify the vertical alignment, header and content of the table.
\end{enumerate}
\indexitem(t){option>base}|=|\meta{toks: vertical alignment}
This option controls the vertical alignment of multiline (and in general, \texttt{tabular}) nodes
created with \index{align}. Its value becomes the optional argument to the \texttt{tabular}
environment. Thus, sensible values are \indexdef{value of=base>t} (the top line of the table will
be the baseline) and \indexdef{value of=base>b} (the bottom line of the table will be the baseline).
Note that this will only have effect if the node is anchored on a baseline, like in the default
case of \index{option>anchor}|=base|.
For readability, you can use \indexdef{value of=base>top} and \indexdef{value of=base>bottom} instead
of \keyname{t} and \keyname{b}. (\keyname{top} and \keyname{bottom} are still stored as
\keyname{t} and \keyname{b}.)
\indexitem({{{{{}}}}}){option>content}|=|\meta{autowrapped toks} The content of the node.
Normally, the value of option \keyname{content} is given implicitely by virtue of the special
(initial) position of content in the bracket representation (see~\S\ref{ref:bracket}). However,
the option also be set explicitely, as any other option.
\begin{forestexample}[index={for step,tree,if option,readonly option>n,readonly option>n'},point={content,delay},index={content,delay}]
\begin{forest}
delay={for tree={
if n=1{content=L}
{if n'=1{content=R}
{content=C}}}}
[[[][][]][[][][]]]
\end{forest}
\end{forestexample}
Note that the execution of the \keyname{content} option should usually be delayed: otherwise, the
implicitely given content (in the example below, the empty string) will override the explicitely
given content.
\begin{forestexample}[index={for step,tree,if option,readonly option>n,readonly option>n',content},point={content}]
\begin{forest}
for tree={
if n=1{content=L}
{if n'=1{content=R}
{content=C}}}
[[[][][]][[][][]]]
\end{forest}
\end{forestexample}
\indexitem(\forestoption{content}){option>content format}|=|\meta{toks}
When typesetting the node under the default conditions (see option \index{node format}), the
value of this option is passed to the \TikZ; \texttt{node} operation as its \meta{text} argument
\citep[\S16.2]{tikzpgf2.10}. The default value of the option simply puts the content in the
node.
This is a fairly low level option, but sometimes you might still want to change its value. If
you do so, take care of what is expanded when. Most importantly, if you use a formatting
command such as |\textbf| in the default setting of \index{node format}, be sure to precede
it with |\noexpand|. For details, read the documentation of option \index{node format} and
macros \index{forestoption} and \index{foresteoption}; for an example, see option
\index{align}.
\indexitem{node key>math content} Changes \index{content format} so that the content of the node
will be typeset in a math environment.
\indexitem{node key>plain content} Resets \index{content format} to the default value.
\indexitem{option>node format}|=|\meta{toks}
\hfill|\noexpand\node(\forestoption{name})|\\
\mbox{}\hfill|[\forestoption{node options}]{\foresteoption{content format}};|
The node is typeset by executing the expansion of this option's value in a |tikzpicture|
environment.
Important: the value of this option is first expanded using |\edef| and only then executed. Note
that in its default value, \index{content format} is fully expanded using
\index{foresteoption}: this is necessary for complex content formats, such as |tabular|
environments.
This is a low level option. Ideally, there should be no need to change its value. If you do,
note that the \TikZ; node you create should be named using the value of option \index{option>name};
otherwise, parent--child edges can't be drawn, see option \index{edge path}.
\indexitem{node key>node format'}|=|\meta{toks}
Sets \index{node format}, automatically wrapping the given \meta{toks} by
|\noexpand\node(\forestoption{name})| and |;|. Only the node options and content must therefore be
given.
\indexitem(anchor=base){option>node options}|=|\meta{keylist}
When the node is being typeset under the default conditions (see option \index{node format}),
the content of this option is passed to \TikZ; as options to the
\TikZ; |node| operation \citep[\S16]{tikzpgf2.10}.
This option is rarely manipulated manually: almost all options unknown to \foRest; are
automatically appended to \keyname{node options}. Exceptions are (i) \index{label} and
\index{pin}, which require special attention in order to work; and (ii) \index{option>anchor},
which is saved in order to retain the information about the selected anchor.
\begin{forestexample}[index={for step,descendants,option>anchor,option>child anchor,option>parent anchor,grow,l sep,tree,propagator>where,delay,content,node options,pgfmath}]
\begin{forest}
for descendants={anchor=east,child anchor=east},
grow=west,anchor=north,parent anchor=north,
l sep=1cm,
for tree={~fill=yellow~},where={n()<=3}{~draw=red~}{},
delay={for tree={content/.pgfmath=~node_options~}}
[root,rotate=90,
[,~fill=white~]
[,~node options'~]
[]
[]
[,~node options~={~ellipse~}]
]
\end{forest}
\end{forestexample}
\indexitem(false){option>phantom}|=|\meta{boolean}
A phantom node and its surrounding edges are taken into account when packing, but not
drawn. (This option applies in stage \index{draw tree}.)
\begin{forestexample}[point=phantom,index={option>phantom}]
\begin{forest}
[VP[DP][V',phantom[V][DP]]]
\end{forest}
\end{forestexample}
\end{syntax}
\subsubsection{Node position}
\label{ref:ref-node-position}
Most of the following options apply at stage \index{pack}. Changing them afterwards has no effect
in the normal course of events. (Options \index{option>l}, \index{option>s}, \index{option>x}, \index{y} and
\index{option>anchor} are exceptions; see their documentation for details).
\begin{syntax}
\indexitem(base){option>anchor}|=|\meta{toks: \foRest; anchor}
While this option is saved by \foRest;, it is essentially an option of \TikZ;'s |\node| command
\citep[see][\S16.5.1]{tikzpgf2.10}. \FoRest; \index{autoforward}s it to keylist option
\index{node options}, which is passed on to \TikZ;'s |\node| command when the node is typeset.
(Option |anchor| thus normally applies in stage \index{typeset nodes}.)
In the \TikZ; code, you can refer to the node's anchor using \FoRest;'s anchor
\index{anchor>anchor}; this anchor is sometimes also called the node anchor in this
documentation, to distinguish it clearly from parent and child anchors.
\meta{toks: \foRest; anchor} can be any \TikZ; anchor. Additionally, \FoRest; defines several
tree hierarchy related anchors; for details, see \S\ref{sec:anchors}.
The effect of setting the node anchor is twofold:
\begin{itemize}
\item during packing, the anchors of all siblings are \index{option>l}-aligned;
\item some \index{calign} methods use node anchors (of the parent and/or certain children) to
\index{option>s}-align the block of children to the parent.
\end{itemize}
\indexitem(center){option>calign}|=|\alternative{child,child edge,midpoint,edge midpoint,fixed
angles,fixed edge angles}\\\alternative{first,last,center}.
The packing algorithm positions the children so that they don't overlap, effectively computing
the minimal distances between the node anchors of the children. This option (\keyname{calign}
stands for child alignment) specifies how the children are positioned
with respect to the parent (while respecting the above-mentioned minimal distances).
The child alignment methods refer to the primary and the secondary child, and to the primary and
the secondary angle. These are set using the keys described just after \keyname{calign}.
\let\outerleftmargin\leftmargin
\begin{syntax}
\item\keyname{calign}|=|\indexdef{value of=calign>child} s-aligns the node anchors of the parent and
the primary child.
\item\keyname{calign}|=|\indexdef{value of=calign>child edge} s-aligns the parent anchor of the parent
and the child anchor of the primary child.
\item \keyname{calign}|=|\indexdef{value of=calign>first} is an abbreviation for
|calign=child,calign_child=1|.
\item \keyname{calign}|=|\indexdef{value of=calign>last} is an abbreviation for
|calign=child,calign_child=-1|.
\item\keyname{calign}|=|\indexdef{value of=calign>midpoint} s-aligns the parent's node anchor and the
midpoint between the primary and the secondary child's node anchor.
\item\keyname{calign}|=|\indexdef{value of=calign>edge midpoint} s-aligns the parent's parent anchor
and the midpoint between the primary and the secondary child's child anchor.
\item \keyname{calign}|=|\indexdef{value of=calign>center} is an abbreviation for\\
|calign=midpoint,| |calign_primary_child=1,| |calign_secondary_child=-1|.
\begin{forestexample}
\begin{forest}
[center,calign=center[1]
[first,calign=first[A][B][C]][3][4][5][6]
[last,calign=last[A][B][C]][8]]
\end{forest}
\end{forestexample}
\item\keyname{calign}|=|\indexdef{value of=calign>fixed angles}: The angle between the direction of
growth at the current node (specified by option \index{grow}) and the line through the node
anchors of the parent and the primary/secondary child will equal the primary/secondary angle.
To achieve this, the block of children might be spread or further distanced from the parent.
\item\keyname{calign}|=|\indexdef{value of=calign>fixed edge angles}: The angle between the direction of
growth at the current node (specified by option \index{grow}) and the line through the
parent's parent anchor and the primary/secondary child's child anchor will equal the
primary/secondary angle.
To achieve this, the block of children might be spread or further distanced from the parent.
\begin{forestexample}[point=calign,index={calign,fixed edge angles,calign primary angle,calign secondary angle,for step,tree,option>l},index>={!}]
\begin{forest}
calign=fixed edge angles,
calign primary angle=-30,calign secondary angle=60,
for tree={l=2cm}
[CP[C][TP]]
\draw[dotted] (!1) -| coordinate(p) () (!2) -| ();
\path ()--(p) node[pos=0.4,left,inner sep=1pt]{-30};
\path ()--(p) node[pos=0.1,right,inner sep=1pt]{60};
\end{forest}
\end{forestexample}
\end{syntax}
\indexitem{node key>calign child}|=|\meta{count} is an abbreviation for \index{calign primary
child}|=|\meta{count}.
\indexitem(1){option>calign primary child}|=|\meta{count} Sets the primary child.
(See \index{calign}.)
\meta{count} is the child's sequence number. Negative numbers start counting at the last child.
\indexitem(-1){option>calign secondary child}|=|\meta{count} Sets the secondary child.
(See \index{calign}.)
\meta{count} is the child's sequence number. Negative numbers start counting at the last child.
\indexitem{node key>calign angle}|=|\meta{count} is an abbreviation for: \index{calign primary
angle}|=-|\meta{count}, \index{calign secondary angle}|=|\meta{count}.
\indexitem(-35){option>calign primary angle}|=|\meta{count} Sets the primary angle.
(See \index{calign}.)
\indexitem(35){option>calign secondary angle}|=|\meta{count} Sets the secondary angle.
(See \index{calign}.)
\indexitem{node key>calign with current} s-aligns the node anchors of the current node and its
parent. This key is an abbreviation for:\indexex[not print]{wrap pgfmath arg,calign,child,calign primary child}
\begin{lstlisting}
for parent/.wrap pgfmath arg={calign=child,calign primary child=##1}{n}.
\end{lstlisting}
\indexitem{node key>calign with current edge} s-aligns the child anchor of the current node and the
parent anchor of its parent. This key is an abbreviation for:\indexex[not print]{wrap pgfmath arg,calign,child edge,calign primary child}
\begin{lstlisting}
for parent/.wrap pgfmath arg={calign=child edge,calign primary child=##1}{n}
\end{lstlisting}
\indexitem(tight){option>fit}|=|\alternative{tight,rectangle,band}
\begin{forestexample}[layout=export,basicstyle=\footnotesize\ttfamily]
\makeatletter\tikzset{use path/.code={\tikz@addmode{\pgfsyssoftpath@setcurrentpath#1}
\appto\tikz@preactions{\let\tikz@actions@path#1}}}\makeatother
\forestset{show boundary/.style={
before drawing tree={get min s tree boundary=\minboundary, get max s tree boundary=\maxboundary},
tikz+={\draw[red,use path=\minboundary]; \draw[red,use path=\maxboundary];}}}
\end{forestexample}
\input{\jobname.tmp}
This option sets the type of the (s-)boundary that will be computed for the subtree rooted in the
node, thereby determining how it will be packed into the subtree rooted in the node's parent.
There are three choices:\footnote{Below is the definition of style \keyname{show boundary}. The
\keyname{use path} trick is adjusted from \TeX\ Stackexchange question
\href{http://tex.stackexchange.com/questions/26382/calling-a-previously-named-path-in-tikz}{Calling
a previously named path in tikz}.
\box\codebox}
\begin{itemize}
\item\keyname{fit}|=|\indexdef{value of=fit>tight}: an exact boundary of the node's subtree is computed,
resulting in a compactly packed tree. Below, the boundary of subtree L is drawn.
\begin{forestexample}[point={fit,tight},index={fit,{value of=fit>tight},delay,for step,tree,option>name,content,pgfmath}]
\begin{forest}
delay={for tree={name/.pgfmath=content}}
[root
[L,fit=tight, % default
show boundary
[L1][L2][L3]]
[R]
]
\end{forest}
\end{forestexample}
\makeatletter\tikzset{use path/.code={%
\tikz@addmode{\pgfsyssoftpath@setcurrentpath#1}%
\appto\tikz@preactions{\let\tikz@actions@path#1}%
}}\makeatother
\item\keyname{fit}|=|\indexdef{value of=fit>rectangle}: puts the node's subtree in a rectangle and effectively
packs this rectangle; the resulting tree will usually be wider.
\begin{forestexample}[point={fit,rectangle},index={fit,{value of=fit>rectangle},delay,for step,tree,option>name,content,pgfmath}]
\begin{forest}
delay={for tree={name/.pgfmath=content}}
[root
[L,fit=rectangle,
show boundary
[L1][L2][L3]]
[R]
]
\end{forest}
\end{forestexample}
\item\keyname{fit}|=|\indexdef{value of=fit>band}: puts the node's subtree in a rectangle of ``infinite
depth'': the space under the node and its descendants will be kept clear.
\begin{forestexample}[point={fit,band},index={fit,{value of=fit>band},delay,for step,tree,option>name,content,pgfmath}]
\begin{forest}
delay={for tree={name/.pgfmath=content}}
[root
[L[L1][L2][L3]]
[C,fit=band]
[R[R1][R2][R3]]
]
\draw[thin,red]
(C.south west)--(C.north west)
(C.north east)--(C.south east);
\draw[thin,red,dotted]
(C.south west)--+(0,-1)
(C.south east)--+(0,-1);
\end{forest}
\end{forestexample}
\end{itemize}
\indexitem(270){option>grow}|=|\meta{count}, \indexdef{node key>grow'}|=|\meta{count},
\indexdef{node key>grow''}|=|\meta{count}
The direction of the tree's growth at the node.
The growth direction is understood as in \TikZ;'s tree library \citep[\S18.5.2]{tikzpgf2.10}
when using the default growth method: the (node anchor's of the) children of the node are placed
on a line orthogonal to the current direction of growth. (The final result might be different,
however, if \index{option>l} is changed after packing or if some child undergoes tier alignment.)
This option is essentially numeric (|pgfmath| function \keyname{grow} will always return an
integer), but there are some twists. The growth direction can be specified either numerically
or as a compass direction (|east|, |north east|, \dots). Furthermore, like in \TikZ;, setting
the growth direction using key \keyname{grow} additionally sets the value of option
\index{reversed} to |false|, while setting it with \keyname{grow'} sets it to |true|; to
change the growth direction without influencing \index{reversed}, use key \index{grow''}.
Between stages \index{pack} and \index{compute xy}, the value of \keyname{grow} should not
be changed.
\begin{forestexample}[index={delay,where in toks option,content,for step,current,grow,grow',grow'',pgfmath}]
\begin{forest}
delay={where in content={~grow~}{
for current/.pgfmath=content,
content=\texttt{#1}
}{}
}
[{~grow~=south}
[{~grow'~=west}[1][2][3]
[{~grow''~=90}[1][2][3]]]
[2][3][4]
[{~grow~=east}[1][2][3]
[{~grow''~=90}[1][2][3]]]]
\end{forest}
\end{forestexample}
\indexitem(false){option>ignore}|=|\meta{boolean}
If this option is set, the packing mechanism ignores the node, i.e.\ it pretends that the node has
no boundary. Note: this only applies to the node, not to the tree.
Maybe someone will even find this option useful for some reason \dots
\indexitem(false){option>ignore edge}|=|\meta{boolean}
If this option is set, the packing mechanism ignores the edge from the node to the parent, i.e.\
nodes and other edges can overlap it. (See \S\ref{sec:bugs} for some problematic situations.)
\begin{forestexample}[index={ignore edge,option>l,dimen*=l}]
\begin{forest}
[A[B[B][B][B][B]][C
[\texttt{not ignore edge},l*=2]]]
\end{forest}
\begin{forest}
[A[B[B][B][B][B]][C
[\texttt{ignore edge},l*=2,~ignore edge~]]]
\end{forest}
\end{forestexample}
\indexitem{option>l}|=|\meta{dimen} The l-position of the node, in the parent's ls-coordinate system. (The
origin of a node's ls-coordinate system is at its (node) anchor. The l-axis points in the
direction of the tree growth at the node, which is given by option \index{grow}. The s-axis is
orthogonal to the l-axis; the positive side is in the counter-clockwise direction from |l| axis.)
The initial value of \keyname{l} is set from the standard node. By default, it equals:
\[\index{l sep}+2\cdot\mbox{\texttt{outer ysep}}+\mbox{total
height(standard node)}\]
The value of \keyname{l} can be changed at any point, with different effects.
\begin{itemize}
\item The value of \keyname{l} at the beginning of stage \index{pack} determines the minimal
l-distance between the anchors of the node and its parent. Thus, changing \keyname{l} before
packing will influence this process. (During packing, \keyname{l} can be increased due to
parent's \index{l sep}, tier alignment, or \index{calign} methods
\index{fixed angles} and \index{fixed edge angles}.
\item Changing \keyname{l} after packing but before stage \index{compute xy} will result in a
manual adjustment of the computed position. (The augmented assignment operators can be useful here.)
\item Changing \keyname{l} after the absolute positions have been computed has no effect in the
normal course of events.
\end{itemize}
\indexitem{option>l sep}|=|\meta{dimen} The minimal l-distance between the node and its
descendants.
This option determines the l-distance between the \emph{boundaries} of the node and its descendants,
not node anchors. The final effect is that there will be a \keyname{l sep} wide band,
in the l-dimension, between the node and all its descendants.
The initial value of \keyname{l sep} is set from the standard node and equals
\[\mbox{height}(\mbox{strut})+\mbox{\texttt{inner ysep}}\]
Note that despite the similar name, the semantics of \keyname{l sep} and \keyname{s sep} are
quite different.
\indexitem(false){option>reversed}|=|\meta{boolean}
If |false|, the children are positioned around the node in the counter-clockwise direction; if
|true|, in the clockwise direction. See also \index{grow}.
\indexitem(0){option>rotate}|=|\meta{count}
This option is saved and \index{autoforward}ed to \TikZ;'s |\node| command via \index{node options}.
\indexitem{option>s}|=|\meta{dimen} The s-position of the node, in the parent's ls-coordinate system.
(The origin of a node's ls-coordinate system is at its (node) anchor. The l-axis points in the
direction of the tree growth at the node, which is given by option \index{grow}. The s-axis is
orthogonal to the l-axis; the positive side is in the counter-clockwise direction from |l| axis.)
The value of \keyname{s} is computed in stage \index{pack stage} and used in stage \index{compute xy
stage}, so it only makes sense to (inspect and) change it in \index{before computing xy} and
during packing (\index{before packing node} and \index{after packing node}). \emph{Any value given
before packing is overridden, and changing the value after computing xy has no effect.}
For example, consider the manual correction below. By default, B is closer to A than C because
packing proceeds from the first to the last child --- the position of B would be the same if there
was no C. Adjusting \keyname{s} at the right moment, it is easy to center B between A and C.
\begin{forestexample}[tree bin=minipage,point=s,index={before computing xy,option>s}]
\begin{forest}
[no manual correction of B
[A[1][2][3][4]]
[B]
[C[1][2][3][4]]
]
\end{forest}
\begin{forest}
[manual correction of B
[A[1][2][3][4]]
[B,before computing xy={s/.average={s}{siblings}}]
[C[1][2][3][4]]
]
\end{forest}
\end{forestexample}
\indexitem{option>s sep}|=|\meta{dimen}
The subtrees rooted in the node's children will be kept at least \keyname{s sep} apart in the
s-dimension. Note that \keyname{s sep} is about the minimal distance between node
\emph{boundaries}, not node anchors.
The initial value of \keyname{s sep} is set from the standard node and equals
$2\cdot\mbox{\texttt{inner xsep}}$.
Note that despite the similar name, the semantics of \keyname{s sep} and \keyname{l sep} are
quite different.
\indexitem({{{{{}}}}}){option>tier}|=|\meta{toks}
Setting this option to something non-empty ``puts a node on a tier.'' All the nodes on the same
tier are aligned in the l-dimension.
Tier alignment across changes in growth direction is impossible. In the case of incompatible
options, \foRest; will yield an error.
Tier alignment also does not work well with \index{calign}|=|\index{fixed angles} and \index{calign}|=|\index{fixed edge angles}, because these child alignment methods may change the
l-position of the children. When this might happen, \foRest; will yield a warning.
\indexitem{option>x}=\meta{dimen}
\vspace{-\parskip}
\indexitem{option>y}=\meta{dimen}
\keyname{x} and \keyname{y} are the coordinates of the node in the ``normal'' (paper) coordinate
system, relative to the root of the tree that is being drawn. So, essentially, they are absolute
coordinates.
The values of \keyname{x} and \keyname{y} are computed in stage \index{compute xy}. It only
makes sense to inspect and change them (for manual adjustments) afterwards (normally, in the
\index{before drawing tree} hook, see \S\ref{ref:stages}.) \keyname{x} and \keyname{y} of the
(formal) root node are exceptions, as they are not changed in stage \index{compute xy}.
\begin{forestexample}[label=ex:adjustxy,index={y,dimen-,grow',option>l,for step,tree,before drawing tree}]
\begin{forest}
for tree={grow'=45,l=1.5cm}
[A[B][C][D,before drawing tree={~y-~=4mm}[1][2][3][4][5]][E][F]]
\end{forest}
\end{forestexample}
\end{syntax}
\subsubsection{Edges}
\label{ref:ref-edge}
These options determine the shape and position of the edge from a node to its parent. They apply
at stage \index{draw tree}.
\begin{syntax}
\indexitem({{{{{}}}}}){option>child anchor}|=|\meta{toks: \foRest; anchor} See \index{option>parent anchor}.
\indexitem(draw){option>edge}|=|\meta{keylist}
When \index{edge path} has its default value, the value of this option is passed as options to
the \TikZ; |\path| expression used to draw the edge between the node and its parent.
Also see key \index{no edge}.
\begin{forestexample}[point=edge,index={edge,no edge,for step,tree,grow',option>l,option>anchor,option>child anchor}]
\begin{forest} for tree={grow'=0,l=2cm,anchor=west,child anchor=west},
[root
[normal]
[none,~no~ edge]
[dotted,edge=dotted]
[dashed,edge=dashed]
[dashed,edge={dashed,red}]
]
\end{forest}
\end{forestexample}
\indexitem({{{{{}}}}}){option>edge label}|=|\meta{toks: \TikZ; code}
When \index{edge path} has its default value, the value of this option is used at the end of
the edge path specification to typeset a node (or nodes) along the edge.
The packing mechanism is not sensitive to edge labels.
\begin{forestexample}[index={edge label}]
\begin{forest}
[VP
[V,~edge label~={node[midway,left,font=\scriptsize]{head}}]
[DP,~edge label~={node[midway,right,font=\scriptsize]{complement}}]
]
\end{forest}
\end{forestexample}
\indexitem{option>edge path}|=|\meta{toks: \TikZ; code}
\hfill |\noexpand\path[|\index{forestoption}|{|\index{edge}|}]|\\
\mbox{}\hfill |(|\index>{!}|u.|\index{anchor>parent anchor}|)--(.|\index{anchor>child anchor}|)|\index{forestoption}|{|\index{edge label}|};|
This option contains the code that draws the edge from the node to its parent. By default, it
creates a path consisting of a single line segment between the node's \index{option>child anchor} and
its parent's \index{option>parent anchor}. Options given by \index{edge} are passed to the path; by
default, the path is simply drawn. Contents of \index{edge label} are used to potentially place
a node (or nodes) along the edge.
When specifying the edge path, the values of options \index{edge} and \index{edge label} can be
used. Furthermore, two anchors, \index{anchor>parent anchor} and \index{anchor>child anchor}, are defined,
to facilitate access to options \index{option>parent anchor} and \index{option>child anchor} from the \TikZ; code.
The node positioning algorithm is sensitive to edges, i.e.\ it will avoid a node overlapping an
edge or two edges overlapping. However, the positioning algorithm always behaves as if the
\keyname{edge path} had the default value --- \emph{changing the \keyname{edge path} does not
influence the packing!} Sorry. (Parent--child edges can be ignored, however: see option
\index{ignore edge}.)
\indexitem{node key>edge path'}|=|\meta{toks: \TikZ; code}
Sets \index{edge path}, automatically wrapping the given path by
|\noexpand\path[\forestoption{edge}]| and |\forestoption{edge label};|.
\indexitem({{{{{}}}}}){option>parent anchor}|=|\meta{toks: \foRest; anchor} (Information also applies to
option \index{option>child anchor}.)
\FoRest; defines anchors \index{anchor>parent anchor} and
\index{anchor>child anchor} (which work only for \foRest; and not also \TikZ;
nodes, of course) to facilitate reference to the desired endpoints of child--parent edges.
Whenever one of these anchors is invoked, it looks up the value of the \keyname{parent anchor} or
\keyname{child anchor} of the node named in the coordinate specification, and forwards the request
to the (\TikZ;) anchor given as the value.
The intended use of the two anchors is chiefly in \index{edge path} specification, but they can
used in any \TikZ; code.
\begin{forestexample}[index={anchor>parent anchor,anchor>child anchor,for step,tree},index>={!}]
\begin{forest}
for tree={~parent anchor~=south,~child anchor~=north}
[VP[V][DP]]
\path[fill=red] (.parent anchor) circle[radius=2pt];
\path[fill=blue] (!1.child anchor) circle[radius=2pt]
(!2.child anchor) circle[radius=2pt];
\end{forest}
\end{forestexample}
The empty value (which is the default) is interpreted as in \TikZ;: as an edge to the appropriate
border point. See also \S\ref{sec:anchors} for a list of additional anchors defined by \foRest;.
\indexitem{node key>no edge} Clears the edge options (\index{edge}|'={}|) and sets \index{ignore
edge}.
\end{syntax}
\subsubsection{Information about node}
\label{ref:node-info}
\label{ref:readonly-options}
The values of these options provide various information about the tree and its nodes.
\begin{syntax}
\indexitem{node key>alias}|=|\meta{toks}
\itemnosep
\indexitem{node key>alias'}|=|\meta{toks} Sets the alias for the node's name.
Unlike \index{option>name}, \keyname{alias} is \emph{not} an option: you cannot e.g.\ query it's
value via a |pgfmath| expression.
If the given alias clashes with an existing node name, |alias| will yield an error, while |alias'|
will silently rename the node with this name to its default value (|node@|\meta{id}).
Aliases can be used as the \meta{forest node name} part of a relative node name and as the
argument to the \index{step>name} step of a node walk. The latter includes the usage
as the argument of the \index{for step=\index{step>name}} propagator.
Technically speaking, \foRest; alias is \emph{not} a \TikZ; alias! However, you can still use
it as a ``node name'' in \TikZ; coordinates, since \foRest; hacks \TikZ;'s implicit node
coordinate system to accept relative node names; see \S\ref{ref:forest-cs}.
\indexitem{readonly option>id}|=|\meta{count} The internal id of the node.
\indexitem{readonly option>level}|=|\meta{count} The hierarchical level of the node. The root is on level $0$.
\indexitem{readonly option>max x}|=|\meta{dimen} \vspace{-\parskip}
\indexitem{readonly option>max y}|=|\meta{dimen} \vspace{-\parskip}
\indexitem{readonly option>min x}|=|\meta{dimen} \vspace{-\parskip}
\indexitem{readonly option>min y}|=|\meta{dimen}
Measures of the node, in the shape's coordinate system
\citep[see][\S16.2,\S48,\S75]{tikzpgf2.10} shifted so that the node anchor is at the origin.
In |pgfmath| expressions, these options are accessible as |max__x|, |max__y|, |min__x| and |min__y|.
\indexitem{readonly option>n}|=|\meta{count} The child's sequence number in the list of its parent's
children.
The enumeration starts with 1. For a geometric root, \keyname{n} equals $0$.
\indexitem{readonly option>n'}|=|\meta{count} Like \index{readonly option>n}, but starts counting at the last child.
In |pgfmath| expressions, this option is accessible as |n__|.
\indexitem{option>name}|=|\meta{toks} \hfill \texttt{node@}\meta{id}
\itemnosep
\indexitem{node key>name'}|=|\meta{toks} Sets the name of the node.
The expansion of \meta{toks} becomes the \meta{forest node name} of the node. The \TikZ; node
created from the \foRest; node will get the name specified by this option.
Node names must be unique. If a node with the given name already exists, |name| will yield an
error, while |name'| will silently rename the node with this name to its default (|node@|\meta{id})
value. Use an empty argument to reset the node's name to its default value.
\indexitem{readonly option>n children}|=|\meta{count} The number of children of the node.
In |pgfmath| expressions, this option is accessible as |n__children|.
\end{syntax}
\subsubsection{Various}
\begin{syntax}
\indexitem{node key>baseline} The node's anchor becomes the baseline of the whole tree
\citep[cf.][\S69.3.1]{tikzpgf2.10}.
In plain language, when the tree is inserted in your (normal \TeX) text, it will be vertically
aligned to the anchor of the current node.
Behind the scenes, this style sets the alias of the current node to \keyname{forest@baseline@node}.
{\tikzexternaldisable
\begin{forestexample}[index={baseline,use as bounding box'}]
Baseline at the
\begin{forest}
[parent,~baseline~,use as bounding box'
[child]]
\end{forest}
and baseline at the
\begin{forest}
[parent
[child,~baseline~,use as bounding box']]
\end{forest}.
\end{forestexample}}
\indexitem>{tikz key>fit to}|=|\meta{nodewalk} Fits the \TikZ; node to the nodes in the given
\meta{nodewalk}.
This key should be used like \keyname{/tikz/fit} of the \TikZ;'s fitting library
\citep[see][\S34]{tikzpgf2.10}: as an option to \emph{\TikZ;'s} |node| operation, the obvious
restriction being that \keyname{fit to} must be used in the context of some \foRest; node.
For an example, see footnote~\ref{fn:fit-to-tree}.
This key works by calling \keyname{/tikz/fit} and providing it with the the coordinates of the
subtree's boundary.
The \meta{nodewalk} inherits its history from the outer nodewalk (if there is one). Its every-step
keylist is empty.
\indexitem{node key>get min s tree boundary}|=|\meta{cs} \vspace{-\parskip}
\indexitem{node key>get max s tree boundary}|=|\meta{cs}
Puts the boundary computed during the packing process into the given \meta{cs}. The boundary is
in the form of \PGF; path. The |min| and |max| versions give the two sides of the node. For an
example, see how the boundaries in the discussion of \index{fit} were drawn.
\indexitem{option>label}|=|\meta{toks: \TikZ; node} The current node is labelled by a \TikZ; node.
The label is specified as a \TikZ; option \texttt{label} \citep[\S16.10]{tikzpgf2.10}.
Technically, the value of this option is passed to \TikZ;'s as a late option
\citep[\S16.14]{tikzpgf2.10}. (This is so because \foRest; must first typeset the nodes
separately to measure them (stage \index{typeset nodes}); the preconstructed nodes are inserted
in the big picture later, at stage \index{draw tree}.) Another option with the same
technicality is \index{pin}.
\indexitem{option>pin}|=|\meta{toks: \TikZ; node} The current node gets a pin, see
\citep[\S16.10]{tikzpgf2.10}.
¸
The technical details are the same as for \index{label}.
\indexitem{node key>use as bounding box} The current node's box is used as a bounding box for the
whole tree.
\indexitem{node key>use as bounding box'} Like \index{use as bounding box}, but subtracts the
(current) inner and outer sep from the node's box. For an example, see \index{baseline}.
\indexitem({{{{{}}}}}){option>tikz}|=|\meta{toks: \TikZ; code} ``Decorations.''
The code given as the value of this option will be included in the |tikzpicture| environment used
to draw the tree. By default, the code is included after all nodes of the tree have been drawn,
so it can refer to any node of the tree (furthermore, relative node names can be used to refer to
nodes of the tree, see \S\ref{ref:relative-node-names}) and the code given to various nodes is
appended in a depth-first, parent-first fashion. See \S\ref{sec:draw-tree} for details and
customization.
By default, bracket parser's afterthoughts feed the value of this option. See
\index{afterthought}.
\end{syntax}
\subsection{Nodewalks}
\label{ref:nodewalks}
A \emph{nodewalk} is a sequence of \emph{steps} describing a path through the tree. Most steps
are defined relative to the current node, for example \index{step>parent} steps to the parent of the
current node, and \index{step>n}|=2| steps to the second child of the current node, where ``to make a
step'' means to change the current node. Thus, nodewalk |parent,_parent,_n=2| describes the path
which first steps to the parent of the \emph{origin} node, then to its grandparent and finally to
the second child of the origin's grandparent.
The origin of the nodewalk depends on how the nodewalk is invoked. When used after the \index>{!}
in a relative node name (\S\ref{ref:relative-node-names}), the origin is the node with the name
given before \index>{!}; when invoked by a spatial propagator such as \index{for
step=\index{nodewalk}} (\S\ref{ref:spatial-propagators}), the origin is the current node; when
invoked within another (outer) nodewalk, the origin is the current node of the outer nodewalk.
Formally, a \meta{nodewalk} is a list of |pgfkeys| key--value pairs. Steps in a nodewalk are thus
separated by commas. However, \foRest; also recognizes \emph{short-form} steps, whose names consist
of a single character and which do not need to be separated by a comma. For example, nodewalk
|parent,_parent,_n=2| can be concisely written as |uu2|. Long and short forms can be mixed freely,
like this: |next,_uu2,_previous|.
Besides nodewalk keys, a \meta{nodewalk} can also contain node keys (or
even \TikZ; keys).\footnote{The precise algorithm for keyname resulotion in nodewalks is as follows.
\begin{itemize}
\item First, \foRest; searches for the given \meta{keyname} in the \index{path>forest/nodewalk}
path. If found (a long-form step or a nodewalk style), it is executed.
\item Next, it is checked whether \meta{keyname} is a sequence of short-form steps; is so, they are
executed.
\item Otherwise, \meta{key} is executed in the \keyname{/forest} path. This includes both
\foRest;'s and \TikZ;'s keys. The latter are usually forwarded to \TikZ; via \index{node
options}.
\end{itemize}
There are some clashes between node key and nodewalk step names. For example, \keyname{l} is both a
\meta{dimen} option and a short form of the step to the last child. According to the rules above,
the nodewalk step will take precedence in case of a clash. Use nodewalk key \index{options} to
execute a clashing node key.} These keys do their usual function, but within the context of the
current node of the nodewalk: |parent, s=2em,| |parent, text=red| sets the parent's |s| to 2em and
the grandparent's text color to red. It is worth noting that node keys include \index{TeX}, which
makes it possible to execute any \TeX\ code while nodewalking.
Some steps target a single node, like above-mentioned \index{step>parent} and \index{step>n}.
Others, called multi-steps, describe mini-walks themselves: for example \index{step>children} visits
each child of the node in turn, and \index{tree} visits each of the node's descendants (including
the node itself). The path of many steps is determined by the geometric relations of the tree, or
the value of some option. However, there are also keys for embedding nodewalks (\index{nodewalk
key>nodewalk}, \index{branch}, etc.), saving and loading nodewalks, sorting them, or even
re-walking the history of steps made (like in a web browser).\footnote{Note that nesting operation
(\S\ref{ref:nodewalk-operations}) and history (\S\ref{ref:nodewalk-history}) steps, or embedding
nodewalks under these steps doesn't work, for most combinations, as many of them internally
manipulate nodewalk history.} Finally, if all this is not enough, you can define your own steps,
see \S\ref{ref:defining-steps}.
Each nodewalk has an associated \emph{every-step keylist}: a keylist of node keys\footnote{When
executing the \index{register>every step} keylist, \foRest; switches into the
\index{path>forest} path, which makes it impossible to directly include a nodewalk into the
every-step keylist. The reason is performance. Every time a \index{path>forest/nodewalk} key
is not found, the short-form nodewalk recognition algorithm is executed, and this algorithm is
slow. As \index{register>every step} is used a lot (it is for example used every invocation of
every spatial propagator) and the keys in \index{register>every step} are usually node options
from \index{path>forest} path, \foRest; would spend way too much time checking if a given node
option is actually a short-form nodewalk.
If you need to execute nodewalk keys within the every-step keylist, use node key \index{node
key>Nodewalk}.} which get executed after each step of the nodewalk. The every-step keylist of
the current nodewalk is contained in register \index{register>every step} and can be changed at any
point during the nodewalk. Its value at the start of the nodewalk depends on how the nodewalk was
invoked. In most cases (e.g.\ \index{step>nodewalk} or prefix \index{for step}-based spatial
propagators), it is given explicitely as an argument to the key that executes the nodewalk.
However, see \index{step>Nodewalk} option \index{option of=Nodewalk>every step} for information on
how the every-step keylist of an embedded nodewalk can interact with the every-step keylist of its
parent nodewalk.
Each nodewalk step can be either \emph{real} or \emph{fake}. Fake steps only change the current
node. Real steps also trigger execution of the every-step keylist and update of history. Fake
steps are sometimes useful as a ``computational tool''. They can be introduced explicitely using
\index{nodewalk key>fake}; some other keys (like several history nodewalk keys,
\S\ref{ref:nodewalk-history}) introduce fake steps implicitely.
In some cases, the nodewalk might step ``out of the tree''. (Imagine using \index{step>parent} at the
root of the tree, or \index{readonly option>n}|=42| at a node with less that 42 children.) Our official term will
be that the nodewalk stepped on an \emph{invalid node}; what happens formally is that the current
node is changed to the node with \index{readonly option>id}|=0|. Normally, such an event raises an
error. However, the full story is told by \index{nodewalk key>on invalid}.
Nodewalks can be hard to follow, especially when designing styles. \FoRest; does its best to
help. First, it logs the nodewalk stack in case of error. Second, if package option
\index{debug}|=|\index{option of=debug>nodewalks} is given, it logs every step made.
\subsubsection{Invoking (embedded) nodewalks}
\label{ref:embedded-walks}
There are many ways to invoke a nodewalk. For example, several keys, like \index{fit to}, and
aggregate functions (\S\ref{ref:aggregate-functions}) expect a \meta{nodewalk} argument. This
section lists keys which can be used to explicitely invoke a nodewalk.
The keys in this section can be used not only as node keys (in fact, not all of them can be used
so), but also as nodewalk keys. The latter fact means that they can be used to introduce embedded
nodewalks, which (can) have its own every-step keylist, history and on-invalid mode; for details on
how these properties of outer and embedded nodewalk can interact, see \index{step>Nodewalk}. There
is no limit to the depth of nodewalks embedding (nodewalk within nodewalk within nodewalk \dots).
An embedded nodewalk functions as a single, fake step of the outer nodewalk. Specifically, this
means that, while stepping through the embedded nodewalk, the every-step keylist of the outer
nodewalk is not executed. Furthermore, by default, modifying the every-step keylist of the inner
walk (by manipulating register \index{register>every step}) does not influence the outer nodewalk
(but see option \index{option of=Nodewalk>every step}).
An embedded nodewalk does not count as a (real, every-step keyslist invoking) step of the outer
nodewalk. After it is finished, there are two options with respect to the new current node of the
outer nodewalk,\footnote{Even the outermost explicitly invoked nodewalks actually have the outer
nodewalk. It is ``static'' in the sense that no real step is ever made in it, but it has all the
nodewalk properties --- the current node, \index{register>every step} keylist register, \index{option
of=Nodewalk>history} and \index{option of=Nodewalk>on invalid} mode (error) --- which can
interact with the embedded nodewalk.} depending on whether the embedded nodewalk was invoked using
a variant of the key with or without the \index{for step} prefix (all keys in this section have the
\index{for step} variant).
\begin{itemize}
\item For keys \emph{without} the \index{for step} prefix, the current node of the outer nodewalk
changes, \emph{via a fake step}, to the final node visited by the embedded nodewalk. This holds
even if the final node was reached as a fake step and even if it is invalid
(\index{option>id}|=0|). The fake step in the outer nodewalk cannot be made real, not even by
\index{nodewalk key>real}: if you want to execute the every-step keylist of the outer nodewalk at
the finishing node of the embedded nodewalk, follow the latter by step \index{current}.
\item For keys \emph{with} the \index{for step} prefix, the current node of the outer nodewalk
remains unchanged. For this reason, the \index{for step}-prefixed keys are available as node keys
(we call them spatial propagators, \S\ref{ref:spatial-propagators}), while the steps without this
prefix are generally not, with the sole exception of \index{step>Nodewalk}, which I advise to use
carefully.
\end{itemize}
All steps described in this section can be prefixed by \index{for step}. All of them, with or
without this prefix, are available as nodewalk keys. The list of keys from this section which are
available as node keys: \index{step>Nodewalk}, \index{for step=\index{step>Nodewalk}}, \index{for
step=\index{nodewalk}}; you will most often want to use the latter.
\begin{syntax}
\indexitem{step>Nodewalk}|=|\meta{keylist: config}\meta{nodewalk}\meta{keylist: every-step}
Walks an \meta{nodewalk} starting at the current node.
This is the most generic form of embedding a nodewalk. Unlike other keys described in this
subsection, it can also be used as a node key even without the \index{for step} prefix, but take
care as it will, in general, change the current node.
The \meta{config} argument serves to specify the interaction between the outer and embedded
nodewalk. It can contain the following keys:
\let\outerleftmargin\leftmargin
\begin{syntax}
\indexitem(independent){option of=Nodewalk>every step}|={|\alternative{independent,inherited,shared}|}|
\indexitem(shared){option of=Nodewalk>history}|={|\alternative{independent,inherited,shared}|}|
The following table shows what happens to the every-step keylist and history depending on the
value of \keyname{every step} and \keyname{history}, respectively. State B is \meta{every-step}
for every step and empty for history.
\begin{tabular}{l|ccc}
&\keyname{independent}&\keyname{inherited}&\keyname{shared}\\\hline
state of the outer nodewalk&A&A&A\\
initial state of the inner nodewalk&B&A&A\\
\dots\\
final state of the inner nodewalk&C&C&C\\
state of the outer nodewalk&A&A&C
\end{tabular}
\end{syntax}
As shown in the table above, argument \meta{every-step} is used to initialize the
embedded nodewalk's every-step keylist when it is independent of the outer nodewalk. In other
cases, this argument is ignored (use |{}|).
\begin{syntax}
\indexitem(inherited){option of=Nodewalk>on invalid}|={|\alternative{error,fake,error in real,last valid,inherited}|}|
Like \index{nodewalk key>on invalid}, but local to this nodewalk. The additional alternative
\indexdef{value of=on invalid>inherited} (which is the default) means to retain the current
value, regardless of how it was set (by an outer nodewalk, explicit \index{nodewalk key>on
invalid}, or the package default, \index{value of=on invalid>error}).
\end{syntax}
\begin{advise}
\item Use \index{node key>Nodewalk} if you need to execute nodewalk keys within the every-step
keylist.
\end{advise}
\begin{forestexample}[index={register>every step}]
\begin{forest}
for 2=calign with current, for children={for descendants={circle,draw}}
[every step,
[independent,for nodewalk={
1,Nodewalk={~every step=independent~}{1,every step=fill,1}{},1
}{draw=red},
[[[[]]]]]
[inherited,for nodewalk={
1,Nodewalk={~every step=inherited~}{1,every step=fill,1}{},1
}{draw=red},
[[[[]]]]]
[shared,for nodewalk={
1,Nodewalk={~every step=shared~}{1,every step=fill,1}{},1
}{draw=red},
[[[[]]]]]]
\end{forest}
\end{forestexample}
\begin{forestexample}[index={history,walk back}]
\begin{forest}
mark/.style={tempcounta+=1,content+/.register=tempcounta,content+={,}},
[history:\\effect on the,align=center
[inner nodewalk
% uncommenting this would result in an error:
% [independent, delay={for nodewalk={
% tempcounta=0,111,
% Nodewalk={history=independent}{walk back=2}{mark,fill=yellow}
% }{mark,draw=red}},
% [[[]]]]
[inherited\\or\\shared, align=center,delay={for nodewalk={
tempcounta=0,111,
Nodewalk={~history=inherited~}{walk back=2}{mark,fill=yellow}
}{mark,draw=red}},
[[[]]]]]
[outer nodewalk
[inherited,delay={for nodewalk={
tempcounta=0,111,
Nodewalk={~history=inherited~}{11}{mark,fill=yellow},
walk back=2
}{mark,draw=red}},
[[[[[]]]]]]
[shared,delay={for nodewalk={
tempcounta=0,111,
Nodewalk={~history=shared~}{11}{mark,fill=yellow},
walk back=2
}{mark,draw=red}},
[[[[[]]]]]]]]
\end{forest}
\end{forestexample}
\indexitem{step>nodewalk}|=|\meta{nodewalk}\meta{keylist: every-step}
This key is a shorthand for
\begin{center}
\index{step>Nodewalk}|={|\index{option of=Nodewalk>every step}|=independent,|\index{option
of=Nodewalk>history}|=independent,|\index{option of=Nodewalk>on
invalid}|=inherited}|\meta{nodewalk}\meta{keylist: every-step}
\end{center}
\begin{advise}
\item \index{for step=\index{nodewalk}} is the most common way to explicitely invoke a nodewalk from a
node keylist (the keylist immediately following the content of the node).
\end{advise}
\indexitem{step>nodewalk'}|=|\meta{nodewalk}
This key is a shorthand for
\begin{center}
\index{step>Nodewalk}|={|\index{option of=Nodewalk>every step}|=inherited,|\index{option
of=Nodewalk>history}|=independent,|\index{option of=Nodewalk>on
invalid}|=inherited}|\meta{nodewalk}|{}|
\end{center}
\begin{advise}
\item Using this key, it is easy to ``\emph{temporarily} change'' the \index{register>every step}
keylist of a nodewalk.
\item Using \index{for step=\index{nodewalk'}} is probably the easiest way to make a ``trip''
within a nodewalk, i.e.\ walk some steps but return to their origin afterwards.
\item This key (with or without the \index{for step} prefix) is not available as a node key --- it
would make little sense there, as it has no every-step keylist argument.
\end{advise}
\end{syntax}
\subsubsection{Single-step keys}
\label{ref:single-step-keys}
Single-step nodewalk keys visit a single node. The behaviour in the situation when the target node
does not exist is determined by \index{nodewalk key>on invalid}.
For each single-step key, spatial propagator \index{for step=\meta{step}} is also defined.
\index{for step=\meta{step}}|=|\meta{keylist} is equivalent to
\index{for step=\index{nodewalk}}|={|\meta{step}|}{|\meta{keylist}|}|. If the step takes an argument, then its
\index{for step=\meta{step}} propagator takes two and the argument of the step precedes the
\meta{keylist}. See also \S\ref{ref:spatial-propagators}.
Linear order below means the order of nodes in the bracket representation, i.e.\ depth-first
parent-first first-child-first.
\begin{syntax}
\indexitem{step>current} an ``empty'' step: the current node remains the same\footnote{While it
might at first sight seem stupid to have an empty step, this is not the case. For example,
using propagator \index{for step=\index{current}} derived from this step, one can process a \meta{keylist} constructed using \index[not index,print format+={result+={\index[not print]{wrap pgfmath arg}\index[not print]{wrap $n$ pgfmath args}}}]{handler>wrap ($n$) pgfmath arg(s)} or \index{wrap value}.}
\indexitem{step>first} the first child
\indexitem{step>first leaf}, \indexdef{step>first leaf'} the first leaf (terminal node) of the
current node's descendants (|first leaf|) or subtree (|first leaf'|), in the linear order
\indexitem{step>id}|=|\meta{id} the node with the given id; this step does not depend on the current node
\indexitem{step>last} the last child
\indexitem{step>last dynamic node} the last non-integrated (created/removed/replaced) node; see \S\ref{ref:dynamic}
\indexitem{step>last leaf}, \indexdef{step>last leaf'} the last leaf (terminal node) of the
current node's descendants (|last leaf|) or subtree (|last leaf'|), in the linear order
\indexitem{step>n}|=|$n$ the $n$th child; counting starts at $1$\footnote{Note that \keyname{n}
\emph{without} an argument is a short form of \keyname{next}.}
\indexitem{step>n'}|=|$n$ the $n$th child, starting the count from the last child
\indexitem{step>name}|=|\meta{name} the node with the given name or alias; this step does not depend on the current node
\indexitem{step>next} the next sibling
\indexitem{step>next leaf} the next node (in the linear order) which is a leaf (the current node need not be a leaf)
\indexitem{step>next node} the next node of the entire tree, in the linear order
\indexitem{step>next on tier}|=|\meta{tier} the next node (in the linear order) on the given tier; if no tier is given, assume the tier of the current node
\indexitem{step>origin} the starting node of the nodewalk; note that the starting point does not automatically count as a step: if you want to step on it, use this key (or \index{current}, at the beginning of the nodewalk)
\indexitem{step>parent} the parent
\indexitem{step>previous} the previous sibling
\indexitem{step>previous leaf} the previous node (in the linear order) which is a leaf (the current node need not be a leaf)
\indexitem{step>previous node} the previous node of the entire tree, in the linear order
\indexitem{step>previous on tier}|=|\meta{tier} the previous node (in the linear order) on the given tier; if no tier is given, assume the tier of the current node
\indexitem{step>root} the root node, i.e.\ the ancestor of the current node without the parent; note that this key \emph{does} depend on the current node
\indexitem{step>root'} the formal root node (see \index{set root} in \S\ref{ref:dynamic}); this key does not depend on the current node
\indexitem{step>sibling} the sibling
(don't use if the parent doesn't have exactly two children \dots)
\indexitem{step>to tier}|=|\meta{tier} the first ancestor of the current node (or the node itself) on the given \meta{tier}
\end{syntax}
\subsubsection{Multi-step keys}
\label{ref:multi-step-keys}
Multi-step keys visit several nodes, in general. If a multi-step key visits no nodes, the current
node remains unchanged.
For each multi-step key, spatial propagator \index{for step=\meta{step}} is also defined, see
\S\ref{ref:spatial-propagators}.
Many of the keys below have a |reversed| variant. Those keys reverse the order of \emph{children}.
Note that in general, this differs from operation key \index{reverse}, which reverses the order of
the entire embedded nodewalk.
Linear order below means the order of nodes in the bracket representation, i.e.\ depth-first
parent-first first-child-first.
\begin{syntax}
\indexitem{step>children}, \indexdef{step>children reversed}
Visit all the children of the current
node.
\indexitem{step>tree}, \indexdef{step>tree reversed}
\itemnosep
\indexitem{step>tree children-first}, \indexdef{step>tree children-first reversed}
\itemnosep
\indexitem{step>tree breadth-first}, \indexdef{step>tree breadth-first reversed}
Visit the current node and all its descendants.
The above keys differ in the order the nodes are visited. The basic key, \keyname{tree},
traverses the nodes in the depth-first, parent-first first-child-first order, i.e.\ the order in
which they are given in the bracket representation: so it visits the parent before its children and
it visits the children from the first to the last.
|reversed| variants reverse the order of \emph{children}, visiting them from the last to the first
(from the viewpoint of the bracket representation).
|children-first| variants visit the children before the parent.
|breadth-first| variants behave like |level| steps below: they first visit level |0| nodes, then
level |1| nodes etc.
\begin{forestexample}[index={}]
\forestset{
enumerate/.style={
tempcounta=1,
for #1={
content/.pgfmath=tempcounta,
tempcounta+=1
}
}
}
\newcommand\enumtree[1]{%
\begin{forest}
[#1,l sep=0,for n=1{
l=0,no edge,delay={enumerate=#1}}
[[[[][]][[][]]][[[][]]]]
]
\end{forest}
}
\renewcommand\arraystretch{2}
\begin{tabular}{cc}
\enumtree{tree}&
\enumtree{tree reversed}\\
\enumtree{tree children-first}&
\enumtree{tree children-first reversed}\\
\enumtree{tree breadth-first}&
\enumtree{tree breadth-first reversed}
\end{tabular}
\end{forestexample}
\indexitem{step>descendants}, \indexdef{step>descendants reversed}
\itemnosep
\indexitem{step>descendants children-first}, \indexdef{step>descendants children-first reversed}
\itemnosep
\indexitem{step>descendants breadth-first}, \indexdef{step>descendants breadth-first reversed}
Visit all the descendants of the current node.
Like the |tree| keys, but the current node is not visited.
\indexitem[print form+=\spaces{9}]{step>relative level<},
\indexdef[print form+=\spaces{9}]{step>relative level},
\indexdef[set={form=relative level\protect\greaterthan}]{step>relative levelGT}\texttt{\spaces{9}}|=|\meta{count}
\itemnosep
\indexitem{step>relative level reversed<},
\indexdef{step>relative level reversed},
\indexdef[set={form=relative level reversed\protect\greaterthan}]{step>relative level reversedGT}|=|\meta{count}
\itemnosep
\indexitem[print form+=\spaces{9},+print form=\spaces{9}]{step>level<},
\indexdef[print form+=\spaces{9},+print form=\spaces{9}]{step>level},
\indexdef[set={form=level\protect\greaterthan},+print form=\spaces{9}]{step>levelGT}\texttt{\spaces{9}}|=|\meta{count}
\itemnosep
\indexitem[+print form=\spaces{9}]{step>level reversed<},
\indexdef[+print form=\spaces{9}]{step>level reversed},
\indexdef[set={form=level reversed\protect\greaterthan},+print form=\spaces{9}]{step>level reversedGT}|=|\meta{count}
Visits the nodes in the subtree of the current node whose level (depth) is less than \emph{or
equal to}, equal to, or greater than \emph{or equal to} the given level.
The |relative| variants consider the level as relative to the current node: relative level of the
current node is $0$; relative level of its children is $1$, of its grandchildren $2$, etc. The
absolute variants consider the depth with respect to the (geometric) root, i.e.\ as returned by
node option \index{readonly option>level}.
The nodes are traversed in the breadth-first order. The |reversed| variants reverse the order of
the children within each level, but the levels are still traversed from the highest to the
deepest.
\indexitem{step>leaves}
Visits all the leaves in the current node's subtree.
\indexitem[index key={level-}]{step>-level}|=|\meta{count}
\itemnosep
\indexitem[index key={level-'}]{step>-level'}|=|\meta{count}
Visits all the nodes \meta{count} levels above the leaves in the current node's subtree.
\indexitem[+print form=\spaces{12},print form+=\spaces{9}]{step>preceding siblings}\quad\quad
\indexdef[+print form=\spaces{12}]{step>following siblings}%
\itemnosep
\indexitem[print form+=\spaces{9}]{step>current and preceding siblings}\quad\quad
\indexdef{step>current and following siblings}%
\itemnosep
\indexitem[+print form=\spaces{12}]{step>preceding siblings reversed}\quad\quad
\indexdef[+print form=\spaces{12}]{step>following siblings reversed}%
\itemnosep
\indexitem{step>current and preceding siblings reversed}\quad\quad
\indexdef{step>current and following siblings reversed}%
\itemnosep
\indexitem[+print form=\spaces{22},print form+=\spaces{9}]{step>siblings}%
\itemnosep
\indexitem[print form={current and \spaces{9} siblings\spaces{9}}]{step>current and siblings}%
\itemnosep
\indexitem[+print form=\spaces{22},print form+=\spaces{9}]{step>siblings reversed}%
\itemnosep
\indexitem[print form={current and \spaces{9} siblings reversed}]{step>current and siblings reversed}%
Visit preceding, following or all siblings; visit the current node as well or not; visit in normal
or reversed order.
\indexitem{step>ancestors}
\itemnosep
\indexitem{step>current and ancestors}
Visit the ancestors of the current node, starting from the parent/current node, ending at the root node.
\indexitem[+print form=\spaces{12}]{step>preceding nodes}\quad\quad
\indexdef[+print form=\spaces{12}]{step>following nodes}%
\itemnosep
\indexitem{step>current and preceding nodes}\quad\quad
\indexdef{step>current and following nodes}%
Visit all preceding or following nodes of the entire tree, in the linear order; visit the current node as well or not.
\end{syntax}
\subsubsection{Operations}
\label{ref:nodewalk-operations}
Generally speaking, nodewalk operations take an \emph{input nodewalk} and transform it into
an \emph{output nodewalk}, while possibly also having side effects.
The most important categorization of operations is in terms of the input nodewalk:
\begin{itemize}
\item ``Normal'' keys execute the input nodewalk ``invisibly'', i.e.\ with a every-step keylist that
is initially empty. However, even such an ``invisible'' nodewalk might not always be completely
without effect. For example, the effects of any node keys contained in the input nodewalk or
modifications of its (initially empty) every-step keylist will be felt.
\item Most of the operation keys have the |walk_and_...| variant, where input given nodewalk is meant to
be ``visible'': it is walked directly in the context of the invoking nodewalk (specifically, with
its every-step keylist in effect).
\item Some operation keys have the |..._in_nodewalk| variant, which operates on the portion of the
current nodewalk that was already walked.
\item \index{load} has no input nodewalk.
\end{itemize}
All operation keys except |..._in_nodewalk| variants can be prefixed by \index{for step} to create a
spatial propagator (\S\ref{ref:spatial-propagators}).
The output nodewalk is always walked in the context of the invoking nodewalk. However, note that,
as mentioned above, in the case of |walk_and_...| variants, that context can be changed during the
execution of the input nodewalk.
Trivia: \index{save} is the only operation with no output nodewalk and also the only operation with
a ``side effect'' (of saving the nodewalk, obviously).
For some operations (\index{filter} and \index{branch}), the every-step keylist contains instructions
on how collect the relevant information. While you can safely append and prepend to
\index{register>every step} keylist of their input nodewalk, you should not completely rewrite
it. If you want the operations to actually work, of course.
\begin{syntax}
\indexitem{step>group}|=|\meta{nodewalk}
Treat \meta{nodewalk} as a single step of the (outer) nodewalk, i.e.\ the outer every-step keylist
is executed only at the end of the embedded nodewalk. The embedded \meta{nodewalk} inherits
history from the outer nodewalk. Using this key is equivalent to writing
\begin{center}
\index{step>Nodewalk}|={|\index{option of=Nodewalk>every step}|=independent,|\index{option
of=Nodewalk>history}|=inherited}|\meta{nodewalk}|{}, current|
\end{center}
\indexitem{step>reverse}|=|\meta{nodewalk}
\itemnosep
\indexitem{step>walk and reverse}|=|\meta{nodewalk}
Visits the nodes of the given \meta{nodewalk} in the reversed order.
\indexitem{step>unique}|=|\meta{nodewalk}
Walks the \meta{nodewalk}, but visits each node at most once.
\indexitem{step>filter}|=|\meta{nodewalk}\index{forestmath=condition}
Visit the nodes of the given \meta{nodewalk} for which the given \meta{condition} is true.
\begin{advise}
\item You can safely append and prepend to \index{register>every step} keylist during the input
\meta{nodewalk}, but you should not completely rewrite it.
\end{advise}
\indexitem{step>branch}|={|\meta{nodewalk$_1$}|,...,|\meta{nodewalk$_n$}|}|
\itemnosep
\indexitem{step>branch'}|={|\meta{nodewalk$_1$}|,...,|\meta{nodewalk$_n$}|}|
Visit the nodes in a ``cartesian product'' of any number of nodewalks, where a cartesian product is
defined as a nodewalk where at every step of \meta{nodewalk$_i$} ($1\leq i<n$),
\meta{nodewalk$_{i+1}$} is executed.
The |branch| variant visits only the nodes visited by the innermost nodewalk, \meta{nodewalk$_n$}.
The |branch'| variant visits the nodes visited by all the nodewalks of the product,
\meta{nodewalk$_1$} \dots\ \meta{nodewalk$_n$}.
For an example of each, see \index{c-commanded} and \index{c-commanders} from the
\reflibrary{linguistics} library.
\begin{advise}
\item You can safely append and prepend to \index{register>every step} keylists during the input
\meta{nodewalk}s, but you should not completely rewrite them.
\end{advise}
\indexitem{step>save}|=|\meta{toks: name}\meta{nodewalk}
\itemnosep
\indexitem{step>walk and save}|=|\meta{toks: name}\meta{nodewalk}
Saves the given \meta{nodewalk} under the given name.
\indexitem{step>save append}|=|\meta{toks: name}\meta{nodewalk}
\itemnosep
\indexitem{step>save prepend}|=|\meta{toks: name}\meta{nodewalk}
\itemnosep
\indexitem{step>walk and save append}|=|\meta{toks: name}\meta{nodewalk}
\itemnosep
\indexitem{step>walk and save prepend}|=|\meta{toks: name}\meta{nodewalk}
Appends/prepends the given \meta{nodewalk} to nodewalk \meta{name}.
\indexitem{step>load}|=|\meta{toks: name} Walks the nodewalk saved under the given name.
Note that it is node \index{readonly option>id}s that are saved: loading a named nodewalk with in a context of
a different current node, or even with a tree whose geometry has changed (see \S\ref{ref:dynamic})
will still visit exactly the nodes that were visited when the nodewalk was saved.
\indexitem{step>sort}|=|\meta{nodewalk}
\itemnosep
\indexitem{step>sort'}|=|\meta{nodewalk}
\itemnosep
\indexitem{step>walk and sort}|=|\meta{nodewalk}
\itemnosep
\indexitem{step>walk and sort'}|=|\meta{nodewalk}
Walks the nodes of the nodewalk in the order specified by the last invokation of \index{sort
by}. The \keyname{sort} variants sort in the ascending order, the \keyname{sort'} variants in
the descending order. The \keyname{walk and sort} variants first visit the nodes in the order
specified by the given \meta{nodewalk}.
\indexitem{node key>sort by}|={|\index{forestmath}|,|\dots|,|\index{forestmath}|}|
Sets the sorting order used by all keys comparing nodes: \index{step>sort}, \index{step>min}
and \index{step>max} key families in the nodewalk namespace, and the \index{dynamic
tree>sort} key family in the option namespace (dynamic tree).
For each node being ordered, an ``$n$-dimensional coordinate'' is computed by evaluating the given
list of |pgfmath| expressions in the context of that node.\footnote{Don't worry, lazy evaluation
is used.} Nodes are then ordered by the usual sort order for multi-dimensional arrays: the
first item is the most important, the second item is the second most important, etc.
Simply put, if you want to sort first by the number of children and then by content, say
|sort_by={|\index[+print format=pgfmath]{n children}|,_|\index{content}|}|.
In the simplest case, the given \index{forestmath} expressions are simply node options. However, as
any |pgfmath| expression is allowed in the sort key, you can easily sort by the product of the
content of the current node and the content of its first child:
|sort_by={|\index{content}|()*|\index{content}|("|\index>{!}|1")|.
To sort alphabetically, one must use the argument processor (\S\ref{ref:argument-processor}) to
specify the sort order. In particular, the key must be marked as text using \index{processor>t}.
The first example below shows a simple alphabetical sort by content; the second sorts the
filenames by suffix first (in the ascending order) and then by the basename (in the descending
order, see \index{processor>-}).
\begin{forestexample}
\begin{forest}
[,phantom,grow'=0,for children={anchor=west,child anchor=west},s sep=0,
delay={~sort by=>O+t{content},sort~}
[example.tex][example.pdf][example.log][example.aux]
[thesis.tex][thesis.pdf][thesis.log][thesis.aux][thesis.toc]
]
\end{forest}
\end{forestexample}
\begin{forestexample}
\begin{forest}
declare toks={basename}{},
declare toks={extension}{},
[,phantom,grow'=0,for children={anchor=east},s sep=0,
delay={
for children={split option={content}{.}{basename,extension}},
~sort by={>O+t{extension},>O+t-{basename}}~,
~sort~,
}
[example.tex][example.pdf][example.log][example.aux]
[thesis.tex][thesis.pdf][thesis.log][thesis.aux][thesis.toc]
]
\end{forest}
\end{forestexample}
\indexitem{step>min}|=|\meta{nodewalk}, \indexdef{step>max}|=|\meta{nodewalk}
\itemnosep
\indexitem{step>walk and min}|=|\meta{nodewalk}, \indexdef{step>walk and max}|=|\meta{nodewalk}
\itemnosep
\indexitem{step>mins}|=|\meta{nodewalk}, \indexdef{step>maxs}|=|\meta{nodewalk}
\itemnosep
\indexitem{step>walk and mins}|=|\meta{nodewalk}, \indexdef{step>walk and maxs}|=|\meta{nodewalk}
Visit the node(s) in the given \meta{nodewalk} with a minimum/maximum value with
respect to the sort order previously specified by \index{sort by}.
Variants \keyname{mins}/\keyname{maxs} visit all the nodes that with the minimum/maximum value of
the sorting key; variants \keyname{min}/\keyname{max} visit only the first such node (first in the order specified by the given nodewalk).
\indexitem{step>min in nodewalk}, \indexdef{step>max in nodewalk}
\itemnosep
\indexitem{step>mins in nodewalk}, \indexdef{step>maxs in nodewalk}
\itemnosep
\indexitem{step>min in nodewalk'}, \indexdef{step>max in nodewalk'}
These keys search for the minimum/maximum among the nodes that were already visited in the current
nodewalk.
Keys \keyname{mins in nodewalk} and \keyname{maxs in nodewalk} visits all nodes that reach the minimum/maximum, while keys \keyname{min in nodewalk} and \keyname{max in nodewalk} variants visit only the first such node.
Keys \keyname{min in nodewalk'} and \keyname{max in nodewalk'} visit the first minimal/maximal
node by moving back in the history, see \index{back}.
\end{syntax}
\subsubsection{History}
\label{ref:nodewalk-history}
\FoRest; keeps track of nodes visited in a nodewalk and makes it possible to revisit them, in a
fashion similar to clicking the back and forward button in a web browser.
These keys cannot be prefixed by \index{for step}.
\begin{syntax}
\indexitem{step>back}|=|\meta{count: n}
\itemnosep
\indexitem{step>jump back}|=|\meta{count: n}
\itemnosep
\indexitem{step>walk back}|=|\meta{count: n}
Move $n$ steps back in the history. In the \keyname{back} variant, all steps are fake; in
the \keyname{jump back} variant, the final step is real; and in the \keyname{walk back} variant,
all steps are real.
Note that as the origin is not a part of the history, these keys will \emph{not} step there
(unless \index{current} was the first step of your nodewalk). (Use \index{origin} to move
to the origin of the nodewalk.)
\indexitem{step>forward}|=|\meta{count: n}
\itemnosep
\indexitem{step>jump forward}|=|\meta{count: n}
\itemnosep
\indexitem{step>walk forward}|=|\meta{count: n}
Move $n$ steps forward in the history. In the \keyname{forward} variant, all steps are fake; in
the \keyname{jump forward} variant, the final step is real; and in the \keyname{walk forward} variant,
all steps are real.
\indexitem{node key>save history}|=|\meta{toks: back name}\meta{toks: forward name}
Saves the backwards and forwards history under the given names. (Load them using \index{load}.) The
backwards history is saved in the reverse order of how it was walked, i.e.\ outward from the
perspective of the current position in the nodewalk.
\end{syntax}
\subsubsection{Miscellaneous}
\label{ref:nodewalk-miscellaneous}
The following nodewalk keys are not steps. Rather, they influence the behaviour of nodewalk steps in
various ways. The keys in this section having \meta{nodewalk} arguments do not start a new nodewalk
in the sense of \S\ref{ref:embedded-walks}; the given nodewalk steps rather become a part of the
current nodewalk.
\begin{syntax}
\indexitem{register>every step}|=|\meta{keylist} Contains the every-step keylist of the current
nodewalk.
\indexitem{nodewalk key>fake}|=|\meta{nodewalk}
\itemnosep
\indexitem{nodewalk key>real}|=|\meta{nodewalk}
The \meta{nodewalk} embedded under |fake| consists of ``fake'' steps: while
the current node is changed, every-step keylist is not executed and the history is not updated.
Note that these keys do not introduce an embedded nodewalk. The given \meta{nodewalk} will not
have its own history and every-step keylist.
|real| undoes the effect of |fake|, but cannot make real the implicitely fake steps, such as the
return to the origin in spatial propagators like \index{for step=\index{nodewalk}}.
|fake| and |real| can be nested without limit.
\indexitem{step>last valid}
\itemnosep
\indexitem{step>last valid'}
If the current node is valid, these keys do nothing. If the current node of the nodewalk is
invalid (i.e.\ its \index{readonly option>id} is $0$), they step to the last valid visited node. If
there was no such node, they step to the origin of the nodewalk.
The variant \emph{without} |'| makes a fake step. More precisely, it behaves as if both
\index{nodewalk key>fake} and \index{nodewalk key>on invalid}|=fake| are in effect.
\indexitem{nodewalk key>on invalid}|={|\alternative{error,fake,step}|}|\meta{nodewalk}
This key determines what should happen if a nodewalk step landed on the invalid node, i.e.\ the node
with \index{readonly option>id}|=0|.
There is a moment within the step when the current node is changed but the step itself is not yet
really done, is ``still fake'', i.e.\ the history is not yet updated and the every-step keylist is
not yet executed. If the new current node is invalid, this key determines what should happen next.
\let\outerleftmargin\leftmargin
\begin{syntax}
\item |on invalid={|\indexdef{value of=on invalid>error}|}|\meta{nodewalk} produces an error;
\item |on invalid={|\indexdef{value of=on invalid>fake}|}|\meta{nodewalk} does nothing: history is
not updated and the every-step keylist is not executed, thus making the step essentialy fake;
\item |on invalid={|\indexdef{value of=on invalid>error if real}|}|\meta{nodewalk} produces an
error unless \index{nodewalk key>fake} is in effect.
\item |on invalid={|\indexdef{value of=on invalid>last valid}|}|\meta{nodewalk} returns to the
last valid node, by making a fake step, like \index{step>last valid}.
\end{syntax}
Loops with the implicit |id=0| condition (\S\ref{ref:loops}) automatically switch to
|on_invalid=fake| mode.
See also \index{step>Nodewalk} option \index{option of=Nodewalk>on invalid}.
\indexitem{nodewalk key>options}=\meta{keylist: node keys}
Execute the given node options in the context of the current node.
There is not much need to use this key, as any keys that are not (long) steps or sequences of
short steps are automatically used as \foRest; node options any way, but there are still usage
cases, for example whenever the names of node options and (long) steps are the same, or in a style
that wants to ensure there is no overlap.
\indexitem{nodewalk key>strip fake steps}|=|\meta{nodewalk}
If \meta{nodewalk} ends with fake steps, return to the last node current before those steps were made. For details, see \index{define long step}.
\end{syntax}
\subsubsection{Short-form steps}
\label{ref:short-form-steps}
All short forms of steps are one token long. When using them, there is no need to separate them by
commas. Here's the list of predefined short steps and their corresponding long-form steps.
\begin{syntax}
\indexitem{short step>1}, \indexdef{short step>2}, \indexdef{short step>3}, \indexdef{short step>4}, \indexdef{short step>5}, \indexdef{short step>6}, \indexdef{short step>7}, \indexdef{short step>8}, \indexdef{short step>9} the first, \dots, ninth child --- \index{readonly option>n}|=1|,\dots,|,9|
\indexitem{short step>l} the last child --- \index{step>last}
\indexitem{short step>u} the parent (up) --- \index{step>parent}
\indexitem{short step>p} the previous sibling --- \index{previous}
\indexitem{short step>n} the next sibling --- \index{next}
\indexitem{short step>s} the sibling --- \index{sibling}
\indexitem{short step>P} the previous leaf --- \index{previous leaf}
\indexitem{short step>N} the next leaf --- \index{next leaf}
\indexitem{short step>F} the first leaf --- \index{first leaf}
\indexitem{short step>L} the last leaf --- \index{last leaf}
\indexitem[set={index key={<GT},form=\protect\greaterthan}]{short step>GT}
the next node on the current tier --- \index{next on tier}
\indexitem{short step><} the previous node on the current tier --- \index{previous on tier}
\indexitem{short step>c} the current node --- \index{current}
\indexitem{short step>o} the origin --- \index{origin}
\indexitem{short step>r} the root node --- \index{root}
\indexitem{short step>R} the formal root node --- \index{root'}
\indexitem{short step>b} back one fake step in history --- \index{back}|=1|
\indexitem{short step>f} forward one fake step in history --- \index{forward}|=1|
\indexitem{short step>v} last valid node in the current nodewalk, fake version --- \index{step>last valid}
\indexitem{short step>*}\meta{count: n}\meta{keylist} repeat keylist $n$ times --- \index{repeat}|=|\meta{count: n}\meta{keylist}
\item {\rstyle $\{$}\meta{keylist}{\rstyle $\}$} put keylist in a group --- \index{group}|=|\meta{keylist}
\end{syntax}
\subsubsection{Defining steps}
\label{ref:defining-steps}
You can define your own steps, both long and short, or even redefine predefined steps. Note,
though, that it is not advisable to redefine long steps, as their definitions are interdependent;
redefining short steps is always ok, however, as they are never used in the code of the package.
\begin{syntax}
\indexitem{node key>define long step}|=|\meta{name}\meta{options}\meta{nodewalk}
Define a long-form step named \meta{name} as equivalent to \meta{nodewalk}. \meta{options} control the exact behaviour or the defined step.
\let\outerleftmargin\leftmargin
\begin{syntax}
\item\indexdef{option of=define long step>n args}|=|\meta{number}\hfill |0|
\item\indexdef{option of=define long step>make for}|=|\meta{boolean}\hfill |true|
Should we make a \index{for step} prefix for the step?
\item\indexdef{option of=define long step>strip fake steps}|=|\meta{boolean}\hfill |true|
Imagine that \meta{nodewalk} ends with fake steps. Now, fake steps are usually just a computational tool, so we normally wouldn't want the current node after the walk to be one of them. As far as the outer world is concerned, we want the node to end at the last real step. However, simply appending \index{step>last valid} to our style will not work. Imagine that the nodewalk results in no steps. In this case, we'd want to remain at the origin of our empty nodewalk. However, imagine further that the (outer) step just before the empty nodewalk was fake. Then \index{step>last valid} will not step to the correct node: instead of staying at the origin, it will go to the node that the last real step prior to our nodewalk stepped to. In case there was no such real step, we'd even step to the invalid node (normally getting an error).
Defining the step using |strip fake steps| ensures the correct behaviour described
above. Set |strip fake steps=false| only when the fake steps at the end of the nodewalk are
important to you.
\begin{advise}
\item See also nodewalk key \index{nodewalk key>strip fake steps}.
\end{advise}
\end{syntax}
\begin{forestexample}[index={define long step,option of=define long step>n args,conditional>if,step>n,while,readonly option>n,next}]
\forestset{
~define long step~={children from to}{n args=2}{
if={#1>#2}{}{n=#1,while={n()<#2}{next}}
}
}
\begin{forest}
for children from to={2}{5}{draw}
[root[1][2][3][4][5][6]]
\end{forest}
\end{forestexample}
\indexitem{node key>define short step}|=|\meta{token: short step}\meta{n args}\meta{nodewalk}
Define short step taking $n$ arguments as the given \meta{nodewalk}. Refer to the arguments in the usual way, via |#1|, \dots.
To (re)define braces, |{}|, write |define short step={group}{1}{...}|.
\indexitem{handler>nodewalk style}|=|\meta{nodewalk}
\meta{nodewalk key}|/.nodewalk style=|\meta{nodewalk} is a shorthand for\\
|for_nodewalk={|\meta{nodewalk key}|/.style=|\meta{nodewalk}|}{}|.
\end{syntax}
\subsection{Conditionals}
\label{ref:conditionals}
All conditionals take arguments \meta{true keylist} and \meta{false keylist}. The interpretation of
the keys in these keylists depends on the environment the conditional appears in. If it is a part
of a nodewalk specification, the keys are taken to be nodewalk keys (\S\ref{ref:nodewalks}),
otherwise node keys (\S\ref{ref:node-keys}).
All the conditionals can be nested safely.
\begin{syntax}
\indexitem{conditional>if}|=|\index{forestmath=condition}\meta{true keylist}\meta{false keylist}
If \index{forestmath=condition} evaluates to |true| (non-zero), \meta{true keylist} is processed (in
the context of the current node); otherwise, \meta{false keylist} is processed.
For a detailed description of |pgfmath| expressions, see \cite[part VI]{tikzpgf2.10}. (In short:
write the usual mathematical expressions.)
In the following example, \index{conditional>if} is used to orient the arrows from the smaller
number to the greater, and to color the odd and even numbers differently. (Style |random_tree| is
defined in the front page example.)
\forestset{random tree/.style n args={3}{% #1=max levels, #2=max children, #3=max content
content/.pgfmath={random(0,#3)},
if={#1>0}{repeat={random(0,#2)}{append={[,random tree={#1-1}{#2}{#3}]}}}{}}}
\begin{forestexample}[index={before typesetting nodes,for step,descendants,conditional>if,content,edge,edge label,tree},index>={!},point=if]
\pgfmathsetseed{314159}
\begin{forest}
before typesetting nodes={
for descendants={
if={content()>content("!u")}{edge=->}{
if={content()<content("!u")}{edge=<-}{}},
edge label/.wrap pgfmath arg=
{node[midway,above,sloped,font=\scriptsize]{+#1}}
{int(abs(content()-content("!u")))}
},
for tree={circle,if={mod(content(),2)==0}
{fill=yellow}{fill=green}}
}
[,random tree={3}{3}{100}]
\end{forest}
\end{forestexample}
\indexitem{word prefix=option>conditional>if=\meta{option}}|=|\meta{value}\meta{true keylist}\meta{false keylist}
This simple conditional is defined for every \meta{option} (except boolean options, see below): if
\meta{value} equals the value of the option at the current node, \meta{true keylist} is executed;
otherwise, \meta{false keylist}.
\indexitem{word prefix=boolean option>conditional>if=\meta{boolean option}}|=|\meta{true keylist}\meta{false keylist}
Execute \meta{true keylist} if \meta{boolean option} is true; otherwise, execute \meta{false
keylist}.
\indexitem{word prefix=toks option>conditional>if in=\meta{toks option}}|=|\meta{toks}\meta{true keylist}\meta{false
keylist}
Checks if \meta{toks} occurs in the option value; if it does, \meta{true keylist} are executed,
otherwise \meta{false keylist}.
This conditional is defined only for \meta{toks} options, see \S\ref{sec:option-setting}.
\indexitem[set={
index format={result=if \protect\meta{dimen option}\protect\greaterthan,pgfkey},
print format={result/.option=argument,+result={if\ },result+={>}, pgfkey},
}]{conditional>if dimen GT=\protect\meta{dimen option}}|=|\meta{value}\meta{true keylist}\meta{false keylist}
\itemnosep
\indexitem[set={
index format={result=if \protect\meta{dimen option}<,pgfkey},
print format={result/.option=argument,+result={if\ },result+={<}, pgfkey},
}]{conditional>if dimen LT=\protect\meta{dimen option}}|=|\meta{value}\meta{true keylist}\meta{false keylist}
\itemnosep
\indexitem[set={
index format={result=if \protect\meta{count option}\protect\greaterthan,pgfkey},
print format={result/.option=argument,+result={if\ },result+={>}, pgfkey},
}]{conditional>if count GT=\protect\meta{count option}}|=|\meta{value}\meta{true keylist}\meta{false keylist}
\itemnosep
\indexitem[set={
index format={result=if \protect\meta{count option}<,pgfkey},
print format={result/.option=argument,+result={if\ },result+={<}, pgfkey},
}]{conditional>if count LT=\protect\meta{count option}}|=|\meta{value}\meta{true keylist}\meta{false keylist}
\itemnosep
\indexitem[set={
index format={result=if \protect\meta{dimen register}\protect\greaterthan,pgfkey},
print format={result/.option=argument,+result={if\ },result+={>}, pgfkey},
}]{conditional>if dimen register GT=\protect\meta{dimen register}}|=|\meta{value}\meta{true keylist}\meta{false keylist}
\itemnosep
\indexitem[set={
index format={result=if \protect\meta{dimen register}<,pgfkey},
print format={result/.option=argument,+result={if\ },result+={<}, pgfkey},
}]{conditional>if dimen register LT=\protect\meta{dimen register}}|=|\meta{value}\meta{true keylist}\meta{false keylist}
\itemnosep
\indexitem[set={
index format={result=if \protect\meta{count register}\protect\greaterthan,pgfkey},
print format={result/.option=argument,+result={if\ },result+={>}, pgfkey},
}]{conditional>if count register GT=\protect\meta{count register}}|=|\meta{value}\meta{true keylist}\meta{false keylist}
\itemnosep
\indexitem[set={
index format={result=if \protect\meta{count register}<,pgfkey},
print format={result/.option=argument,+result={if\ },result+={<}, pgfkey},
}]{conditional>if count register LT=\protect\meta{count register}}|=|\meta{value}\meta{true keylist}\meta{false keylist}
If the current value of the dimen/count option/register is greater/less than or equal to
\meta{value}, execute \meta{true keylist}; else, execute \meta{false keylist}.
\indexitem{conditional>if nodewalk valid}|=|\meta{keylist: test nodewalk}\meta{true keylist}\meta{false keylist}
If the test nodewalk finished on a valid node, \meta{true keylist} is processed (in the context of
the current node); otherwise, \meta{false keylist} is processed.
\indexitem{conditional>if nodewalk empty}|=|\meta{keylist: test nodewalk}\meta{true keylist}\meta{false keylist}
If the test nodewalk contains no (real) steps, \meta{true keylist} is processed (in the context of
the current node); otherwise, \meta{false keylist} is processed.
\indexitem{conditional>if current nodewalk empty}|=|\meta{true keylist}\meta{false keylist}
If the current nodewalk contains no (real) steps, \meta{true keylist} is processed (in the context of
the current node); otherwise, \meta{false keylist} is processed.
\indexitem{conditional>if in saved nodewalk}|=|\meta{nodewalk}\meta{toks: nodewalk name}\meta{true keylist}\meta{false keylist}
If the node at the end of \meta{nodewalk} occurs in the saved nodewalk, \meta{true keylist} is
processed (in the context of the current node); otherwise, \meta{false keylist} is processed.
\indexitem{propagator>if have delayed}|=|\meta{true keylist}\meta{false keylist} If any options were
delayed in the current cycle (more precisely, up to the point of the execution of this key),
process \meta{true keylist}, otherwise process \meta{false keylist}. (\index{delay n} will
trigger ``true'' for the intermediate cycles.)
This key assumes that the processing order of the innermost invocation of \index{process
keylist} or \index{process keylist'} is given by \index{processing order}. If this is not
the case, explicitely supply the processing order using \index{if have delayed'}.
\indexitem{propagator>if have delayed'}|=|\meta{nodewalk}\meta{true keylist}\meta{false keylist}
Like \index{if have delayed}, but assume the processing order given by \meta{nodewalk}.
\end{syntax}
The following keys are shortcuts: they execute their corresponding |if ...| conditional for every
node in the subtree of the current node (including the node itself). In other words:
\begin{center}
|where ...|\meta{arg$_1$}\dots\meta{arg$_n$}|/.style={for tree={if ...=|\meta{arg$_1$}\dots\meta{arg$_n$}|}}|
\end{center}
\begin{advise}
\item Except in special circumstances, you probably don't want to embed keys from the \index{where
option} family within a \index{for step=\index{tree}}, as this results in two nested loops. It
is more usual to use an \index{conditional>if} family key there. For an example where using
\index{where option} actually does the wrong thing, see question
\href{http://tex.stackexchange.com/questions/167978/smaller-roofs-for-forest}{Smaller roofs for
forest} on \TeX\ Stackexchange.
\end{advise}
\begin{syntax}
\indexitem{conditional>where}|=|\meta{value}\meta{true keylist}\meta{false keylist}
\itemnosep
\indexitem{word prefix=option>conditional>where=\meta{option}}|=|\meta{value}\meta{true keylist}\meta{false keylist}
\itemnosep
\indexitem{word prefix=boolean option>conditional>where=\meta{boolean option}}|=|\meta{true keylist}\meta{false keylist}
\itemnosep
\indexitem{word prefix=toks option>conditional>where in=\meta{toks option}}|=|\meta{toks}\meta{true keylist}\meta{false keylist}
\itemnosep
\indexitem[set={
index format={result=where \protect\meta{dimen option}\protect\greaterthan,pgfkey},
print format={result/.option=argument,+result={where\ },result+={>}, pgfkey},
}]{conditional>where dimen GT=\protect\meta{dimen option}}|=|\meta{value}\meta{true keylist}\meta{false keylist}
\itemnosep
\indexitem[set={
index format={result=where \protect\meta{dimen option}<,pgfkey},
print format={result/.option=argument,+result={where\ },result+={<}, pgfkey},
}]{conditional>where dimen LT=\protect\meta{dimen option}}|=|\meta{value}\meta{true keylist}\meta{false keylist}
\itemnosep
\indexitem[set={
index format={result=where \protect\meta{count option}\protect\greaterthan,pgfkey},
print format={result/.option=argument,+result={where\ },result+={>}, pgfkey},
}]{conditional>where count GT=\protect\meta{count option}}|=|\meta{value}\meta{true keylist}\meta{false keylist}
\itemnosep
\indexitem[set={
index format={result=where \protect\meta{count option}<,pgfkey},
print format={result/.option=argument,+result={where\ },result+={<}, pgfkey},
}]{conditional>where count LT=\protect\meta{count option}}|=|\meta{value}\meta{true keylist}\meta{false keylist}
\itemnosep
\indexitem[set={
index format={result=where \protect\meta{dimen register}\protect\greaterthan,pgfkey},
print format={result/.option=argument,+result={where\ },result+={>}, pgfkey},
}]{conditional>where dimen register GT=\protect\meta{dimen register}}|=|\meta{value}\meta{true keylist}\meta{false keylist}
\itemnosep
\indexitem[set={
index format={result=where \protect\meta{dimen register}<,pgfkey},
print format={result/.option=argument,+result={where\ },result+={<}, pgfkey},
}]{conditional>where dimen register LT=\protect\meta{dimen register}}|=|\meta{value}\meta{true keylist}\meta{false keylist}
\itemnosep
\indexitem[set={
index format={result=where \protect\meta{count register}\protect\greaterthan,pgfkey},
print format={result/.option=argument,+result={where\ },result+={>}, pgfkey},
}]{conditional>where count register GT=\protect\meta{count register}}|=|\meta{value}\meta{true keylist}\meta{false keylist}
\itemnosep
\indexitem[set={
index format={result=where \protect\meta{count register}<,pgfkey},
print format={result/.option=argument,+result={where\ },result+={<}, pgfkey},
}]{conditional>where count register LT=\protect\meta{count register}}|=|\meta{value}\meta{true keylist}\meta{false keylist}
\itemnosep
\indexitem{conditional>where nodewalk valid}|=|\meta{toks: nodewalk name}\meta{true keylist}\meta{false keylist}
\itemnosep
\indexitem{conditional>where nodewalk empty}|=|\meta{toks: nodewalk name}\meta{true keylist}\meta{false keylist}
\itemnosep
\indexitem{conditional>where in saved nodewalk}|=|\meta{nodewalk}\meta{toks: nodewalk name}\meta{true keylist}\meta{false keylist}
\end{syntax}
\subsection{Loops}
\label{ref:loops}
All loops take a \meta{keylist} argument. The interpretation of the keys in these keylists depends
on the environment the loop appears in. If it is a part of a nodewalk specification,
the keys are taken to be nodewalk keys (\S\ref{ref:nodewalks}), otherwise node keys
(\S\ref{ref:node-keys}).
All loops can be nested safely.
\begin{syntax}
\indexitem{loop>repeat}|=|\meta{number}\meta{keylist}
The \meta{keylist} is processed \meta{number} times.
The \meta{number} expression is evaluated using |pgfmath|.
\indexitem{loop>while}|=|\index{forestmath=condition}\meta{keylist}
\itemnosep
\indexitem{loop>do while}|=|\index{forestmath=condition}\meta{keylist}
\itemnosep
\indexitem{loop>until}|=|\index{forestmath=condition}\meta{keylist}
\itemnosep
\indexitem{loop>do until}|=|\index{forestmath=condition}\meta{keylist}
\keyname{while} loops cycle while the condition is true, \keyname{until} loops terminate when the
condition becomes true.
The \keyname{do} variants check the condition after processing the \meta{keylist}; thus, the
keylist is executed at least once. The variants without the \keyname{do} prefix check the
condition before processing the \meta{keylist}, which might therefore not be processed at all.
When \index{forestmath=condition} is an empty string, condition \index{valid} is implicitely used,
and \meta{keylist} is implicitely embedded in \index{nodewalk key>on invalid}|=fake|. Thus, the |while|
loops will cycle until they ``walk out of the tree'', and |until| loops will cycle until they
``walk into the tree.''
\begin{advise}
\item If a loop ``walks out of the tree'', you can get it back in using \index{step>last valid} or
\index{nodewalk key>strip fake steps}.
\end{advise}
\begin{forestexample}[index={root',content,step>n,delay,for step,nodewalk,do until}]
\pgfmathsetseed{1234}
\begin{forest}
try/.style={root',content+={#1,\ },n=#1},
delay={
for nodewalk={~do until~={}{try/.pgfmath={random(1,20)}},draw}{},
},
[tried:\ [1][2][3][4][5]]
\end{forest}
\end{forestexample}
\indexitem{loop>while nodewalk valid}|=|\meta{nodewalk}\meta{keylist}
\itemnosep
\indexitem{loop>do while nodewalk valid}|=|\meta{nodewalk}\meta{keylist}
\itemnosep
\indexitem{loop>until nodewalk valid}|=|\meta{nodewalk}\meta{keylist}
\itemnosep
\indexitem{loop>do until nodewalk valid}|=|\meta{nodewalk}\meta{keylist}
\itemnosep
\indexitem{loop>while nodewalk empty}|=|\meta{nodewalk}\meta{keylist}
\itemnosep
\indexitem{loop>do while nodewalk empty}|=|\meta{nodewalk}\meta{keylist}
\itemnosep
\indexitem{loop>until nodewalk empty}|=|\meta{nodewalk}\meta{keylist}
\itemnosep
\indexitem{loop>do until nodewalk empty}|=|\meta{nodewalk}\meta{keylist}
\meta{nodewalk} is embedded within \index{nodewalk key>on invalid}|=fake|.
\indexitem(0){node key>break}|=|$n$ Break out of the loop.
The loop is only exited after all the keys in the current cycle have been processed.
The optional argument $n$ ($n\geq0$) specifies which level of embedding to break from; the default
is to break out of the innermost loop.
\indexitem(0){pgfmath>forestloopcount}([$n$])
How many times has the loop repeated until now?
The optional argument $n$ ($n\geq0$) specifies the level of embedding to provide information for;
the default is to count the repetitions of the current, most deeply embedded loop.
\end{syntax}
\subsection{Dynamic tree}
\label{ref:dynamic}
The following keys can be used to change the geometry of the tree by creating new nodes and
integrating them into the tree, moving and copying nodes around the tree, and removing nodes from
the tree.
The \meta{node} that will be (re)integrated into the tree can be specified in the following ways:
\begin{syntax}
\item \meta{empty}: uses the last non-integrated (i.e.\ created/removed/replaced) node.
\begin{advise}
\item This node can also be referred to using nodewalk step \index{last dynamic node}.
\item The list of all such nodes is automatically saved in named nodewalk \indexdef{named
nodewalk>dynamic nodes}, to be \index{load}ed when needed.
\end{advise}
\item \meta{node}: a new node is created using the given bracket representation (the node may
contain children, i.e.\ a tree may be specified), and used as the argument to the key.
The bracket representation must be enclosed in brackets, which will usually be enclosed in
braces to prevent them being parsed while parsing the ``host tree.''
\begin{advise}
\item Unlike the bracket representation in a \index{environment>forest} environment, the bracket
representation of a dynamically created node \emph{must} start with |[|. Specifically, it cannot
begin with a preamble or the action character.
\end{advise}
\item \index{relative node name}: the node \meta{relative node name} resolves to will be used.
\end{syntax}
A dynamic tree operation is made in two steps:
\begin{itemize}
\item If the argument is given by a \meta{node} argument, the new node is created immediately,
i.e.\ while the dynamic tree key is being processed. Any options of the new node are
implicitely \index{delay}ed.
\item The requested changes in the tree structure are actually made between the cycles of keylist
processing.
\end{itemize}
\begin{advise}
\item Such a two-stage approach is employed because changing the tree structure during the dynamic
tree key processing would lead to an unmanageable order of keylist processing.
\item A consequence of this approach is that nested dynamic tree keys take several cycles to
complete. Therefore, be careful when using \index{delay} and dynamic tree keys simultaneously: in
such a case, it is often safer to use \index{before typesetting nodes} instead of \index{delay},
see example (\ref{ex:append}), and it is also possible to define additional stages, see
\S\ref{sec:workflow}.
\item Examples: title page (in style |random tree|) and (\ref{ex:niceemptynodes}) (in style
|xlist|).
\end{advise}
Here is the list of dynamic tree keys:
\begin{syntax}
\indexitem{dynamic tree>append}|=|\meta{empty}\OR|[|\meta{node}|]|\OR\meta{relative node name}
The specified node becomes the new final child of the current node. If the specified node had a
parent, it is first removed from its old position.
\begin{forestexample}[label=ex:append,point=append,index={append,delay,for step,tree,readonly option>n,content,readonly option>n',repeat}]
\begin{forest}
before typesetting nodes={for tree={
if n=1{content=L}
{if n'=1{content=R}
{content=C}}}}
[,repeat=2{append={[
,repeat=3{append={[]}}
]}}]
\end{forest}
\end{forestexample}
\indexitem{dynamic tree>create}|=[|\meta{node}|]|
Create a new node. The new node becomes the last node.
\indexitem{dynamic tree>create'}|=[|\meta{node}|]|
Create a new node and process its given options immediately. The new node becomes the last node.
\indexitem{dynamic tree>insert after}|=|\meta{empty}\OR|[|\meta{node}|]|\OR\meta{relative node name}
The specified node becomes the new following sibling of the current node. If the specified node had a
parent, it is first removed from its old position.
\indexitem{dynamic tree>insert before}|=|\meta{empty}\OR|[|\meta{node}|]|\OR\meta{relative node name}
The specified node becomes the new previous sibling of the current node. If the specified node had a
parent, it is first removed from its old position.
\indexitem{dynamic tree>prepend}|=|\meta{empty}\OR|[|\meta{node}|]|\OR\meta{relative node name}
The specified node becomes the new first child of the current node. If the specified node had a
parent, it is first removed from its old position.
\indexitem{dynamic tree>remove}
The current node is removed from the tree and becomes the last node.
The node itself is not deleted: it is just not integrated in the tree anymore. Removing the root
node has no effect.
\indexitem{dynamic tree>replace by}|=|\meta{empty}\OR|[|\meta{node}|]|\OR\meta{relative node name}
The current node is replaced by the specified node. The current node becomes the last node.
If the specified node is a new node containing a dynamic tree key, it can refer to the replaced
node by the \meta{empty} specification. This works even if multiple replacements are made.
If \keyname{replace by} is used on the root node, the ``replacement'' becomes the root node
(\index{set root} is used).
\end{syntax}
If given an existing node, most of the above keys \emph{move} this node
(and its subtree, of course). Below are the versions of these operations which rather \emph{copy}
the node: either the whole subtree (|'|) or just the node itself (|''|).
\begin{syntax}
\indexitem{dynamic tree>append'}, \indexdef{dynamic tree>insert after'}, \indexdef{dynamic tree>insert before'}, \indexdef{dynamic tree>prepend'},
\indexdef{dynamic tree>replace by'}
Same as versions without |'| (also the same arguments), but it is the copy of the specified node
and its subtree that is integrated in the new place.
\indexitem{dynamic tree>append''}, \indexdef{dynamic tree>insert after''}, \indexdef{dynamic tree>insert before''}, \indexdef{dynamic tree>prepend''},
\indexdef{dynamic tree>replace by''}
Same as versions without |''| (also the same arguments), but it is the copy of the specified node
(without its subtree) that is integrated in the new place.
\begin{advise}
\item You might want to \index{delay} the processing of the copying operations, giving the
original nodes the chance to process their keys first!
\end{advise}
\indexitem{dynamic tree>copy name template}|=|\meta{empty}\OR\meta{macro definition} \hfill\meta{empty}
Defines a template for constructing the \index{option>name} of the copy from the name of the
original. \meta{macro definition} should be either empty (then, the \index{option>name} is
constructed from the \index{readonly option>id}, as usual), or an expandable macro taking one argument (the
name of the original).
\begin{forestexample}
\begin{forest}
copy name template={copy of #1}
[CP,delay={prepend'=subject}
[VP[DP,name=subject[D][NP]][V'[V][DP]]]]
\draw[->,dotted] (subject)--(copy of subject);
\end{forest}
\end{forestexample}
\indexitem{dynamic tree>set root}|=|\meta{empty}\OR|[|\meta{node}|]|\OR\meta{relative node name}
The specified node becomes the new \emph{formal} root of the tree.
Note: If the specified node has a parent, it is \emph{not} removed from it. The node becomes the
root only in the sense that the default implementation of stage-processing will consider it a
root, and thus typeset/pack/draw the (sub)tree rooted in this root. The processing of keys such
as \index{for step=\index{step>parent}} and \index{for step=\index{root}} is not affected: \index{for step=\index{root}} finds the
real, geometric root of the current node. To access the formal root, use nodewalk step
\index{root'}, or the corresponding propagator \index{for step=\index{root'}}.
\indexitem{dynamic tree>sort}, \indexdef{dynamic tree>sort'} Sort the children of the current node,
using the currently active sort key specified in \index{sort by} (see
\S\ref{ref:nodewalk-operations}). |sort| sorts in ascending and |sort'| in descending order.
\end{syntax}
\subsection{Handlers}
\label{ref:handlers}
Handlers are a powerful mechanism of |pgfkeys|, documented in \citep[\S82.3.5]{tikzpgf3.0.0}.
Handlers defined by \foRest; perform a computation and invoke the handled key with its result. The
simple handlers are documented in this section: for \index{handler>process}, see
\S\ref{ref:argument-processor}; for aggregate function handlers, see
\S\ref{ref:aggregate-functions}.
\begin{syntax}
\indexitem{handler>option}|=|\meta{option}
The result is the value of \meta{option} at the current node.
\indexitem{handler>register}|=|\meta{register}
The result is the value of \meta{register}.
\indexitem{handler>pgfmath}|=|\meta{pgfmath expression}
The result is the evaluation of \meta{pgfmath expression} in the context of the current node.
\begin{advise}
\item
If you only need to access an option or register value, using \index{handler>option} or
\index{handler>register} is much faster than using \keyname{.pgfmath}.
\end{advise}
\indexitem{handler>wrap value}|=|\meta{macro definition}
The result is the (single) expansion of the given
\meta{macro definition}. The defined macro takes one parameter. The current value of the
handled option will be passed as that parameter.
\indexitem{handler>wrap $n$ pgfmath args}|=|\meta{macro definition}\meta{arg $1$}\dots\meta{arg $n$}
The result is the (single) expansion of the given \meta{macro definition}. The defined macro
takes $n$ parameters, where $n\in\{2,\dots,8\}$. Expressions \meta{arg $1$} to \meta{arg $n$}
are evaluated using |pgfmath| and passed as arguments to the defined macro.
\indexitem{handler>wrap pgfmath arg}|=|\meta{macro definition}\meta{arg}
Like \index{wrap $n$ pgfmath args} would work for $n=1$.
\end{syntax}
\subsection{Argument processor}
\label{ref:argument-processor}
For a gentle(r) introduction to the argument processor, see \S\ref{tut:wrapping}.
The argument processor takes a sequence of instructions and an arbitrary number of arguments and
transforms the given arguments according to the instructions. This is the generic form of a process
expression:
\begin{syntax}
\item \indexdef{meta>process} = \meta{instructions}\meta{arg $1$}\dots\meta{arg $n$}
\end{syntax}
There are three ways to invoke the argument processor: via handler \index{handler>process}, as one
of the two alternatives of a \index{forestmath} expression and recursively, by its instruction
\index{processor>P}.
\begin{syntax}
\indexitem{handler>process}|=|\index{meta>process}
The result of the computation is passed on to the handled key as a sequence of arguments. When the
argument processor is invoked this way, any number of items can be returned.\footnote{For backward
compatibility, \index{handler>process} is also available as \indexdef{handler>process args}.}
\item \indexdef{meta>forestmath} = \meta{pgfmath}\OR|>|\index{meta>process}
In words, a \index{forestmath} expression is either a \meta{pgfmath} expression or an argument
processor expression (\index{meta>process}) prefixed by |>|.
In other words, \FoRest; accepts an argument processor expression anywhere it accepts a
\meta{pgfmath} expression.\footnote{The only exceptions to the above rule are handler
\index{pgfmath} and argument processor instruction \index{processor>P}.} To indicate that we're
providing an argument processor expression, we prefix it with |>|.
When the argument processor is invoked this way, it should return a single item.
\end{syntax}
\begin{table}
\centering
\tikzexternaldisable
\bracketset{action character=!}%
\begin{forest}
phantom,
for tree={
grow'=0, no edge, inner sep=0, outer sep=0,
},
delay={
sort by={>O+t+c{content}},
sort,
},
before typesetting nodes={
for children={
content={\index{processor>#1}},
for children={
content+={\phantom{(%)
}}}}},
define long step={from to}{n args=2}{
tempcounta=#2,
n=#1,
while/.process=Rw{tempcounta}{n()<##1}{next}
},
draw tree stage/.style={
for root'={
if n children=0{% so that we don't get an error on the first run
}{
draw tree processing order/.nodewalk style={branch={{from to={1}{round(n_children()/3)}},tree}}, draw tree, TeX={~~},
draw tree processing order/.nodewalk style={branch={{from to={1+round(n_children()/3)}{2*round(n_children()/3)}},tree}}, draw tree, TeX={~~},
draw tree processing order/.nodewalk style={branch={{from to={1+2*round(n_children()/3)}{n_children()}},tree}}, draw tree,
}
}
}
[!\bigbadprocesslist]
\end{forest}%
\caption{Argument processor instructions}
\label{tab:allargprocins}
\end{table}
The syntax of argument processor is a cross between |expl3|'s function argument specification and a
Turing machine, spiced with a bit of reversed Polish notation. ;-)
Think of \meta{instructions} as a program and \meta{arg $1$}\dots\meta{arg $n$} as the data that
this program operates on.
If you're familiar with Turing machines: like a Turing machine, the argument processor has a notion
of a head; unlike a Turing machine, the argument processor head is positioned not over some
argument, but between two arguments. If you're not familiar with Turing machines: imagine the
arguments as items on a tape and the argument processor as a head that is always located between
some two items. As the head is between two arguments, we can talk about the arguments on the left
and the arguments on the right.
In general, an instruction will take some items from the left and some from the right (deleting them
from the tape), perform some computation and insert the result on the tape, some result items to the
left and some to the right. However, most instructions simply take an item from the right, do
something with it, and put the (single-item) result to the left; in effect, the head is moved one
item to the right. At the beggining, all the arguments are always on the right, so the general idea
is that the program will walk through the given arguments, processing them in order.
Descriptions of individual instructions, given below, contain (at the right edge of the page) the
argument specification, which tells us about the number of input and output items and the movement
of the head. The input and output are separated by an arrow ($\longrightarrow$), and the green eye
(\textcolor{darkgreen}{\eye}) signifies the position of the head with respect to the (input or
output) items.
For example, instruction \index{processor>O}, which converts an option name into the option value,
exemplifies the most common scenario: it takes one argument from the right and puts the result to
the left (in other words, the head moves one item to the right). Wrapping instrucion
\index{processor>w} is more complicated. Given instruction \index{processor>w}$n$, the argument
processor takes one argument from the right (the wrapping macro body) and $n$ items from the left
(which become the arguments of the wrapping macro), and puts the resulting item to the left.
Comparisons and boolean operations are the instructions resembling the reverse Polish notation: they
take the arguments from the left and put the result to the left, as well. Finally, it is worth
mentioning instructions \index{processor>noop} and \index{processor>+}, which simply move the head
to the right and left, respectively; given that the usual movement of the head is to the right,
\index{processor>+} can be thought of as a process-the-argument-again instruction.
Before we finally list the available instructions, some notes:
\begin{itemize}
\item \meta{Instructions} may be given in braces or not. If not, everything until the first opening
brace is considered to be an instruction.
\item An argument item (\meta{arg$_k$}) is a standard \TeX\ macro argument: either a token or a
braced token list. (The obvious exception: \meta{arg$_1$} needs to be braced if it follows
braceless instructions.)
\item Spaces in \meta{instructions} and between arguments are ignored. Format your \index{handler>process}
as you wish!
\item Instructions followed by [$n$] below take an optional numeric modifier.
\begin{itemize}
\item The modifier should be given within the instruction string itself, immediately following the
instruction. In particular, no spaces are allowed there. (Sorry for the little white lie
above.) The number should not be enclosed in braces, even if it is more than one digit long.
\item This modifier is always optional: its default value varies from instruction to instruction.
(Providing $0$ means to use the default.)
\item Unless noted otherwise, the optional numerical argument $n$ instruct the argument processor
to repeat the previous instruction $n$ times (by default, 1). For example,
\index{processor>O}|3| is equivalent to
\index{processor>O}\index{processor>O}\index{processor>O}.
\end{itemize}
\end{itemize}
\makeatletter
\NewDocumentEnvironment{indexitemprocessinstruction}{
D(){} % default
O{} % \index []
m % instruction char
o % form of instruction char, if different from #3
D(){} % instruction modifiers
m % first line
>{\ReverseBoolean} s % typeset processor signature?
>{\SplitArgument {3} {&} } m % processor signature
}{%
\write\@auxout{\unexpanded{\gappto\bigbadprocesslist{[{#3}[{#6}]]}}}%
\IfValueTF{#4}{%
\indexitem(#1)[set={form={#4},index form={#4{\protect\ \protect\rm\protect\scriptsize (#6)}},#2}]{processor>#3}#5 #6%
}{%
\indexitem(#1)[set={index form={#3{\protect\ \protect\rm\protect\scriptsize (#6)}},#2}]{processor>#3}#5 #6%
}%
\IfBooleanT{#7}{\hfill\processorsignature#8}%
}{}
\makeatother
\newcommand\processorsignature[4]{%
#1 \textcolor{darkgreen}{\eye} #2
$\longrightarrow$
#3 \textcolor{darkgreen}{\eye} #4%
}
\begin{syntax}
\begin{indexitemprocessinstruction}[index key=_]{noop}[\_]([$n$]){no-op}
{&\meta{arg}&\meta{arg}&}
The argument is not processed, but simply skipped over. In other words, this instruction only
moves the head one item to the right. (This is like |expl3|'s argument specifier |n|.)
$n$ means repetition.
When the end of the instructions is reached, any remaining arguments on the right are processed
using this no-op instruction.
\end{indexitemprocessinstruction}
\begin{indexitemprocessinstruction}{o}([$n$]){expand \protect\emph{o}nce}
{&\meta{arg}&\meta{result}&}
\meta{arg} is expanded once. (This is like |expl3|'s argument specifier |o|).
The operation is repeated $n$ times (default, one) without moving the head between the
repetition. For example, |o3| expands the argument three times (and then moves the head right).
\end{indexitemprocessinstruction}
\begin{indexitemprocessinstruction}{x}{fully e\protect\emph{x}pand}
{&\meta{arg}&\meta{result}&}
\meta{arg} is fully expanded using |\edef|. (This is like |expl3|'s argument specifier |x|.)
\end{indexitemprocessinstruction}
\begin{indexitemprocessinstruction}{O}([$n$]){\protect\emph{o}ption}
{&\meta{option}&\meta{result}&}
\meta{option}=\alternative{\meta{option name},\meta{relative node name}\texttt{.}\meta{option name}}
In the former case, \meta{result} is the value of option at the current node, in the latter, the
value of option at the node referred to by \meta{relative node name}.
$n$ means repetition.
\end{indexitemprocessinstruction}
\begin{indexitemprocessinstruction}{R}([$n$]){\protect\emph{r}egister}
{&\meta{register}&\meta{result}&}
\meta{result} is the value of register \meta{register}.
$n$ means repetition.
\end{indexitemprocessinstruction}
\begin{indexitemprocessinstruction}{p}([$n$]){\protect\emph{p}rocess}
{&\index{meta>process}&\meta{result}&}
Execute an embedded call of the argument processor.
The embedded argument processor may return any number of items.
$n$ means repetition.
\begin{forestexample}[index={processor>p,processor>O,processor>w,processor>noop,grow',forked edges,content,handler>process}]
\begin{forest}
grow'=0, phantom,
delay={for children={
content/.process={_O= ? ~p~}
{}{content}
{_{No content was given, so there's nothing to do.}}
{Ow1{content}{We have content (##1), so we compute:
$##1+42=\the\numexpr ##1+42$}}
}}
[[][3][][5]]
\end{forest}
\end{forestexample}
\end{indexitemprocessinstruction}
\begin{indexitemprocessinstruction}{P}([$n$]){\protect\emph{p}gfmath}
{&\meta{pgfmath}&\meta{result}&}
\meta{result} is the result of evaluating \meta{pgfmath expr} using |\pgfmathparse|.
$n$ means repetition.
Combining \index{processor>P} and \index{processor>w}, \index{handler>process} is capable of anything
\index{wrap $n$ pgfmath args} can do. Even better, as we can combine pgfmath and non-pgfmath
methods, computations that use \index{handler>process} can be (much!) faster. Study the following
examples to see how less and less pgfmath is used to achieve the same result --- but note that
such extreme antipgfmathism probably only makes sense for style/package developers in computations
that get performed many times.
\begin{forestexample}[index={handler>process,processor>w,processor>O,processor>W,processor>P,processor>+}]
\begin{forest}
[,grow'=east, where level=1{}{phantom,ignore,ignore edge}
[(a),delay={content/.wrap 4 pgfmath args={#1 $#2*#3=#4$}
{content}{content("!1")}{content("!2")}{int(content("!1")*content("!2"))}}
[6][7]]
[(b),delay={content/.process={O OO~P~ w4}
{content}
{!1.content}{!2.content}{int(content("!1")*content("!2"))}
{#1 $#2*#3=#4$}}
[6][7]]
[(c),delay={content/.process={O OO ~W2+P~ w4}
{content}
{!1.content}{!2.content}{int(#1*#2)}
{#1 $#2*#3=#4$}}
[6][7]]
[(d),delay={content/.process={O OO ~W2+n~ w4}
{content}
{!1.content}{!2.content}{#1*#2}
{#1 $#2*#3=#4$}}
[6][7]]
]
\end{forest}
\end{forestexample}
\end{indexitemprocessinstruction}
\begin{indexitemprocessinstruction}{n}([$n$]){\protect\emph{n}umexpr}
{&\meta{numexpr}&\meta{result}&}
\meta{result} is the result of evaluating \meta{dimexpr} using e\TeX's |\number\numexpr|.
$n$ means repetition.
\end{indexitemprocessinstruction}
\begin{indexitemprocessinstruction}{d}([$n$]){\protect\emph{d}imexpr}
{&\meta{dimexpr}&\meta{result}&}
\meta{result} is the result of evaluating \meta{dimexpr} using e\TeX's |\the\dimexpr|.
$n$ means repetition.
\end{indexitemprocessinstruction}
\begin{indexitemprocessinstruction}{+}([$n$]){chain instructions}
{\meta{arg}&&&\meta{arg}}
This action allows one to ``process the same argument more than once''. It does not process the
current argument (in fact, there need not be any current argument), but rather moves the last
result back in the argument queue. In other words, our machine's head moves one step left. You
can also imagine it as an inverse of \index{processor>noop}.
$n$ means repetition.
\end{indexitemprocessinstruction}
\begin{forestexample}[index={handler>process,processor>O,processor>noop}]
\begin{forest}
test/.style n args={3}{align=center,
content={The value of my option \texttt{#1} is \texttt{#2}.\\#3}}
[~fit~,delay={test/.process={O ~O+O~}{content}~{content}~{Yes it is!}}]
\end{forest}
\end{forestexample}
\begin{indexitemprocessinstruction}{w}([$n$]){(consuming) \protect\emph{w}rap}
{\meta{arg$_{1}$}\dots\meta{arg$_{n}$}&\meta{macro body}&\meta{result}&}
\end{indexitemprocessinstruction}
\itemnosep[2pt]
\begin{indexitemprocessinstruction}{W}([$n$]){(non-consuming) \protect\emph{w}rap}
{\meta{arg$_{1}$}\dots\meta{arg$_{n}$}&\meta{macro body}&
\meta{arg$_{1}$}\dots\meta{arg$_{n}$}\meta{result}&}
Defines a temporary macro with $n$ undelimited arguments using the \meta{macro body} given on the
right and expands it (once). The arguments given to the temporary macro are taken from the left:
\meta{arg$_{1}$}\dots\meta{arg$_{n}$}. The result of the expansion is stored as \meta{result} to
the right.
With |w|, \meta{arg$_{1}$}\dots\meta{arg$_{n}$} are ``consumed'', i.e.\ they are removed from the
result list on the left. |W| keeps \meta{arg$_{1}$}\dots\meta{arg$_{n}$} in the result list.
Default $n$ is 1. (Specifying $n>9$ raises an error.)
\end{indexitemprocessinstruction}
\begin{indexitemprocessinstruction}[index key=\&]{and}[\&]([$n$]){boolean ``and''}*{}
\end{indexitemprocessinstruction}
\itemnosep[2pt]
\begin{indexitemprocessinstruction}[index key=\&or]{or}[\protect\indexpipe]([$n$]){boolean ``or''}
{\protect\meta{arg$_{1}$}\protect\meta{arg$_{2}$}&&\meta{result}&}
\meta{result} is a boolean conjunction/disjunction of $n$ arguments. The arguments are taken from
the left. They should be numbers (positive integers): |0| means false, any other number means
true. The \meta{result} is always |0| or |1|.
Default $n$ is 2.
\end{indexitemprocessinstruction}
\begin{indexitemprocessinstruction}[index key=!]{not}[!]{boolean ``not''}
{\meta{arg}&&\meta{result}&}
\meta{result} is a boolean negation of the argument. The argument is taken from the left. It
should be a number (positive integer): |0| means false, any other number means true. The
\meta{result} is always |0| or |1|.
\end{indexitemprocessinstruction}
\begin{indexitemprocessinstruction}{?}{conditional (if \protect\dots\ then \protect\dots\ else)}
{\meta{condition}&\meta{true arg}\meta{false arg}&&\meta{result}}
\meta{result} is \meta{true arg} is \meta{condition} is true (non-zero), otherwise \meta{false
arg}.
The condition is taken from the left. The true and false arguments are expected on the right,
where the winner is left as well.
\end{indexitemprocessinstruction}
\begin{indexitemprocessinstruction}[index key={=}]{equal}[=]{comparison: $\protect\meta{arg$_{1}$}=\protect\meta{arg$_{2}$}$?}*{}
\end{indexitemprocessinstruction}
\itemnosep[1pt]
\begin{indexitemprocessinstruction}[index key={<}]{lt}[<]{comparison: $\protect\meta{arg$_{1}$}<\protect\meta{arg$_{2}$}$?}*{}
\end{indexitemprocessinstruction}
\itemnosep[1pt]
\begin{indexitemprocessinstruction}[index key={<<}]{gt}[\protect\greaterthan]{comparison: $\protect\meta{arg$_{1}$}\protect\greaterthan\protect\meta{arg$_{2}$}$?}
{\meta{arg$_{1}$}\meta{arg$_{2}$}&&\meta{result}&}
Compare \meta{arg$_{1}$} and \meta{arg$_{2}$}, returning |1| (true) if \meta{arg$_{1}$} is equal
to / less than / greater than \meta{arg$_{2}$}, |0| (false) otherwise.
The arguments are taken from the left. They can be either numbers, dimensions, text or token
lists. Both arguments are expected to be of the same type. The type of comparison is determined
by the type of the result returned by the last instruction.
\index{processor>O}/\index{processor>R} look up the type of option/register to determine the type
(booleans are numbers and keylists are toks). Text type must be marked explicitely using
\index{processor>t}.
Comparison is carried out using |\ifnum| for numbers, |\ifdim| for dimensions (this includes
unitless decimals returned by pgfmath) and |\pdfstrcmp|\footnote{\texttt{\string\pdfstrcmp}
expands its arguments.} for text --- for these three types, all three comparison operators are
supported. For generic token lists, only |=| makes sense and is carried out using |\ifx|.
In the following example, (a) performs lexicographical comparison because we have marked |21| as
text; (b) and (c) perform numeric comparison: in (b), the type is automatically determined from
the type of register \indexex{tempcounta}, in (c) |21| is marked manually using \index{processor>n}.
\begin{forestexample}[index={if,processor>gt,processor>lt}]
\forestset{
tempcounta=100,
TeX/.process={Rw1}{tempcounta}{$#1>21$?\ },
TeX={(a)\ }, if={>{Rt>}{tempcounta}{21}}{TeX=yes}{TeX=no},TeX={,\ },
TeX={(b)\ }, if={>{_R<}{21}{tempcounta}}{TeX=yes}{TeX=no},TeX={,\ },
TeX={(c)\ }, if={>{Rn>}{tempcounta}{21}}{TeX=yes}{TeX=no},
}
\end{forestexample}
\end{indexitemprocessinstruction}
\begin{indexitemprocessinstruction}{t}{mark as \protect\emph{t}ext}
{&\meta{arg}&\meta{arg}&}
The result is not changed, only its type is changed to text. This is relevant only for
comparisons --- both argument processor's comparisons \index{processor>equal}, \index{processor>gt}
and \index{processor>lt} and sort keys (see \index{sort by}).
\end{indexitemprocessinstruction}
\begin{indexitemprocessinstruction}{c}{to lowercase}
{&\meta{arg}&\meta{result}&}
\end{indexitemprocessinstruction}
\begin{indexitemprocessinstruction}{C}{to uppercase}
{&\meta{arg}&\meta{result}&}
\end{indexitemprocessinstruction}
\begin{indexitemprocessinstruction}{-}{toggle ascending/descending order (negate)}
{\meta{arg}&&\meta{result}&}
If the argument is of the text type, its sorting order is changed from ascending to descending or
vice versa.
For any numerical argument type (number, dimension, unitless dimension), the argument is actually
negated, which obviously has the same effect on sorting.
For generic type arguments, this operation is a no-op.
\end{indexitemprocessinstruction}
\begin{indexitemprocessinstruction}{u}{\protect\emph{u}ngroup}
{&\meta{arg}&&\meta{item$_1$}\dots\meta{item$_n$}}
As every \TeX\ undelimited macro argument, \meta{arg} is a list of tokens or braced token lists.
This instruction puts those items back to the right as ``separate arguments''.
\end{indexitemprocessinstruction}
\begin{indexitemprocessinstruction}{s}([$n$]){(consuming) \protect\emph{s}ave}
{\meta{arg$_{1}$}\dots\meta{arg$_{n}$}&&&}
\end{indexitemprocessinstruction}
\itemnosep[2pt]
\begin{indexitemprocessinstruction}{S}([$n$]){(non-consuming) \protect\emph{s}ave}
{\meta{arg$_{1}$}\dots\meta{arg$_{n}$}&&\meta{arg$_{1}$}\dots\meta{arg$_{n}$}&}
Saves the last $n$ arguments from the left into a ``special place''.
With |s|, \meta{arg$_{1}$}\dots\meta{arg$_{n}$} are ``consumed'', i.e.\ they are removed from the
result list on the left. |S| keeps \meta{arg$_{1}$}\dots\meta{arg$_{n}$} in the result list.
Default $n$ is 1.
\end{indexitemprocessinstruction}
\begin{indexitemprocessinstruction}{l}([$n$]){(consuming) \protect\emph{l}oad}
{&&\meta{arg$_{1}$}\dots\meta{arg$_{n}$}&}
\end{indexitemprocessinstruction}
\itemnosep[2pt]
\begin{indexitemprocessinstruction}{L}([$n$]){(non-consuming) \protect\emph{l}oad}
{&&\meta{arg$_{1}$}\dots\meta{arg$_{n}$}&}
Loads last $n$ arguments from the ``special place'' to the left.
With |l|, \meta{arg$_{1}$}\dots\meta{arg$_{n}$} are ``consumed'', i.e.\ they are removed from the
special place. |S| keeps \meta{arg$_{1}$}\dots\meta{arg$_{n}$} in the special place.
The default $n$ is 0 and indicates that the entire special place should be loaded.
\end{indexitemprocessinstruction}
\begin{indexitemprocessinstruction}{r}{\protect\emph{r}everse (key)list}
{&\meta{list}&\meta{result}&}
\meta{list} should be a comma-separated list (\emph{not} a name of a keylist option or register).
\meta{result} contains the same elements in the reverse order.
\end{indexitemprocessinstruction}
\end{syntax}
\subsection{Aggregate functions}
\label{ref:aggregate-functions}
Aggregate functions walk a nodewalk and use the information found in the visited nodes to calculate
something.
All aggregate functions are available both as key handlers and |pgfmath| functions.
\begin{syntax}
\indexitem{aggregate>count}|=|\meta{nodewalk},
\indexdef[form={aggregate_count}]{pgfmath>aggregate count}|("|\meta{nodewalk}|")|
Store the number of nodes visited in the nodewalk into the handled option.
\indexitem{aggregate>sum}|=|\index{forestmath}\meta{nodewalk},
\indexdef[form={aggregate_sum}]{pgfmath>aggregate sum}|("|\index{forestmath}|","|\meta{nodewalk}|")|
\itemnosep
\indexitem{aggregate>average}|=|\index{forestmath}\meta{nodewalk},
\indexdef[form={aggregate_average}]{pgfmath>aggregate average}|("|\index{forestmath}|","|\meta{nodewalk}|")|
\itemnosep
\indexitem{aggregate>product}|=|\index{forestmath}\meta{nodewalk},
\indexdef[form={aggregate_product}]{pgfmath>aggregate product}|("|\index{forestmath}|","|\meta{nodewalk}|")|
\itemnosep
\indexitem{aggregate>min}|=|\index{forestmath}\meta{nodewalk},
\indexdef[form={aggregate_min}]{pgfmath>aggregate min}|("|\index{forestmath}|","|\meta{nodewalk}|")|
\itemnosep
\indexitem{aggregate>max}|=|\index{forestmath}\meta{nodewalk},
\indexdef[form={aggregate_max}]{pgfmath>aggregate max}|("|\index{forestmath}|","|\meta{nodewalk}|")|
Calculate the value of the given \index{forestmath} expression at each visited node. Store the sum /
average / product / minimum / maximum of these values into the handled option (handlers) or return
it (pgfmath functions).
\indexitem{aggregate>aggregate}|=|\index{forestmath=start value}\index{forestmath=every
step}\index{forestmath=after walk}\meta{nodewalk}
\itemnosep
\indexitem{pgfmath>aggregate}|("|\index{forestmath=start value}|","|\index{forestmath=every step}|","|\index{forestmath=after walk}|","|\meta{nodewalk}|")|
The generic aggregate function. First, register \index{aggregate result} is set to
\index{forestmath=start value}. Then, the given nodewalk is walked. After each step of the
\meta{nodewalk}, \index{forestmath=every step} expression is evaluated in the context of the new
current node and stored into \index{aggregate result}. After the walk, the current node is reset to
the origin. \index{forestmath=after walk} expression is then evaluated in its context and stored
into \index{aggregate result} as the final result.
Use \index{aggregate result} and \index{aggregate n} in the \index{forestmath} expressions to refer to
the current result value and step number.
\indexitem{register>aggregate n}|=|\meta{count} the current step number
In the every-step expression of an aggregate function, refers to the (real) step number in the
aggregate's \meta{nodewalk}. In the after-walk expression, refers to the total number of (real)
steps made.
\indexitem{register>aggregate result}|=|\meta{toks} the current value of the result
This register is where the intermediate results are stored.
\indexitem{register>aggregate value}|=|\meta{toks} the value of the expression at the current node
This only applies to special aggregates like \index{aggregate>sum}, not to the generic
\index{aggregate>aggregate}.
\indexitem{node key>aggregate postparse}|=|\alternative{none,int,print,macro}
Roughly speaking, how should the result be formatted? For details, see \citep[\S89]{tikzpgf3.0.0}.
Applies only to |pgfmath| versions of aggregate functions, i.e.\ not to the |'| variants.
\begin{syntax}
\item\indexdef{value of=aggregate postparse>none}
No formatting.
\item\indexdef{value of=aggregate postparse>int}
The result is an integer.
\item\indexdef{value of=aggregate postparse>print}
Use |pgf|'s number printing extension, see \citep[\S93]{tikzpgf3.0.0}.
\item\indexdef{value of=aggregate postparse>macro}
Use a custom macro. Specify the macro using \indexdef{node key>aggregate postparse macro}|=|\meta{cs}.
\end{syntax}
\end{syntax}
Example 1. Randomly generate the content of leaves. The content of a parent is the sum of its
children's content. Note how we use \indexex{tree children-first} to proceed in a bottom-up
fashion.
\begin{forestexample}[index={delay,aggregate postparse,for step,tree children-first,if option,n children,content,pgfmath,sum,step>children}]
\begin{forest}
delay={
aggregate postparse=int,
for tree children-first={
if n children=0
{content/.pgfmath={random(0,100)}}
{content/~.sum~={content}{children}}
}
}
[[[[][]][]][[][][[][][]]][[][[][]]]]
\end{forest}
\end{forestexample}
Example 2: nested aggregate functions. We are given the black numbers. The inner aggregate, the
sum of children, is applied at every blue node. (See how we actually display the blue numbers by
storing \index{aggregate value} to \index{content}.) The outer aggregate stores the maximum blue
number into the red root.
\begin{forestexample}
\begin{forest}
delay={
aggregate postparse=int,
content/~.max~=%
{~aggregate_sum~("content","children")}%
{every step={content/.register=~aggregate value~},children}%
} [ [[1][2][3]] [[3][4][5]] [[2][3][4]] ]
\end{forest}
\end{forestexample}
Example 3: calculate root mean square of children using the generic \index{aggregate>aggregate} handler.
\begin{forestexample}
\begin{forest}
delay={
content/~.aggregate~=
{0}{~aggregate_result~()+content()^2}{sqrt(~aggregate_result~/~aggregate_n~)}
{children}
}
[[0][1][2][3][4]]
\end{forest}
\end{forestexample}
\subsection{Relative node names}
\label{ref:relative-node-names}
\begin{syntax}
\indexitem{meta>relative node name}|=|[\meta{forest node name}][\indexdef[set={code}]>{!}\meta{nodewalk}]
\meta{relative node name} refers to the \foRest; node at the end of the \meta{nodewalk}
starting at node named \meta{forest node name}. If \meta{forest node name} is omitted, the walk
starts at the current node. If \meta{nodewalk} is omitted, the ``walk'' ends at the start
node. (Thus, an empty \meta{relative node name} refers to the current node.)
The \meta{nodewalk} inherits its history from the outer nodewalk (if there is one). Its every-step
keylist is empty.
\end{syntax}
Relative node names can be used in the following contexts:
\begin{itemize}
\item \FoRest;'s |pgfmath| option functions (\S\ref{ref:pgfmath}) take a relative node name as
their argument, e.g.\ |content("!u")| and |content("!parent")| refer to the content of the
parent node.
\item An option of a non-current node can be set by \meta{relative node name}|.|\meta{option
name}|=|\meta{value}, see \S\ref{sec:option-setting}.
\item The |forest| coordinate system, both explicit and implicit; see \S\ref{ref:forest-cs}.
\end{itemize}
\subsection{The \texttt{forest} coordinate system}
\label{ref:forest-cs}
Unless package options \index{tikzcshack} is set to |false|, \TikZ;'s implicit node coordinate
system \citep[\S13.2.3]{tikzpgf2.10} is hacked to accept relative node names.\footnote{Actually,
the hack can be switched on and off on the fly, using \cmdname{i}\keyname{foresttikzcshack}.}.
The explicit \texttt{forest} coordinate system is called simply |forest| and used like this:
|(forest_cs:|\meta{forest cs spec}|)|; see \citep[\S13.2.5]{tikzpgf2.10}. \meta{forest cs spec}
is a keylist; the following keys are accepted.
\begin{syntax}
\indexitem{forest cs>name}|=|\meta{node name} The node with the given name becomes the current node. The
resulting point is its (node) anchor.
\indexitem{forest cs>id}|=|\meta{node id} The node with the given name becomes the current node. The
resulting point is its (node) anchor.
\indexitem{forest cs>go}|=|\meta{nodewalk} Walk the given nodewalk, starting at the current node. The
node at the end of the walk becomes the current node. The resulting point is its (node) anchor.
The embedded \meta{nodewalk} inherits history from the outer nodewalk.
\indexitem{forest cs>anchor}|=|\meta{anchor} The resulting point is the given anchor of the current node.
\indexitem{forest cs>l}|=|\meta{dimen} \vspace{-\parskip}
\indexitem{forest cs>s}|=|\meta{dimen} Specify the \index{option>l} and \index{option>s}
coordinate of the resulting point.
The coordinate system is the node's ls-coordinate system: its origin is at its (node) anchor; the
l-axis points in the direction of the tree growth at the node, which is given by option
\index{grow}; the s-axis is orthogonal to the l-axis; the positive side is in the
counter-clockwise direction from |l| axis.
The resulting point is computed only after both \index{option>l} and \index{option>s} were given.
\item Any other key is interpreted as a \index{relative node name}[.\meta{anchor}].
\end{syntax}
\subsection{Anchors}
\label{sec:anchors}
\FoRest; defines several anchors which can be used with any \TikZ; node belonging to a \FoRest;
tree (manually added \TikZ; nodes are thus excluded).
\newcommand\indexdefneganchor[1]{\indexdef[index key=#1]{anchor>-#1}}
\begin{syntax}
\indexitem{anchor>parent anchor}\itemnosep
\indexitem{anchor>child anchor}\itemnosep
\indexitem{anchor>anchor}
These anchors point to coordinates determined by node options \index{option>parent anchor},
\index{option>child anchor} and \index{option>anchor}.
\indexitem{anchor>parent}, \indexdef{anchor>parent'}, \indexdefneganchor{parent}, \indexdefneganchor{parent'}\itemnosep
\indexitem{anchor>parent first}, \indexdef{anchor>parent first'}, \indexdefneganchor{parent first}, \indexdefneganchor{parent first'}\itemnosep
\indexitem{anchor>first}, \indexdef{anchor>first'}\itemnosep
\indexitem{anchor>children first}, \indexdef{anchor>children first'}, \indexdefneganchor{children first}, \indexdefneganchor{children first'}\itemnosep
\indexitem{anchor>children}, \indexdef{anchor>children'}, \indexdefneganchor{children}, \indexdefneganchor{children'}\itemnosep
\indexitem{anchor>children last}, \indexdef{anchor>children last'}, \indexdefneganchor{children last}, \indexdefneganchor{children last'}\itemnosep
\indexitem{anchor>last}, \indexdef{anchor>last'}\itemnosep
\indexitem{anchor>parent last}, \indexdef{anchor>parent}, \indexdefneganchor{parent last},\indexdefneganchor{parent last'}
Growth direction based anchors.
\TikZ;'s ``compass anchors'' |east|, |north| etc.\ resolve to coordinates on the border of the
node facing east, north etc.\ (for the shapes that define these anchors). The above \FoRest;'s
anchors are similar in that they also resolve to coordinates on the border of the node. However,
the ``cardinal directions'' are determined by the \index{grow}th direction of the tree in the node
and its parent:
\begin{itemize}
\item anchor |parent| faces the parent node (or, in case of the root, where the parent would be);
\item anchor |children| faces the children (or, in case of a node without children, where the children would be);
\item anchor |first| faces the first child (or \dots\ you get it, right?);
\item anchor |last| faces the last child (or \dots\ you know!).
\end{itemize}
Combinations like |children_first| work like combinations of compass directions, e.g.\
|north_west|, but note that
\begin{itemize}
\item when |first| and |last| are combined with |parent| into |parent_first| and |parent_last|,
they refer to the first and last child of the parent node, i.e.\ siblings of the current node.
\end{itemize}
While |first| and |last| always point in opposite directions, |parent| and |children| do not do so
if the \index{grow}th direction of the tree changes in the node, i.e.\ if the node's \index{grow}
differs from it's parent's \index{grow}. Thus in general, it is useful to have anchors |-parent|
and |-children|, which point in the opposite directions as |parent| and |children|, respectively,
and their combinations with |first| and |last|.
The |'| variants refer precisely to
the point where the cardinal growth direction intersects the border. Variants without |'| snap to
the closest compass anchor of the node.
These anchors work as expected even if the node is \index{rotate}d, or if the
children are \index{reversed}.
For simple examples, see definitions of \index{sn edges} and \index{roof}; for more involved
examples, see the \reflibrary{edges} library.
\end{syntax}
\begin{forestexample}[layout=tree on top]
\def\redorblue#1{\expandafter\redorbluei#1\END}%
\def\redorbluei#1#2\END{\expandafter\ifx#1-red\else blue\fi}%
\forestset{
draw anchors/.style n args=3{% #1=above, #2=below, #3='-variant of anchor?
tikz={
\foreach \a in {first,last,parent first,parent last,children,children last,#1}
{\fill[](.\a#3)circle[radius=1pt] node[above,font=\tiny,color=\redorblue\a]{\a#3};}
\foreach \a in {-parent first,-parent,-parent last,-children,-children first,#2}
{\fill[](.\a#3)circle[radius=1pt] node[below,font=\tiny,color=\redorblue\a]{\a#3};}
}
},
draw anchors/.default={parent,children first}{-children last}{},
}
\begin{forest}
for tree={
minimum width=10em, minimum height=13ex, s sep+=5em,
draw, draw anchors,
font=\tt, delay={content/.process=OOw2{grow}{reversed}{grow\ifnum#2=1'\fi=#1}}
}
[
[,rotate=20,draw anchors={parent,children first}{-children last}{'}]
[,for tree={grow'=0}, l sep+=5em, draw anchors={-children last}{parent,children first}{}
[,rotate=-60]
[]
]
]
\end{forest}
\end{forestexample}
\subsection{Additional \texttt{pgfmath} functions}
\label{ref:pgfmath}
For every option and register, \foRest; defines a |pgfmath| function with the same name, with the
proviso that the name might be mangled in order to conform to |pgfmath|'s naming rules. Specifically,
all non-alphanumeric characters in the option/register name and the initial number, if
the name starts with one, are replaced by an underscore |__| in the |pgfmath| function name.
Pgfmath functions corresponding to options take one argument, a \index{relative node name}
(see~\S\ref{ref:relative-node-names}) expression, making it possible to refer to option values of
non-current nodes. The \meta{relative node name} expression must be enclosed in double quotes in
order to
prevent pgfmath evaluation: for example, to refer to the content of the parent, write
\index{content}|("|\index>{!}|u")|. To refer to the option of the current node, use empty parentheses:
\index{content}|()|.\footnote{In most cases, the parentheses are optional, so \texttt{content}
is ok. A known case where this doesn't work is preceding an operator: \texttt{l+1cm} will fail.}
If the \index{relative node name} resolves to the invalid node, these functions will an return empty
token list (for \meta{toks} options), 0pt (for \meta{dimen} options) or 0 (for \meta{count}
options).
Note that the nodewalk in the relative node name inherits its history from the outer nodewalk (if
there is one), so strange but useful constructions like the following are possible.
\begin{forestexample}[index={tikz,wrap pgfmath arg,nodewalk,back,b,ancestors,register>every step}]
\begin{forest}
for tree={no edge},
before typesetting nodes={
for nodewalk={
c,
every step={
tikz/.wrap pgfmath arg=
{\draw[<-] ()--(#1);}
{name("~!b~")}
},
21{up1},ancestors
}{}
},
[1[2[3]][4[5]]]
\end{forest}
\end{forestexample}
Boolean function \indexdef{pgfmath>valid} returns true if the node's \index{readonly option>id}$\neq0$, i.e.\ if the node is a real, valid node; see \S\ref{ref:spatial-propagators} and \S\ref{ref:nodewalks}. Boolean function \indexdef{pgfmath>invalid} is a negation of |valid|.
\begin{syntax}
\indexitem{pgfmath>min_l}|=(|\meta{nodewalk: node}|,|\meta{nodewalk: context node}|)| \itemnosep
\indexitem{pgfmath>min_s}|=(|\meta{nodewalk: node}|,|\meta{nodewalk: context node}|)| \itemnosep
\indexitem{pgfmath>max_l}|=(|\meta{nodewalk: node}|,|\meta{nodewalk: context node}|)| \itemnosep
\indexitem{pgfmath>max_s}|=(|\meta{nodewalk: node}|,|\meta{nodewalk: context node}|)|
These functions return the minimum/maximum value of \index{option>l}/\index{option>s} of node at the end of \meta{nodewalk:
node} in the context (i.e.\ growth direction) of node at the end of \meta{nodewalk: context
node}.
\end{syntax}
Three string functions are also added to |pgfmath|: \indexdef{pgfmath>strequal} tests the equality of
its two arguments; \indexdef{pgfmath>instr} tests if the first string is a substring of the second one;
\indexdef{pgfmath>strcat} joins an arbitrary number of strings.
\bigskip
Some random notes on |pgfmath|: \begin{enumerate*}[(i)]
\item |&&|, \verb!||! and |!| are boolean ``and'', ``or'' and ``not'', respectively.
\item The equality operator (for numbers and dimensions) is |==|, \emph{not} |=|.
\end{enumerate*} And some examples:
\begin{forestexample}[layout=tree on top,index={for step,tree,grow',calign,option>l,l sep,option>child
anchor,option>anchor,fit,tier,readonly option>level,delay,before typesetting nodes,content,wrap $n$ pgfmath args,pgfmath},index>={!}]
\begin{forest}
for tree={grow'=0,calign=first,l=0,l sep=2em,child anchor=west,anchor=base
west,fit=band,tier/.pgfmath=~level~()},
fullpath/.style={if n=0{}{content/.wrap 2
pgfmath args={##1/##2}{~content~("!u")}{~content~()}}},
delay={for tree=fullpath,content=/},
before typesetting nodes={for tree={content=\strut#1}}
[
[home
[joe
[\TeX]]
[saso
[\TeX]]
[a user with a long name
[\TeX]]]
[usr]]
\end{forest}
\end{forestexample}
\begin{forestexample}[point=instr,index={delay,for step,tree,conditional>if,content,n children}]
% mark non-phrasal terminal nodes
\begin{forest}
delay={for tree={if=
{!instr("P",~content~) && ~n_children~==0}
{fill=yellow}
{}
}}
[CP[DP][C'[C][TP[DP][T'[T][VP[DP][V'[V][DP]]]]]]]
\end{forest}
\end{forestexample}
{\def\useforestlibrary#1{}%
\begin{forestexample}[point=instr,index={where option,n children,tier,content,no edge,tikz},index>={!}]
% roof terminal phrases
\useforestlibrary{linguistics}
% ...
\begin{forest}
delay={where n children=0{tier=word,
if={~instr~("P",~content~("!u"))}{roof}{}
}{}},
[VP[DP[Mary]][V'[V[loves]][DP[her cat]]]]
\end{forest}
\end{forestexample}}
\subsection{Standard node}
\label{ref:standard-node}
\begin{syntax}
\indexitem{macro>forestStandardNode}\meta{node}\meta{environment fingerprint}\meta{calibration
procedure}\meta{exported options}
This macro defines the current \emph{standard node}. The standard node declares some options as
\emph{exported}. When a new node is created, the values of the exported options are initialized
from the standard node. At the beginning of every \index{forest} environment, it is checked whether
the \emph{environment fingerprint} of the standard node has changed. If it did, the standard
node is \emph{calibrated}, adjusting the values of exported options. The \emph{raison d'etre} for
such a system is given in \S\ref{tut:defaults}.
In \meta{node}, the standard node's content and possibly other options are specified, using the
usual bracket representation. The \meta{node}, however, \emph{must not contain children}. The
default: \texttt{[dj]}.
The \meta{environment fingerprint} must be an expandable macro definition. It's expansion
should change whenever the calibration is necessary.
\meta{calibration procedure} is a keylist (processed in the |/forest| path) which calculates the
values of exported options.
\meta{exported options} is a comma-separated list of exported options.
This is how the default standard node is created:
\begin{lstlisting}
\forestStandardNode[dj]
{%
\forestOve{\csname forest@id@of@standard node\endcsname}{content},%
\the\ht\strutbox,\the\pgflinewidth,%
\pgfkeysvalueof{/pgf/inner ysep},\pgfkeysvalueof{/pgf/outer ysep},%
\pgfkeysvalueof{/pgf/inner xsep},\pgfkeysvalueof{/pgf/outer xsep}%
}
{
l sep={\the\ht\strutbox+\pgfkeysvalueof{/pgf/inner ysep}},
l={l_sep()+abs(max_y()-min_y())+2*\pgfkeysvalueof{/pgf/outer ysep}},
s sep={2*\pgfkeysvalueof{/pgf/inner xsep}}
}
{l sep,l,s sep}
\end{lstlisting}
\end{syntax}
\subsection{Externalization}
\label{ref:externalization}
Externalized tree pictures are compiled only once. The result of the compilation is saved into a
separate |.pdf| file and reused on subsequent compilations of the document. If the code of the
tree (or the context, see below) is changed, the tree is automatically recompiled.
Externalization is enabled by:
\begin{lstlisting}
\usepackage[~external~]{forest}
~\tikzexternalize~
\end{lstlisting}
Both lines are necessary. \TikZ;'s externalization library is automatically loaded if necessary.
\begin{syntax}
\indexitem{node key>external/optimize} Parallels \keyname{/tikz/external/optimize}: if |true| (the
default), the processing of non-current trees is skipped during the embedded compilation.
\indexitem{node key>external/context} If the expansion of the macro stored in
this option changes, the tree is recompiled.
\indexitem{node key>external/depends on macro}|=|\meta{cs} Adds the definition of macro \meta{cs} to
\keyname{external/context}. Thus, if the definition of \meta{cs} is changed, the tree will be
recompiled.
\end{syntax}
\foRest; respects or is compatible with several (not all) keys and commands of \TikZ;'s
externalization library. In particular, the following keys and commands might be useful; see
\cite[\S32]{tikzpgf2.10}.
\begin{itemize}
\item\keyname{/tikz/external/remake next}
\item\keyname{/tikz/external/prefix}
\item\keyname{/tikz/external/system call}
\item\cmdname{tikzexternalize}
\item\cmdname{tikzexternalenable}
\item\cmdname{tikzexternaldisable}
\end{itemize}
\FoRest; does not disturbe the externalization of non-\foRest; pictures. (At least it
shouldn't \dots)
The main auxiliary file for externalization has suffix |.for|. The externalized pictures have
suffices |-forest-|$n$ (their prefix can be set by \keyname{/tikz/external/prefix}, e.g.\ to a
subdirectory). Information on all trees that were ever externalized in the document (even if
they were changed or deleted) is kept. If you need a ``clean'' |.for| file, delete it and
recompile. Deleting |-forest-|$n$|.pdf| will result in recompilation of a specific tree.
Using \keyname{draw tree} and \keyname{draw tree'} multiple times \emph{is} compatible with
externalization, as is drawing the tree in the box (see \index{draw tree box}). If you are
trying to externalize a \index{forest} environment which utilizes \index{TeX} to produce a
visible effect, you will probably need to use \index{TeX'} and/or \index{TeX''}.
\setcounter{CodelineNo}{0}
\DocInput{forest-libs.dtx}
\section{Gallery}
\label{sec:gallery}
\subsection{Decision tree}
\label{sec:example-decision-tree}
The following example was inspired by a question on \TeX\ Stackexchange:
\href{http://tex.stackexchange.com/questions/39103/how-to-change-the-level-distance-in-tikz-qtree-for-one-level-only}{How to change the level distance in tikz-qtree for one level only?}. The question is about |tikz-qtree|: how to adjust the level distance for the first level only, in order to avoid first-level labels crossing the parent--child edge. While this example solves the problem (by manually shifting the offending labels; see \texttt{elo} below), it does more: the preamble is setup so that inputing the tree is very easy.
\begin{forestexample}[layout=tree on top,index={if option,readonly option>n,no edge,tikz,strequal,strcat,option>child anchor,option>parent
anchor,option>anchor,anchor>anchor,calign,for step,tree,s sep,option>l,n children,declare toks,delay,content,before typesetting nodes,descendants,keylist+=tikz,wrap pgfmath arg,wrap $n$ pgfmath args,split option},index>={!}]
\forestset{
declare toks={elo}{}, % Edge Label Options
anchors/.style={anchor=#1,child anchor=#1,parent anchor=#1},
dot/.style={tikz+={\fill (.child anchor) circle[radius=#1];}},
dot/.default=2pt,
decision edge label/.style n args=3{
edge label/.expanded={node[midway,auto=#1,anchor=#2,\forestoption{elo}]{\strut$\unexpanded{#3}$}}
},
decision/.style={if n=1
{decision edge label={left}{east}{#1}}
{decision edge label={right}{west}{#1}}
},
decision tree/.style={
for tree={
s sep=0.5em,l=8ex,
if n children=0{anchors=north}{
if n=1{anchors=south east}{anchors=south west}},
math content,
},
anchors=south, outer sep=2pt,
dot=3pt,for descendants=dot,
delay={for descendants={~split option~={content}{;}{content,decision}}},
}
}
\begin{forest} decision tree
[N,plain content
[I;{p_1=0.5},plain content,elo={yshift=4pt}
[{5,1};a]
[II;b,plain content
[{1,2};m]
[{2,3};n]
]
]
[II;{p_2=0.5},plain content,elo={yshift=4pt}
[;c
[{1,0};z]
[{2,2};t]
]
[;d
[{3,1};z]
[{0,0};t]
]
] {\draw[dashed](!1.anchor)--(!2.anchor) node[pos=0.5,above]{I};}
]
\end{forest}
\end{forestexample}
\setcounter{CodelineNo}{0}
\DocInput{forest-index.dtx}
\section{Past, present and future}
\label{sec:changes}
\paragraph{Roadmap} What's planned for future releases?
\begin{itemize}
\item filling up the libraries
\item faster externalization
\item custom-edge aware packing algorithm and a more flexible (successor of) \index{calign}
\item support for specialized |forest| environments, including:
\begin{itemize}
\item selectable input parser,
\item namespaces (different function, different options),
\item better support for different output types.
\end{itemize}
In short, everything you need to make \foRest; your favourite spreadsheet! ;-)
\item code cleanup and extraction of sub-packages possibly useful to other package writers
\end{itemize}
\subsection{Changelog}
\label{sec:changelog}
First of all, the list of all \index{compat} key values for backward compatibility, and their
groupings. Remember, compat values that reside in styles with suffix |-most| are harmless: they will
not disrupt the new functionality of the package. But take care when using stuff which only resides
in |-all| styles.
\lstinputregion{forest-compat.sty}{compat_keys}
\newcommand\compatitem[2]{\item[,,in \texttt{-#1}]\texttt{compat=}\indexdef{value of=compat>#2}}
\subsubsection{v2.1}
\begin{description}
\item[v2.1.5 (2017/07/14)] \mbox{}
Minor improvements:
\begin{itemize}
\item Smarter \index{baseline} defaults for the \reflibrary{linguistics} library.
\item Yield warning when the \index{baseline} is set to a node that is not drawn (e.g.\ a
\index{phantom} node).
\end{itemize}
\item[v2.1.4 (2017/02/02)] \mbox{}
Performance:
\begin{itemize}
\item Reimplement some internals of the packing algorithm to avoid consuming the string pool in
documents with many trees. (We're about 10\% slower now, but (depending on the document) the
memory usage can drop up to five times!)
\end{itemize}
Bugfixes:
\begin{itemize}
\item Fix aggregate function \index{aggregate>count}.
\item Provide a workaround for a PGF bug: for coordinate-shaped nodes, |\positionnodelater|
provides dimensions with |pt| in a wrong catcode, so \index{max y} and friends did not work for
such nodes.
\end{itemize}
\item[v2.1.3 (2017/01/27)] \mbox{}
Bugfixes:
\begin{itemize}
\item Update \index{nice empty nodes} to use \index{for step=\index{current and siblings}}.
\end{itemize}
\item[v2.1.2 (2016/12/31)] \mbox{}
Bugfixes:
\begin{syntax}
\compatitem{all}{2.1.1-loops}
A level of hash doubling was unnecessarily introduced for the \meta{keylist} argument of all
loops (\S\ref{ref:loops}), and the \meta{nodewalk} argument of \index{process keylist'} and
\index{process delayed}. Use this key to revert to the old behaviour.
\end{syntax}
Minor improvements:
\begin{itemize}
\item Implemented key \index{also}.
\end{itemize}
\item[v2.1.1 (2016/12/18)] \mbox{}
Minor improvements:
\begin{itemize}
\item Implemented argument processor instruction \index{processor>p}.
\end{itemize}
Bugfixes:
\begin{itemize}
\item Argument processor instruction \index{processor>u} introduced an extra layer of braces
around each result item.
\item Argument processor instructions \index{processor>l} and \index{processor>L} did not always
load the desided number of arguments.
\item Argument processor instructions \index{processor>and} and \index{processor>or} were taking
the arguments from the start of the left side instead of its end.
\end{itemize}
\item[v2.1 (2016/12/05)] \mbox{}
Backward incompatible changes (with a \index{compat} key):
\begin{syntax}
\compatitem{all}{2.0-edges}
This compat key groups the three changes listed below: the final two depend on the first, so you
will probably want to revert them all or none.
\begin{syntax}
\compatitem{all}{2.0-anchors}
This is really a bugfix. Growth direction based anchors \index{anchor>parent},
\index{anchor>parent first} and \index{anchor>parent last} were not facing to the direction of the
parent if the growth direction of the tree changed at the node.
\compatitem{all}{2.0-forkededge}
\compatitem{all}{2.0-folder}
Update the code of keys \index{forked edge} (and friends) and \index{folder} from the
\reflibrary{edges} library to reflect the above bugfix.
\end{syntax}
\compatitem{all}{2.0-delayn} Fixing yet another bug in \index{delay n}! The number of cycles was
reevaluated at each cycle. Now it is computed immediately, and fixed. Use this key to revert to
the old behaviour.
\end{syntax}
Performance:
\begin{itemize}
\item Substantially enhance the argument processor (\S\ref{ref:argument-processor}), including the
ability to use it as a drop-in replacement for |pgfmath|.
\item Internally, avoid using |\pgfmathparse| and friends whereever possible.
\item Implement a fast set of macros to determine if a |pgfmath| expression is just a \meta{count}
or \meta{dimen} expression.
\item Optimize \index{split option} and \index{split register}.
\end{itemize}
Minor improvements:
\begin{itemize}
\item Allow \index{relative node name}s in \index{handler>option}.
\item Make aggregate functions (\S\ref{ref:aggregate-functions}) nestable and implement their
|pgfmath| versions.
\item Implement
\index{if dimen GT=\meta{dimen option}}, \index{if dimen LT=\meta{dimen option}},
\index{if count GT=\meta{count option}}, \index{if count LT=\meta{count option}},
\index{where dimen GT=\meta{dimen option}}, \index{where dimen LT=\meta{dimen option}},
\index{where count GT=\meta{count option}} and \index{where count LT=\meta{count option}},
\item Implement \index{if current nodewalk empty}.
\item Implement nodewalk steps \index{leaves}, \index{-level} and \index{-level'}.
\item Implement nodewalk operation \index{unique}.
\item Implement \index{nodewalk key>on invalid} values \index{value of=on invalid>error if real} and \index{value of=on invalid>last valid}, remove value |step| (no \index{compat} key, as it was broken and useless).
\item Implement `-` anchors (\index{anchor>-parent} etc.).
\item Implement \index{save and restore register}.
\item Implement \index{handler>nodewalk style}.
\item Implement \index{forestloopcount}.
\item Allow multiple occurrences of package option \index{compat}.
%\item Implement \index{foresttypeouttrees}.
%\item Implement \index{show register}.
\end{itemize}
Bugfixes:
\begin{itemize}
\item Fix a bug in externalization (|\forest@file@copy| set |\endlinechar| to |-1|, which caused
problems for several packages, e.g. |biblatex|).
\item Fix a bug in \index{delay n}: the number of cycles was reevaluated at each cycle.
\item Fix a bug in \index{fixed edge angles}.
\item Fix \index{compat} key values \index{value of=compat>silent}, \index{value of=compat>1.0-forstep} and \index{value of=compat>1.0-stages}.
\item Fix invocations of spatial propagators \index{for step=\index{step>nodewalk}} and \index{for step=\index{step>Nodewalk}} and \index{node key>Nodewalk}.
\item Fix invocations of \index{for step=group}, \index{for step=next on tier} and \index{for step=previous on tier}.
\item Fix behaviour of \index{for step=next on tier}, \index{for step=previous on tier} and \index{for step=to tier} on arrival to the invalid node.
\item Fix problems with interaction between \index{folder} and \index{forked edges}.
\end{itemize}
\end{description}
\subsubsection{v2.0}
\begin{description}
\item[v2.0.3 (2016/04/03)] \mbox{}
Backward incompatible changes (with a \index{compat} key):
\begin{syntax}
\compatitem{all}{2.0.2-delayn}
\compatitem{all}{2.0.2-wrapnpgfmathargs}
This is really a bugfix: keys \index{delay n} and \index{wrap $n$ pgfmath args} (for $n\geq 2$)
were introducing two layers of hash doubling. Now this confusing behaviour is gone, but as
finding the correct number of hashes is always a tough job, \index{compat} keys are provided.
\end{syntax}
Improvements:
\begin{itemize}
\item Rework \index{draw tree edge} so that by default, an edge is drawn only it both its node and
its node's parent are drawn. And yes, implement \index{if node drawn}.
\item Implement circularity detection in dynamic node operations.
\item Implement debug categories and debugging of dynamic node operations.
\item Declare some further |tempdim...| registers.
\item Make option \index{readonly option>id} accessible via \index{forestoption}.
\end{itemize}
Bugfixes:
\begin{itemize}
\item Execute \index{tikz} code for all (including phantom) nodes. (The feature of ignoring
phantom nodes was introduced in v2.0.2, but turns out it was a bad idea: for example, having a
phantom root with some tikz code is not uncommon.)
\item Keys \index{label} and \index{pin} now \emph{append} to option \index{tikz}, as makes sense.
\item Fix nodewalk steps \index{filter} and \index{branch} so that they can be embedded under
nodewalk operations. (Uh, and recategorize them as operations themselves.)
\item Execute \index{before packing node} even when the node has no children.
\item \index{step>level}|<={0}{...}| now works as expected.
\item Re-setting the node name to the same value doesn't yield an error anymore.
\item Don't add the separator when adding the first element to a keylist option or register.
\item Copy externalization files in TeX (don't rely on |\write18|).
\item Consistently store dimen options and registers with |pt|s of catcode other.
\item Properly initialize readonly count options (\index{readonly option>n}, \index{readonly option>n'}, \index{n children} and
\index{readonly option>level}).
\item Fix some typos.
\end{itemize}
\item[v2.0.2 (2016/03/04)] \mbox{}
Backward incompatible changes:
\begin{itemize}
\item The semantics of the parenthesized optional argument to \index{forest} environment and
\index{Forest} macro has changed. The argument was introduced in v2.0.0: if present, it
redefined \index{style>stages} style for the current environment/macro. This argument is now
generalized to allow further (pre-\index{style>stages}) customization in future versions of the
package. To temporarily redefine \index{style>stages}, write |(|\index{option of=forest>stages}|={...})|.
\end{itemize}
New functionality:
\begin{itemize}
\item Key \index{last dynamic node} and named nodewalk \index{dynamic nodes}.
\item An optional argument to \index{useforestlibrary} to pass package options to libraries.
\item Handler \index{nodewalk style}.
\item Keys \index{draw tree node'}, \index{draw tree edge'} and \index{draw tree tikz'}.
\end{itemize}
Bugfixes:
\begin{itemize}
\item Fixed \index{replace by} when applied to the root node.
\item Registers are now initialized to an empty string, 0pt, or 0.
\item Packing doesn't destroy the current pgfpath anymore.
\item \index{forestStandardNode} now uses \index{name'}.
\item \index{draw tree edge} now respects \index{phantom}.
\end{itemize}
\item[v2.0.1 (2016/02/20)] \mbox{}
New functionality:
\begin{itemize}
\item \index{current and siblings}, \index{current and siblings reversed}
\item Add |*| argument to \index{useforestlibrary}.
\end{itemize}
Bugfixes:
\begin{itemize}
\item Correctly mangle option/register names to pgfmath names (\S\ref{ref:pgfmath}).
\item Refer to parent (not node) anchor in \index{calign}|=|\index{edge midpoint}.
\item Accept key \index{history} in \index{step>Nodewalk} config.
\end{itemize}
\item[v2.0.0 (2016/01/30)] \mbox{}\footnote{The year of the release date in the package was wrong \dots \ 2015.}
Backwards incompatible changes (\emph{without} a \index{compat} key --- sorry!):
\begin{itemize}
\item The unintended and undocumented way to specify defaults using |\forestset{.style={...}}|
(see question
\href{http://tex.stackexchange.com/questions/167972/making-a-certain-tree-style-the-default-for-forest}{Making
a certain tree style the default for forest} at \TeX\ SE) does not work anymore. (Actually, it
has never truly worked, and that's why it has not \index{compat} key.) Use \index{default
preamble}.
\item Renamed augmented assignment operator \meta{option}|-| for prepending to \meta{toks} and
\meta{keylist} options \index{+toks=\meta{option}}\index[not print]{+keylist}. A new
\index{keylist-=\meta{option}} is defined for keylist options and means ``delete key from keylist.''
\item Short nodewalk steps are not simply styles anymore: use \index{define short step} to
define them.
\end{itemize}
Backwards incompatible changes with a \index{compat} key:
\begin{syntax}
\compatitem{all}{1.0-stages}
Processing of \index{given options}, which is now exposed, and the new keylists \index{default
preamble} and \index{preamble} is now included at the start of the default \index{style>stages}
style. When changing \index{style>stages}, the instruction to process these keylists must now be
given explicitely.
\compatitem{all}{1.0-forstep}
In v1.0, a spatial propagator \index{for step=\meta{step}} could never fail. This turned out to
be difficult to debug. In this version, when a propagator steps ``out of the tree'', an error
is raised by default. Check out \index{option of=Nodewalk>on invalid} to learn how to simulate
the old behaviour without using this compatibility key.
\compatitem{all}{1.0-rotate}
This version of the package introduces
option \index{rotate} and \index{autoforward}s it to \index{node options}. This is needed to
handle the new \foRest; anchors (\S\ref{sec:anchors}). However, in some rare cases (like the
tree on the title page of this manual) it can lead to a discrepancy between the versions, as the
time when the value given to \index{rotate} is processed is different. |1.0-rotate| removes
option \index{rotate}.
\compatitem{all}{1.0-name}
Documentation of v1.0 requested that node names be unique, but this was not enforced by the
package, sometimes leading to errors. v2.0 enforces node name uniqueness. If this causes
problems, use this compatibility key. In most cases using \index{name'} instead of
\index{option>name} should fix the problem without using compatibility mode.
\item These keys have been renamed:
\begin{tabularx}{\linewidth}{lll}
old&new&\index{compat} key {\small (all but the last are in \texttt{-most})}\\\hline
\keyname{node walk}&\index{for step=nodewalk}\footnote{Nodewalks are much improved in v2.0, so some syntax and keys are different than in v1.0!}&\indexdef{value of=compat>1.0-nodewalk}\\
\keyname{for}&\index{for step=\index{group}}&\indexdef{value of=compat>1.0-for}\\
\keyname{for all next}&\index{for step=\index{following siblings}}&\indexdef{value of=compat>1.0-forall}\\
\keyname{for all previous}&\index{for step=\index{preceding siblings}}&\indexdef{value of=compat>1.0-forall}\\
\keyname{for ancestors'}&\index{for step=\index{current and ancestors}}&\indexdef{value of=compat>1.0-ancestors}\\
(\keyname{for}) \keyname{linear next}&(\index{for step}) \index{next node}&\indexdef{value of=compat>1.0-linear}\\
(\keyname{for}) \keyname{linear previous}&(\index{for step}) \index{previous node}&\indexdef{value of=compat>1.0-linear}\\
\keyname{triangle}&\index{roof} (library \reflibrary{linguistics})&\indexdef{value of=compat>1.0-triangle}\\
\keyname{/tikz/fit to tree}&\index{fit to}\keyname{=}\index{tree}\footnote{The v1.0 key \keyname{/tikz/fit to tree} also set \keyname{inner sep=0}; the v2.0 key \index{fit to} does not do that.}&\indexdef{value of=compat>1.0-fittotree}\\
\keyname{begin forest}, \keyname{end forest}&none (use \index{style>stages})&\index{1.0-stages}\\
\keyname{end forest}, \keyname{end forest}&none (use \index{style>stages})&\index{1.0-stages}\\
\end{tabularx}
\end{syntax}
Good news:
\begin{itemize}
\item Added temporal propagators \index{before packing node} and \index{after packing node}.
\item \emph{Much} improved nodewalks, see \S\ref{ref:nodewalks} and \S\ref{ref:spatial-propagators}.
\item Implemented looping mechanisms and more conditionals, see \S\ref{ref:conditionals}.
\item Implemented library support and started filling up the libraries:
\begin{itemize}
\item \reflibrary{linguistics}: \index{sn edges}, \index{nice empty nodes}, \index{draw
brackets}, \index{c-commanded} and \index{c-commanders}
\item \reflibrary{edges}: \index{forked edges} and \index{folder}
\end{itemize}
\item Implemented aggregate functions, see \S\ref{ref:aggregate-functions}.
\item Added key \index{default preamble}.
\item Implemented anchors \index{anchor>parent}, \index{anchor>children}, \index{anchor>first},
\index{anchor>last}, etc.
\item Added key \index{split} and friends.
\item Implemented sorting of children, see \S\ref{ref:dynamic}.
\item Introduced registers, see \S\ref{sec:options-and-registers}.
\item Implemented handlers \index{handler>option}, \index{handler>register} and \index{process args}.
\item Implemented several friends to \index{process keylist}, introduced \index{processing order}s
and \index{draw tree method}.
\item Added the optional argument |(|\meta{stages}|)| to the \index{forest} environment and
\index{Forest} macro.
\item Implemented \index{autoforward}ing.
\item Implemented flexible handling of unknown keys using \index{unknown to}.
\item Implemented |pgfmath| functions \index{pgfmath>min_l}, \index{pgfmath>max_l}, \index{pgfmath>min_s}, \index{pgfmath>max_s}.
\item Implemented augmented assignment operator \index{keylist-=\meta{keylist option}} for removing keys from keylists.
\item Implemented a generalized \index{fit to} key.
\item Implemented a very slow \foRest;-based indexing system (used to index this documentation)
and included it in the gallery (\S\ref{sec:forest-index}).
\item Added some minor keys: \index{edge path'}, \index{node format'}, \index{create'} and \index{plain content}.
\item Added some developer keys: \index{copy command key}, \index{typeout}.
\end{itemize}
Bugfixes:
\begin{itemize}
\item In computation of numeric tree-structure info, when called for a non-root node.
\item \TikZ;'s externalization internals (signature of
|\tikzexternal@externalizefig@systemcall@uptodatecheck|) have changed: keep up to date,
though only formally.
\item \index{delay} was not behaving additively.
\item \index{option>name}, \index{alias} and \index{baseline} didn't work properly when
setting them for a non-current node.
\item Augmented assignments for count options were leaking `.0pt'.
\item \index{create} didn't work properly in some cases.
\item \keyname{triangle} (now \index{roof} in \reflibrary{linguistics}) didn't use |cycle| in the edge path
\end{itemize}
\end{description}
\subsubsection{v1.0}
\begin{description}
\item[v1.0.10 (2015/07/22)] \mbox{}
\begin{compactitem}
\item Bugfix: a left-over debugging |\typeout| command was interfering with a |forest| within |tabular|, see \href{http://tex.stackexchange.com/questions/256509/odd-incompatibility-between-multi-line-forest-nodes-and-tabular}{this question on TeX.SE}.
\item A somewhat changed versioning scheme \dots
\end{compactitem}
\item[v1.09 (2015/07/15)] \mbox{}
\begin{compactitem}
\item Bugfix: child alignment was not done in nodes with a single child, see \href{http://tex.stackexchange.com/questions/255309/elementary-forest-question-meaning-of-calign-parent-anchor-and-child-anchor}{this question on TeX.SE}.
\end{compactitem}
\item[v1.08 (2015/07/10)] \mbox{}
\begin{compactitem}
\item Fix externalization (compatibility with new |tikz| features).
\end{compactitem}
\item[v1.07 (2015/05/29)] \mbox{}
\begin{compactitem}
\item Require package |elocalloc| for local boxes, which were previously defined by package |etex|.
\end{compactitem}
\item[v1.06 (2015/05/04)] \mbox{}
\begin{compactitem}
\item Load |etex| package: since v2.1a, |etoolbox| doesn't do it anymore.
\end{compactitem}
\item[v1.05 (2014/03/07)] \mbox{}
\begin{compactitem}
\item Fix the node boundary code for rounded rectangle. (Patch contributed by Paul Gaborit.)
\end{compactitem}
\item[v1.04 (2013/10/17)] \mbox{}
\begin{compactitem}
\item Fixed an \href{http://tex.stackexchange.com/questions/138986/error-using-tikzexternalize-with-forest/139145}{externalization bug}.
\end{compactitem}
\item[v1.03 (2013/01/28)] \mbox{}
\begin{compactitem}
\item Bugfix: options of dynamically created nodes didn't get processed.
\item Bugfix: the bracket parser was losing spaces before opening braces.
\item Bugfix: a family of utility macros dealing with affixing token lists was not expanding
content correctly.
\item Added style \index{math content}.
\item Replace key \keyname{tikz preamble} with more general \index{begin draw} and
\index{end draw}.
\item Add keys \keyname{begin forest} and \keyname{end forest}.
\end{compactitem}
\item[v1.02 (2013/01/20)] \mbox{}
\begin{compactitem}
\item Reworked style \index{style>stages}: it's easier to modify the processing flow now.
\item Individual stages must now be explicitely called in the context of some (usually root)
node.
\item Added \index{delay n} and \index{if have delayed}.
\item Added (experimental) \index{pack'}.
\item Added reference to the \href{https://github.com/sasozivanovic/forest-styles}{style
repository}.
\end{compactitem}
\item[v1.01 (2012/11/14)] \mbox{}
\begin{compactitem}
\item Compatibility with the |standalone| package: temporarily disable the effect of
|standalone|'s package option |tikz| while typesetting nodes.
\item Require at least the [2010/08/21] (v2.0) release of package |etoolbox|.
\item Require version [2010/10/13] (v2.10, rcs-revision 1.76) of \PGF;/\TikZ;. Future
compatibility: adjust to the change of the ``not yet positioned'' node name (2.10 |@|
$\rightarrow$ 2.10-csv |PGFINTERNAL|).
\item Add this changelog.
\end{compactitem}
\item[v1.0 (2012/10/31)] First public version
\end{description}
\subsection{Known bugs}
\label{sec:bugs}
If you find a bug (there are bound to be some \dots), please contact
me at \href{mailto:saso.zivanovic@guest.arnes.si}{saso.zivanovic@guest.arnes.si}.
\subsubsection*{System requirements}
This package requires \LaTeX\ and e\TeX. If you use something
else: sorry.
The requirement for \LaTeX\ might be dropped in the future, when I get some time and energy for a
code-cleanup (read: to remedy the consequences of my bad programming practices and general
disorganization).
The requirement for e\TeX\ will probably stay. If nothing else, \foRest; is heavy on boxes: every
node requires its own \dots\ and consequently, I have freely used e\TeX\ constructs in the code
\dots
\subsubsection*{\PGF; internals}
\FoRest; relies on some details of \PGF; implementation, like the name
of the ``not yet positioned'' nodes. Thus, a new bug might appear with the development of \PGF;.
If you notice one, please let me know.
\subsubsection*{Edges cutting through sibling nodes}
\label{sec:cutting-edge}
In the following example, the R--B edge crosses the AAA node, although \index{ignore edge} is
set to the default |false|.
\begin{forestexample}[index={calign,{value of=calign>first},align,{value of=align>center},base,{value of=base>bottom}}]
\begin{forest}
calign=first
[R[AAAAAAAAAA\\AAAAAAAAAA\\AAAAAAAAAA,align=center,base=bottom][B]]
\end{forest}
\end{forestexample}
This happens because s-distances between the adjacent children are
computed before child alignment (which is obviously the correct order in the general case), but
child alignment non-linearly influences the edges. Observe that the with a different value of
\index{calign}, the problem does not arise.
\begin{forestexample}[index={calign,{value of=calign>last},align,{value of=align>center},base,{value of=base>bottom}}]
\begin{forest}
calign=last
[R[AAAAAAAAAA\\AAAAAAAAAA\\AAAAAAAAAA,align=center,base=bottom][B]]
\end{forest}
\end{forestexample}
While it would be possible to fix the situation after child alignment (at least for some child
alignment methods), I have decided against that, since the distances between siblings would soon
become too large. If the AAA node in the example above was large enough, B could easily be pushed
off the paper. The bottomline is, please use manual adjustment to fix such situations.
\subsubsection*{Orphans}
\label{sec:orphans}
If the \index{option>l} coordinates of adjacent children are too different (as a result of manual adjustment or
tier alignment), the packing algorithm might have nothing so say about the desired distance
between them: in this sense, node C below is an ``orphan.''
\begin{forestexample}[index={for step,tree,s sep,option>l,dimen*}]
\begin{forest}
for tree={s sep=0,draw},
[R[A][B][C,l*=2][D][E]]
\end{forest}
\end{forestexample}
To prevent orphans from ending up just anywhere, I have decided to vertically align them with
their preceding sibling --- although I'm not certain that's really the best solution. In other
words, you can rely that the sequence of s-coordinates of siblings is non-decreasing.
The decision also influences a similar situation illustrated below. The packing algorithm puts
node E immediately next to B (i.e.\ under C): however, the monotonicity-retaining mechanism then
vertically aligns it with its preceding sibling, D.
\begin{forestexample}[index={for step,tree,s sep,tier}]
\begin{forest}
for tree={s sep=0,draw},
[R[A[B,tier=bottom]][C][D][E,tier=bottom]]
\end{forest}
\end{forestexample}
Obviously, both examples also create the situation of an edge crossing some sibling node(s).
Again, I don't think anything sensible can be done about this, in general.
\subsection{Acknowledgements}
This package has turned out to be much more successful and widespread than I could have ever
imagined and I want to thank all the users for the trust. Many of you have also contributed to the
package in some way: by providing comments and ideas, sending patches, reporting bugs and so on. To
you, I'm doubly grateful! I will not even try to list you all here, as the list is getting too long
for me to maintain, but I do want to mention one person, a member of the friendly community at the
excellent and indispensable \href{http://tex.stackexchange.com}{\TeX\ -- \LaTeX\ Stack Exchange} and
the author of the very first \foRest;-based package,
\href{http://ctan.org/pkg/prooftrees}{Prooftrees}: without |cfr|'s uncountable questions, answers,
bug reports and ideas, \foRest; would be a much poorer package indeed.
\addcontentsline{toc}{section}{References}
\bibliography{tex}
\bibliographystyle{plain}
\newpage
\phantomsection
\addcontentsline{toc}{section}{\indexname}
\addtocontents{toc}{\protect\setbox0=\protect\vbox{\protect\iffalse}\protect\fi}
\PrintIndex
%\addtocontents{toc}{\protect\iffalse{\protect\fi}}
%http://tex.stackexchange.com/questions/10291/addtocontents-at-end-of-document-not-getting-written-to-toc-file
\makeatletter
\immediate\write\@auxout{\noexpand\@writefile{toc}{\noexpand\iffalse{\noexpand\fi}}}
\makeatother
\end{document}
%%% Local Variables:
%%% mode: latex
%%% fill-column: 100
%%% TeX-command-default: "Make PDF"
%%% TeX-master: t
%%% End:
|