summaryrefslogtreecommitdiff
path: root/graphics/pgf/base/doc/text-en/pgfmanual-en-tutorial-map.tex
blob: 4c895031c68889eb29ee6414e4136d049c53b6bd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
% Copyright 2019 by Till Tantau
%
% This file may be distributed and/or modified
%
% 1. under the LaTeX Project Public License and/or
% 2. under the GNU Free Documentation License.
%
% See the file doc/generic/pgf/licenses/LICENSE for more details.


\section{Tutorial: A Lecture Map for Johannes}

In this tutorial we explore the tree and mind map mechanisms of \tikzname.

Johannes is quite excited: For the first time he will be teaching a course all
by himself during the upcoming semester! Unfortunately, the course is not on
his favorite subject, which is of course Theoretical Immunology, but on
Complexity Theory, but as a young academic Johannes is not likely to complain
too loudly. In order to help the students get a general overview of what is
going to happen during the course as a whole, he intends to draw some kind of
tree or graph containing the basic concepts. He got this idea from his old
professor who seems to be using these ``lecture maps'' with some success.
Independently of the success of these maps, Johannes thinks they look quite
neat.


\subsection{Problem Statement}

Johannes wishes to create a lecture map with the following features:
%
\begin{enumerate}
    \item It should contain a tree or graph depicting the main concepts.
    \item It should somehow visualize the different lectures that will be
        taught. Note that the lectures are not necessarily the same as the
        concepts since the graph may contain more concepts than will be
        addressed in lectures and some concepts may be addressed during more
        than one lecture.
    \item The map should also contain a calendar showing when the individual
        lectures will be given.
    \item The aesthetical reasons, the whole map should have a visually nice
        and information-rich background.
\end{enumerate}

As always, Johannes will have to include the right libraries and set up the
environment. Johannes is going to use the |mindmap| library and since he wishes
to show a calendar, he will also need the |calendar| library. In order to put
something on a background layer, it seems like a good idea to also include the
|backgrounds| library.


\subsection{Introduction to Trees}

The first choice Johannes must make is whether he will organize the concepts as
a tree, with root concepts and concept branches and leaf concepts, or as a
general graph. The tree implicitly organizes the concepts, while a graph is
more flexible. Johannes decides to compromise: Basically, the concepts will be
organized as a tree. However, he will selectively add connections between
concepts that are related, but which appear on different levels or branches of
the tree.

Johannes starts with a tree-like list of concepts that he feels are important
in Computational Complexity:
%
\begin{itemize}
    \item Computational Problems
        \begin{itemize}\itemsep=0pt\parskip=0pt
            \item Problem Measures
            \item Problem Aspects
            \item Problem Domains
            \item Key Problems
        \end{itemize}
    \item Computational Models
        \begin{itemize}\itemsep=0pt\parskip=0pt
            \item Turing Machines
            \item Random-Access Machines
            \item Circuits
            \item Binary Decision Diagrams
            \item Oracle Machines
            \item Programming in Logic
        \end{itemize}
    \item Measuring Complexity
        \begin{itemize}\itemsep=0pt\parskip=0pt
            \item Complexity Measures
            \item Classifying Complexity
            \item Comparing Complexity
            \item Describing Complexity
        \end{itemize}
    \item Solving Problems
        \begin{itemize}\itemsep=0pt\parskip=0pt
            \item Exact Algorithms
            \item Randomization
            \item Fixed-Parameter Algorithms
            \item Parallel Computation
            \item Partial Solutions
            \item Approximation
        \end{itemize}
\end{itemize}

Johannes will surely need to modify this list later on, but it looks good as a
first approximation. He will also need to add a number of subtopics (like
\emph{lots} of complexity classes under the topic ``classifying complexity''),
but he will do this as he constructs the map.

Turning the list of topics into a \tikzname-tree is easy, in principle. The
basic idea is that a node can have \emph{children}, which in turn can have
children of their own, and so on. To add a child to a node, Johannes can simply
write |child {|\meta{node}|}| right after a node. The \meta{node} should, in
turn, be the code for creating a node. To add another node, Johannes can use
|child| once more, and so on. Johannes is eager to try out this construct and
writes down the following:
%
\begin{codeexample}[]
\tikz
  \node {Computational Complexity} % root
    child { node {Computational Problems}
      child { node {Problem Measures} }
      child { node {Problem Aspects} }
      child { node {Problem Domains} }
      child { node {Key Problems} }
    }
    child { node {Computational Models}
      child { node {Turing Machines} }
      child { node {Random-Access Machines} }
      child { node {Circuits} }
      child { node {Binary Decision Diagrams} }
      child { node {Oracle Machines} }
      child { node {Programming in Logic} }
    }
    child { node {Measuring Complexity}
      child { node {Complexity Measures} }
      child { node {Classifying Complexity} }
      child { node {Comparing Complexity} }
      child { node {Describing Complexity} }
    }
    child { node {Solving Problems}
      child { node {Exact Algorithms} }
      child { node {Randomization} }
      child { node {Fixed-Parameter Algorithms} }
      child { node {Parallel Computation} }
      child { node {Partial Solutions} }
      child { node {Approximation} }
    };
\end{codeexample}

Well, that did not quite work out as expected (although, what, exactly, did one
expect?). There are two problems:
%
\begin{enumerate}
    \item The overlap of the nodes is due to the fact that \tikzname\ is not
        particularly smart when it comes to placing child nodes. Even though
        it is possible to configure \tikzname\ to use rather clever placement
        methods, \tikzname\ has no way of taking the actual size of the child
        nodes into account. This may seem strange but the reason is that the
        child nodes are rendered and placed one at a time, so the size of the
        last node is not known when the first node is being processed. In
        essence, you have to specify appropriate level and sibling node
        spacings ``by hand''.
    \item The standard computer-science-top-down rendering of a tree is
        rather ill-suited to visualizing the concepts. It would be better to
        either rotate the map by ninety degrees or, even better, to use some
        sort of circular arrangement.
\end{enumerate}

Johannes redraws the tree, but this time with some more appropriate options
set, which he found more or less by trial-and-error:
%
\begin{codeexample}[
    preamble={\usetikzlibrary{trees}},
    render instead={
        \tikz [font=\footnotesize,
               grow=right, level 1/.style={sibling distance=6em},
                           level 2/.style={sibling distance=1em}, level distance=5cm]
          \node {Computational Complexity} % root
            child { node {Computational Problems}
              child { node {Problem Measures} }           child { node {Problem Aspects} }
              child { node {Problem Domains} }            child { node {Key Problems} }
            }
            child { node {Computational Models}
              child { node {Turing Machines} }            child { node {Random-Access Machines} }
              child { node {Circuits} }                   child { node {Binary Decision Diagrams} }
              child { node {Oracle Machines} }            child { node {Programming in Logic} }
            }
            child { node {Measuring Complexity}
              child { node {Complexity Measures} }        child { node {Classifying Complexity} }
              child { node {Comparing Complexity} }       child { node {Describing Complexity} }
            }
            child { node {Solving Problems}
              child { node {Exact Algorithms} }           child { node {Randomization} }
              child { node {Fixed-Parameter Algorithms} } child { node {Parallel Computation} }
              child { node {Partial Solutions} }          child { node {Approximation} }
            };
    },
]
\tikz [font=\footnotesize,
       grow=right, level 1/.style={sibling distance=6em},
                   level 2/.style={sibling distance=1em}, level distance=5cm]
  \node {Computational Complexity} % root
    child { node {Computational Problems}
      child { node {Problem Measures} }
      child { node {Problem Aspects} }
      ... % as before
\end{codeexample}

Still not quite what Johannes had in mind, but he is getting somewhere.

For configuring the tree, two parameters are of particular importance: The
|level distance| tells \tikzname\ the distance between (the centers of) the
nodes on adjacent levels or layers of a tree. The |sibling distance| is, as the
name suggests, the distance between (the centers of) siblings of the tree.

You can globally set these parameters for a tree by simply setting them
somewhere before the tree starts, but you will typically wish them to be
different for different levels of the tree. In this case, you should set styles
like |level 1| or |level 2|. For the first level of the tree, the |level 1|
style is used, for the second level the |level 2| style, and so on. You can
also set the sibling and level distances only for certain nodes by passing
these options to the |child| command as options. (Note that the options of a
|node| command are local to the node and have no effect on the children. Also
note that it is possible to specify options that do have an effect on the
children. Finally note that specifying options for children ``at the right
place'' is an arcane art and you should peruse
Section~\ref{section-tree-options} on a rainy Sunday afternoon, if you are
really interested.)

The |grow| key is used to configure the direction in which a tree grows. You
can change growth direction ``in the middle of a tree'' simply by changing this
key for a single child or a whole level. By including the |trees| library you
also get access to additional growth strategies such as a ``circular'' growth:
%
\begin{codeexample}[
    preamble={\usetikzlibrary{trees}},
    render instead={
        \tikz [text width=2.7cm, align=flush center,
               grow cyclic,
               level 1/.style={level distance=2.5cm,sibling angle=90},
               level 2/.style={text width=2cm, font=\footnotesize, level distance=3cm,sibling angle=30}]
          \node[font=\bfseries] {Computational Complexity} % root
            child { node {Computational Problems}
              child { node {Problem Measures} }           child { node {Problem Aspects} }
              child { node {Problem Domains} }            child { node {Key Problems} }
            }
            child { node {Computational Models}
              child { node {Turing Machines} }            child { node {Random-Access Machines} }
              child { node {Circuits} }                   child { node {Binary Decision Diagrams} }
              child { node {Oracle Machines} }            child { node {Programming in Logic} }
            }
            child { node {Measuring Complexity}
              child { node {Complexity Measures} }        child { node {Classifying Complexity} }
              child { node {Comparing Complexity} }       child { node {Describing Complexity} }
            }
            child { node {Solving Problems}
              child { node {Exact Algorithms} }           child { node {Randomization} }
              child { node {Fixed-Parameter Algorithms} } child { node {Parallel Computation} }
              child { node {Partial Solutions} }          child { node {Approximation} }
            };
    },
]
\tikz [text width=2.7cm, align=flush center,
       grow cyclic,
       level 1/.style={level distance=2.5cm,sibling angle=90},
       level 2/.style={text width=2cm, font=\footnotesize, level distance=3cm,sibling angle=30}]
  \node[font=\bfseries] {Computational Complexity} % root
    child { node {Computational Problems}
      child { node {Problem Measures} }
      child { node {Problem Aspects} }
      ... % as before
\end{codeexample}

Johannes is pleased to learn that he can access and manipulate the nodes of the
tree like any normal node. In particular, he can name them using the |name=|
option or the |(|\meta{name}|)| notation and he can use any available shape or
style for the trees nodes. He can connect trees later on using the normal
|\draw (some node) -- (another node);| syntax. In essence, the |child| command
just computes an appropriate position for a node and adds a line from the child
to the parent node.


\subsection{Creating the Lecture Map}

Johannes now has a first possible layout for his lecture map. The next step is
to make it ``look nicer''. For this, the |mindmap| library is helpful since it
makes a number of styles available that will make a tree look like a nice
``mind map'' or ``concept map''.

The first step is to include the |mindmap| library, which Johannes already did.
Next, he must add one of the following options to a scope that will contain the
lecture map: |mindmap| or |large mindmap| or |huge mindmap|. These options all
have the same effect, except that for a |large mindmap| the predefined font
size and node sizes are somewhat larger than for a standard |mindmap| and for a
|huge mindmap| they are even larger. So, a |large mindmap| does not necessarily
need to have a lot of concepts, but it will need a lot of paper.

The second step is to add the |concept| option to every node that will, indeed,
be a concept of the mindmap. The idea is that some nodes of a tree will be real
concepts, while other nodes might just be ``simple children''. Typically, this
is not the case, so you might consider saying |every node/.style=concept|.

The third step is to set up the sibling \emph{angle} (rather than a sibling
distance) to specify the angle between sibling concepts.
%
\begin{codeexample}[
    preamble={\usetikzlibrary{mindmap}},
    render instead={
        \tikz [mindmap, every node/.style=concept, concept color=black!20,
               grow cyclic,
               level 1/.append style={level distance=4.5cm,sibling angle=90},
               level 2/.append style={level distance=3cm,sibling angle=45}]
          \node [root concept] {Computational Complexity} % root
            child { node {\hbox to 2cm{Computational\hss} Problems}
              child { node {Problem Measures} }
              child { node {Problem Aspects} }
              child { node {Problem Domains} }
              child { node {Key Problems} }
            }
            child { node {\hbox to 2cm{Computational\hss} Models}
              child { node {Turing Machines} }
              child { node {Random-Access Machines} }
              child { node {Circuits} }
              child { node {Binary Decision Diagrams} }
              child { node {Oracle Machines} }
              child { node {\hbox to1.5cm{Programming\hss} in Logic} }
            }
            child { node {Measuring Complexity}
              child { node {Complexity Measures} }
              child { node {Classifying Complexity} }
              child { node {Comparing Complexity} }
              child { node {Describing Complexity} }
            }
            child { node {Solving Problems}
              child { node {Exact Algorithms} }
              child { node {\hbox to 1.5cm{Randomization\hss}} }
              child { node {Fixed-Parameter Algorithms} }
              child { node {Parallel Computation} }
              child { node {Partial Solutions} }
              child { node {\hbox to1.5cm{Approximation\hss}} }
            };
    },
]
\tikz [mindmap, every node/.style=concept, concept color=black!20,
       grow cyclic,
       level 1/.append style={level distance=4.5cm,sibling angle=90},
       level 2/.append style={level distance=3cm,sibling angle=45}]
  \node [root concept] {Computational Complexity} % root
    child { node {Computational Problems}
      child { node {Problem Measures} }
      child { node {Problem Aspects} }
      ... % as before
\end{codeexample}

When Johannes typesets the above map, \TeX\ (rightfully) starts complaining
about several overfull boxes and, indeed, words like ``Randomization'' stretch
out beyond the circle of the concept. This seems a bit mysterious at first
sight: Why does \TeX\ not hyphenate the word? The reason is that \TeX\ will
never hyphenate the first word of a paragraph because it starts looking for
``hyphenatable'' letters only after a so-called glue. In order to have \TeX\
hyphenate these single words, Johannes must use a bit of evil trickery: He
inserts a |\hskip0pt| before the word. This has no effect except for inserting
an (invisible) glue before the word and, thereby, allowing \TeX\ to hyphenate
the first word also. Since Johannes does not want to add |\hskip0pt| inside
each node, he uses the |execute at begin node| option to make \tikzname\ insert
this text with every node.
%
\begin{codeexample}[
    preamble={\usetikzlibrary{mindmap}},
    render instead={
        \begin{tikzpicture}
          [mindmap,
           every node/.style={concept, execute at begin node=\hskip0pt},
           concept color=black!20,
           grow cyclic,
           level 1/.append style={level distance=4.5cm,sibling angle=90},
           level 2/.append style={level distance=3cm,sibling angle=45}]
          \clip (-1,2) rectangle ++ (-4,5);
          \node [root concept] {Computational Complexity} % root
            child { node {Computational Problems}
              child { node {Problem Measures} }
              child { node {Problem Aspects} }
              child { node {Problem Domains} }
              child { node {Key Problems} }
            }
            child { node {Computational Models}
              child { node {Turing Machines} }
              child { node {Random-Access Machines} }
              child { node {Circuits} }
              child { node {Binary Decision Diagrams} }
              child { node {Oracle Machines} }
              child { node {Programming in Logic} }
            }
            child { node {Measuring Complexity}
              child { node {Complexity Measures} }
              child { node {Classifying Complexity} }
              child { node {Comparing Complexity} }
              child { node {Describing Complexity} }
            }
            child { node {Solving Problems}
              child { node {Exact Algorithms} }
              child { node {Randomization} }
              child { node {Fixed-Parameter Algorithms} }
              child { node {Parallel Computation} }
              child { node {Partial Solutions} }
              child { node {Approximation} }
            };
        \end{tikzpicture}
    },
]
\begin{tikzpicture}
  [mindmap,
   every node/.style={concept, execute at begin node=\hskip0pt},
   concept color=black!20,
   grow cyclic,
   level 1/.append style={level distance=4.5cm,sibling angle=90},
   level 2/.append style={level distance=3cm,sibling angle=45}]
  \clip (-1,2) rectangle ++ (-4,5);
  \node [root concept] {Computational Complexity} % root
    child { node {Computational Problems}
      child { node {Problem Measures} }
      child { node {Problem Aspects} }
      ... % as before
\end{tikzpicture}
\end{codeexample}

In the above example a clipping was used to show only part of the lecture map,
in order to save space. The same will be done in the following examples, we
return to the complete lecture map at the end of this tutorial.

Johannes is now eager to colorize the map. The idea is to use different colors
for different parts of the map. He can then, during his lectures, talk about
the ``green'' or the ``red'' topics. This will make it easier for his students
to locate the topic he is talking about on the map. Since ``computational
problems'' somehow sounds ``problematic'', Johannes chooses red for them, while
he picks green for the ``solving problems''. The topics ``measuring
complexity'' and ``computational models'' get more neutral colors; Johannes
picks orange and blue.

To set the colors, Johannes must use the |concept color| option, rather than
just, say, |node [fill=red]|. Setting just the fill color to |red| would,
indeed, make the node red, but it would \emph{just} make the node red and not
the bar connecting the concept to its parent and also not its children. By
comparison, the special |concept color| option will not only set the color of
the node and its children, but it will also (magically) create appropriate
shadings so that the color of a parent concept smoothly changes to the color of
a child concept.

For the root concept Johannes decides to do something special: He sets the
concept color to black, sets the line width to a large value, and sets the fill
color to white. The effect of this is that the root concept will be encircled
with a thick black line and the children are connected to the central concept
via bars.
%
\begin{codeexample}[
    preamble={\usetikzlibrary{mindmap}},
    render instead={
        \begin{tikzpicture}
          [mindmap,
           every node/.style={concept, execute at begin node=\hskip0pt},
           root concept/.append style={
             concept color=black,
             fill=white, line width=1ex,
             text=black},
           text=white,
           grow cyclic,
           level 1/.append style={level distance=4.5cm,sibling angle=90},
           level 2/.append style={level distance=3cm,sibling angle=45}]
          \clip (0,-1) rectangle ++(4,5);
          \node [root concept] {Computational Complexity} % root
            child [concept color=red] { node {Computational Problems}
              child { node {Problem Measures} }
              child { node {Problem Aspects} }
              child { node {Problem Domains} }
              child { node {Key Problems} }
            }
            child [concept color=blue] { node {Computational Models}
              child { node {Turing Machines} }
              child { node {Random-Access Machines} }
              child { node {Circuits} }
              child { node {Binary Decision Diagrams} }
              child { node {Oracle Machines} }
              child { node {Programming in Logic} }
            }
            child [concept color=orange] { node {Measuring Complexity}
              child { node {Complexity Measures} }
              child { node {Classifying Complexity} }
              child { node {Comparing Complexity} }
              child { node {Describing Complexity} }
            }
            child [concept color=green!50!black] { node {Solving Problems}
              child { node {Exact Algorithms} }
              child { node {Randomization} }
              child { node {Fixed-Parameter Algorithms} }
              child { node {Parallel Computation} }
              child { node {Partial Solutions} }
              child { node {Approximation} }
            };
        \end{tikzpicture}
    },
]
\begin{tikzpicture}
  [mindmap,
   every node/.style={concept, execute at begin node=\hskip0pt},
   root concept/.append style={
     concept color=black, fill=white, line width=1ex, text=black},
   text=white,
   grow cyclic,
   level 1/.append style={level distance=4.5cm,sibling angle=90},
   level 2/.append style={level distance=3cm,sibling angle=45}]
   \clip (0,-1) rectangle ++(4,5);
  \node [root concept] {Computational Complexity} % root
    child [concept color=red] { node {Computational Problems}
      child { node {Problem Measures} }
      ... % as before
    }
    child [concept color=blue] { node {Computational Models}
      child { node {Turing Machines} }
      ... % as before
    }
    child [concept color=orange] { node {Measuring Complexity}
      child { node {Complexity Measures} }
      ... % as before
    }
    child [concept color=green!50!black] { node {Solving Problems}
      child { node {Exact Algorithms} }
      ... % as before
    };
\end{tikzpicture}
\end{codeexample}

Johannes adds three finishing touches: First, he changes the font of the main
concepts to small caps. Second, he decides that some concepts should be
``faded'', namely those that are important in principle and belong on the map,
but which he will not talk about in his lecture. To achieve this, Johannes
defines four styles, one for each of the four main branches. These styles (a)
set up the correct concept color for the whole branch and (b) define the
|faded| style appropriately for this branch. Third, he adds a
|circular drop shadow|, defined in the |shadows| library, to the concepts, just
to make things look a bit more fancy.
%
\begin{codeexample}[
    preamble={\usetikzlibrary{mindmap,shadows}},
    render instead={
        \begin{tikzpicture}[mindmap]
          \begin{scope}[
           every node/.style={concept, circular drop shadow,execute at begin node=\hskip0pt},
           root concept/.append style={
             concept color=black,
             fill=white, line width=1ex,
             text=black, font=\large\scshape},
           text=white,
           computational problems/.style={concept color=red,faded/.style={concept color=red!50}},
           computational models/.style={concept color=blue,faded/.style={concept color=blue!50}},
           measuring complexity/.style={concept color=orange,faded/.style={concept color=orange!50}},
           solving problems/.style={concept color=green!50!black,faded/.style={concept color=green!50!black!50}},
           grow cyclic,
           level 1/.append style={level distance=4.5cm,sibling angle=90,font=\scshape},
           level 2/.append style={level distance=3cm,sibling angle=45,font=\scriptsize}]
          \node [root concept] {Computational Complexity} % root
            child [computational problems] { node {Computational Problems}
              child         { node {Problem Measures} }
              child         { node {Problem Aspects} }
              child [faded] { node {Problem Domains} }
              child         { node {Key Problems} }
            }
            child [computational models] { node {Computational Models}
              child         { node {Turing Machines} }
              child [faded] { node {Random-Access Machines} }
              child         { node {Circuits} }
              child [faded] { node {Binary Decision Diagrams} }
              child         { node {Oracle Machines} }
              child         { node {Programming in Logic} }
            }
            child [measuring complexity] { node {Measuring Complexity}
              child         { node {Complexity Measures} }
              child         { node {Classifying Complexity} }
              child         { node {Comparing Complexity} }
              child [faded] { node {Describing Complexity} }
            }
            child [solving problems] { node {Solving Problems}
              child         { node {Exact Algorithms} }
              child         { node {Randomization} }
              child         { node {Fixed-Parameter Algorithms} }
              child         { node {Parallel Computation} }
              child         { node {Partial Solutions} }
              child         { node {Approximation} }
            };
          \end{scope}
        \end{tikzpicture}
    },
]
\begin{tikzpicture}[mindmap]
  \begin{scope}[
    every node/.style={concept, circular drop shadow,execute at begin node=\hskip0pt},
    root concept/.append style={
      concept color=black, fill=white, line width=1ex, text=black, font=\large\scshape},
    text=white,
    computational problems/.style={concept color=red,faded/.style={concept color=red!50}},
    computational models/.style={concept color=blue,faded/.style={concept color=blue!50}},
    measuring complexity/.style={concept color=orange,faded/.style={concept color=orange!50}},
    solving problems/.style={concept color=green!50!black,faded/.style={concept color=green!50!black!50}},
    grow cyclic,
    level 1/.append style={level distance=4.5cm,sibling angle=90,font=\scshape},
    level 2/.append style={level distance=3cm,sibling angle=45,font=\scriptsize}]
    \node [root concept] {Computational Complexity} % root
      child [computational problems] { node {Computational Problems}
        child         { node {Problem Measures} }
        child         { node {Problem Aspects} }
        child [faded] { node {Problem Domains} }
        child         { node {Key Problems} }
      }
      child [computational models] { node {Computational Models}
        child         { node {Turing Machines} }
        child [faded] { node {Random-Access Machines} }
        ...
  \end{scope}
\end{tikzpicture}
\end{codeexample}


\subsection{Adding the Lecture Annotations}

Johannes will give about a dozen lectures during the course ``computational
complexity''. For each lecture he has compiled a (short) list of learning
targets that state what knowledge and qualifications his students should
acquire during this particular lecture (note that learning targets are not the
same as the contents of a lecture). For each lecture he intends to put a little
rectangle on the map containing these learning targets and the name of the
lecture, each time somewhere near the topic of the lecture. Such ``little
rectangles'' are called ``annotations'' by the |mindmap| library.

In order to place the annotations next to the concepts, Johannes must assign
names to the nodes of the concepts. He could rely on \tikzname's automatic
naming of the nodes in a tree, where the children of a node named |root| are
named |root-1|, |root-2|, |root-3|, and so on. However, since Johannes is not
sure about the final order of the concepts in the tree, it seems better to
explicitly name all concepts of the tree in the following manner:
%
\begin{codeexample}[code only]
\node [root concept] (Computational Complexity) {Computational Complexity}
  child [computational problems] { node (Computational Problems) {Computational Problems}
    child         { node (Problem Measures) {Problem Measures} }
    child         { node (Problem Aspects) {Problem Aspects} }
    child [faded] { node (Problem Domains) {Problem Domains} }
    child         { node (Key Problems) {Key Problems} }
  }
...
\end{codeexample}

The |annotation| style of the |mindmap| library mainly sets up a rectangular
shape of appropriate size. Johannes configures the style by defining
|every annotation| appropriately.
%
\begin{codeexample}[
    preamble={\usetikzlibrary{mindmap,shadows}},
    render instead={
        \begin{tikzpicture}[mindmap]
          \clip (-5.25,-3) rectangle ++ (4,5);
          \begin{scope}[
            every node/.style={concept, circular drop shadow,execute at begin node=\hskip0pt},
            root concept/.append style={
              concept color=black,
              fill=white, line width=1ex,
              text=black, font=\large\scshape},
            text=white,
            computational problems/.style={concept color=red,faded/.style={concept color=red!50}},
            computational models/.style={concept color=blue,faded/.style={concept color=blue!50}},
            measuring complexity/.style={concept color=orange,faded/.style={concept color=orange!50}},
            solving problems/.style={concept color=green!50!black,faded/.style={concept color=green!50!black!50}},
            grow cyclic,
            level 1/.append style={level distance=4.5cm,sibling angle=90,font=\scshape},
            level 2/.append style={level distance=3cm,sibling angle=45,font=\scriptsize}]
            \node [root concept] (Computational Complexity) {Computational Complexity} % root
              child [computational problems] { node (Computational Problems) {Computational Problems}
                child         { node (Problem Measures) {Problem Measures} }
                child         { node (Problem Aspects) {Problem Aspects} }
                child [faded] { node (problem Domains) {Problem Domains} }
                child         { node (Key Problems) {Key Problems} }
              }
              child [computational models] { node (Computational Models) {Computational Models}
                child         { node (Turing Machines) {Turing Machines} }
                child [faded] { node (Random-Access Machines) {Random-Access Machines} }
                child         { node (Circuits) {Circuits} }
                child [faded] { node (Binary Decision Diagrams) {Binary Decision Diagrams} }
                child         { node (Oracle Machines) {Oracle Machines} }
                child         { node (Programming in Logic) {Programming in Logic} }
              }
              child [measuring complexity] { node (Measuring Complexity) {Measuring Complexity}
                child         { node (Complexity Measures) {Complexity Measures} }
                child         { node (Classifying Complexity) {Classifying Complexity} }
                child         { node (Comparing Complexity) {Comparing Complexity} }
                child [faded] { node (Describing Complexity) {Describing Complexity} }
              }
              child [solving problems] { node (Solving Problems) {Solving Problems}
                child         { node (Exact Algorithms) {Exact Algorithms} }
                child         { node (Randomization) {Randomization} }
                child         { node (Fixed-Parameter Algorithms) {Fixed-Parameter Algorithms} }
                child         { node (Parallel Computation) {Parallel Computation} }
                child         { node (Partial Solutions) {Partial Solutions} }
                child         { node (Approximation) {Approximation} }
              };
          \end{scope}
          \begin{scope}[every annotation/.style={fill=black!40}]
            \node [annotation, above] at (Computational Problems.north) {
              Lecture 1: Computational Problems
              \begin{itemize}
              \item Knowledge of several key problems
              \item Knowledge of problem encodings
              \item Being able to formalize problems
              \end{itemize}
            };
          \end{scope}
        \end{tikzpicture}
    },
]
\begin{tikzpicture}[mindmap]
  \clip (-5,-5) rectangle ++ (4,5);
  \begin{scope}[
     every node/.style={concept, circular drop shadow, ...}] % as before
    \node [root concept] (Computational Complexity)    ...   % as before
  \end{scope}

  \begin{scope}[every annotation/.style={fill=black!40}]
    \node [annotation, above] at (Computational Problems.north) {
      Lecture 1: Computational Problems
      \begin{itemize}
      \item Knowledge of several key problems
      \item Knowledge of problem encodings
      \item Being able to formalize problems
      \end{itemize}
    };
  \end{scope}
\end{tikzpicture}
\end{codeexample}

Well, that does not yet look quite perfect. The spacing or the |{itemize}| is
not really appropriate and the node is too large. Johannes can configure these
things ``by hand'', but it seems like a good idea to define a macro that will
take care of these things for him. The ``right'' way to do this is to define a
|\lecture| macro that takes a list of key--value pairs as argument and produces
the desired annotation. However, to keep things simple, Johannes' |\lecture|
macro simply takes a fixed number of arguments having the following meaning:
The first argument is the number of the lecture, the second is the name of the
lecture, the third are positioning options like |above|, the fourth is the
position where the node is placed, the fifth is the list of items to be shown,
and the sixth is a date when the lecture will be held (this parameter is not
yet needed, we will, however, need it later on).
%
% TODOsp: codeexamples: redo `\lecture` definition*s* when `preamble` can be emptied
\begin{codeexample}[code only]
\def\lecture#1#2#3#4#5#6{
  \node [annotation, #3, scale=0.65, text width=4cm, inner sep=2mm] at (#4) {
    Lecture #1: \textcolor{orange}{\textbf{#2}}
    \list{--}{\topsep=2pt\itemsep=0pt\parsep=0pt
              \parskip=0pt\labelwidth=8pt\leftmargin=8pt
              \itemindent=0pt\labelsep=2pt}
    #5
    \endlist
  };
}
\end{codeexample}
% TODOsp: codeexamples: this definition can most likely be deleted,
%         because it is moved to the `pre` key in the `codeexamples`
\def\lecture#1#2#3#4#5#6{
  \node [annotation, #3, scale=0.65, text width=4cm, inner sep=2mm] at (#4) {
    Lecture #1: \textcolor{orange}{\textbf{#2}}
    \list{--}{\topsep=2pt\itemsep=0pt\parsep=0pt
              \parskip=0pt\labelwidth=8pt\leftmargin=8pt
              \itemindent=0pt\labelsep=2pt}
    #5
    \endlist
  };
}

\begin{codeexample}[
    preamble={\usetikzlibrary{mindmap,shadows}},
    pre={ % !!! replace all `##x` with `#x`
\def\lecture##1##2##3##4##5##6{
  \node [annotation, ##3, scale=0.65, text width=4cm, inner sep=2mm] at (##4) {
    Lecture ##1: \textcolor{orange}{\textbf{##2}}
    \list{--}{\topsep=2pt\itemsep=0pt\parsep=0pt
              \parskip=0pt\labelwidth=8pt\leftmargin=8pt
              \itemindent=0pt\labelsep=2pt}
    ##5
    \endlist
  };
}},
    render instead={
        \begin{tikzpicture}[mindmap,every annotation/.style={fill=white}]
          \clip (-5.25,-3) rectangle ++ (4,5);
          \begin{scope}[
            every node/.style={concept, circular drop shadow,execute at begin node=\hskip0pt},
            root concept/.append style={
              concept color=black,
              fill=white, line width=1ex,
              text=black, font=\large\scshape},
            text=white,
            computational problems/.style={concept color=red,faded/.style={concept color=red!50}},
            computational models/.style={concept color=blue,faded/.style={concept color=blue!50}},
            measuring complexity/.style={concept color=orange,faded/.style={concept color=orange!50}},
            solving problems/.style={concept color=green!50!black,faded/.style={concept color=green!50!black!50}},
            grow cyclic,
            level 1/.append style={level distance=4.5cm,sibling angle=90,font=\scshape},
            level 2/.append style={level distance=3cm,sibling angle=45,font=\scriptsize}]
            \node [root concept] (Computational Complexity) {Computational Complexity} % root
              child [computational problems] { node (Computational Problems) {Computational Problems}
                child         { node (Problem Measures) {Problem Measures} }
                child         { node (Problem Aspects) {Problem Aspects} }
                child [faded] { node (problem Domains) {Problem Domains} }
                child         { node (Key Problems) {Key Problems} }
              }
              child [computational models] { node (Computational Models) {Computational Models}
                child         { node (Turing Machines) {Turing Machines} }
                child [faded] { node (Random-Access Machines) {Random-Access Machines} }
                child         { node (Circuits) {Circuits} }
                child [faded] { node (Binary Decision Diagrams) {Binary Decision Diagrams} }
                child         { node (Oracle Machines) {Oracle Machines} }
                child         { node (Programming in Logic) {Programming in Logic} }
              }
              child [measuring complexity] { node (Measuring Complexity) {Measuring Complexity}
                child         { node (Complexity Measures) {Complexity Measures} }
                child         { node (Classifying Complexity) {Classifying Complexity} }
                child         { node (Comparing Complexity) {Comparing Complexity} }
                child [faded] { node (Describing Complexity) {Describing Complexity} }
              }
              child [solving problems] { node (Solving Problems) {Solving Problems}
                child         { node (Exact Algorithms) {Exact Algorithms} }
                child         { node (Randomization) {Randomization} }
                child         { node (Fixed-Parameter Algorithms) {Fixed-Parameter Algorithms} }
                child         { node (Parallel Computation) {Parallel Computation} }
                child         { node (Partial Solutions) {Partial Solutions} }
                child         { node (Approximation) {Approximation} }
              };
          \end{scope}
          \lecture{1}{Computational Problems}{above,xshift=-3mm}{Computational Problems.north}{
            \item Knowledge of several key problems
            \item Knowledge of problem encodings
            \item Being able to formalize problems
          }{2009-04-08}
        \end{tikzpicture}
    },
]
\begin{tikzpicture}[mindmap,every annotation/.style={fill=white}]
  \clip (-5,-5) rectangle ++ (4,5);
  \begin{scope}[
     every node/.style={concept, circular drop shadow, ... % as before
    \node [root concept] (Computational Complexity)    ... % as before
  \end{scope}

  \lecture{1}{Computational Problems}{above,xshift=-3mm}
  {Computational Problems.north}{
    \item Knowledge of several key problems
    \item Knowledge of problem encodings
    \item Being able to formalize problems
  }{2009-04-08}
\end{tikzpicture}
\end{codeexample}

In the same fashion Johannes can now add the other lecture annotations.
Obviously, Johannes will have some trouble fitting everything on a single
A4-sized page, but by adjusting the spacing and some experimentation he can
quickly arrange all the annotations as needed.


\subsection{Adding the Background}

Johannes has already used colors to organize his lecture map into four regions,
each having a different color. In order to emphasize these regions even more
strongly, he wishes to add a background coloring to each of these regions.

Adding these background colors turns out to be more tricky than Johannes would
have thought. At first sight, what he needs is some sort of ``color wheel''
that is blue in the lower right direction and then changes smoothly to orange
in the upper right direction and then to green in the upper left direction and
so on. Unfortunately, there is no easy way of creating such a color wheel
shading (although it can be done, in principle, but only at a very high cost,
see page~\pageref{shading-color-wheel} for an example).

Johannes decides to do something a bit more basic: He creates four large
rectangles, one for each of the four quadrants around the central concept, each
colored with a light version of the quadrant. Then, in order to ``smooth'' the
change between adjacent rectangles, he puts four shadings on top of them.

Since these background rectangles should go ``behind'' everything else,
Johannes puts all his background stuff on the |background| layer.

In the following code, only the central concept is shown to save some space:
%
\begin{codeexample}[preamble={\usetikzlibrary{backgrounds,mindmap,shadows}}]
\begin{tikzpicture}[
  mindmap,
  concept color=black,
  root concept/.append style={
    concept,
    circular drop shadow,
    fill=white, line width=1ex,
    text=black, font=\large\scshape}
  ]

  \clip (-1.5,-5) rectangle ++(4,10);

  \node [root concept] (Computational Complexity) {Computational Complexity};

  \begin{pgfonlayer}{background}
    \clip (-1.5,-5) rectangle ++(4,10);

    \colorlet{upperleft}{green!50!black!25}
    \colorlet{upperright}{orange!25}
    \colorlet{lowerleft}{red!25}
    \colorlet{lowerright}{blue!25}

     % The large rectangles:
    \fill [upperleft]  (Computational Complexity) rectangle ++(-20,20);
    \fill [upperright] (Computational Complexity) rectangle ++(20,20);
    \fill [lowerleft]  (Computational Complexity) rectangle ++(-20,-20);
    \fill [lowerright] (Computational Complexity) rectangle ++(20,-20);

    % The shadings:
    \shade [left color=upperleft,right color=upperright]
      ([xshift=-1cm]Computational Complexity) rectangle ++(2,20);
    \shade [left color=lowerleft,right color=lowerright]
      ([xshift=-1cm]Computational Complexity) rectangle ++(2,-20);
    \shade [top color=upperleft,bottom color=lowerleft]
      ([yshift=-1cm]Computational Complexity) rectangle ++(-20,2);
    \shade [top color=upperright,bottom color=lowerright]
      ([yshift=-1cm]Computational Complexity) rectangle ++(20,2);
  \end{pgfonlayer}
\end{tikzpicture}
\end{codeexample}


\subsection{Adding the Calendar}

Johannes intends to plan his lecture rather carefully. In particular, he
already knows when each of his lectures will be held during the course.
Naturally, this does not mean that Johannes will slavishly follow the plan and
he might need longer for some subjects than he anticipated, but nevertheless he
has a detailed plan of when which subject will be addressed.

Johannes intends to share this plan with his students by adding a calendar to
the lecture map. In addition to serving as a reference on which particular day
a certain  topic will be addressed, the calendar is also useful to show the
overall chronological order of the course.

In order to add a calendar to a \tikzname\ graphic, the |calendar| library is
most useful. The library provides the |\calendar| command, which takes a large
number of options and which can be configured in many ways to produce just
about any kind of calendar imaginable. For Johannes' purposes, a simple
|day list downward| will be a nice option since it produces a list of days that
go ``downward''.
%
\begin{codeexample}[
    leave comments,
    preamble={\usetikzlibrary{calendar}},
]
\tiny
\begin{tikzpicture}
  \calendar [day list downward,
             name=cal,
             dates=2009-04-01 to 2009-04-14]
    if (weekend)
      [black!25];
\end{tikzpicture}
\end{codeexample}

Using the |name| option, we gave a name to the calendar, which will allow us to
reference the nodes that make up the individual days of the calendar later on.
For instance, the rectangular node containing the |1| that represents April
1st, 2009, can be referenced as |(cal-2009-04-01)|. The |dates| option is used
to specify an interval for which the calendar should be drawn. Johannes will
need several months in his calendar, but the above example only shows two weeks
to save some space.

Note the |if (weekend)| construct. The |\calendar| command is followed by
options and then by |if|-statements. These |if|-statements are checked for each
day of the calendar and when a date passes this test, the options or the code
following the |if|-statement is executed. In the above example, we make weekend
days (Saturdays and Sundays, to be precise) lighter than normal days. (Use your
favorite calendar to check that, indeed, April 5th, 2009, is a Sunday.)

As mentioned above, Johannes can reference the nodes that are used to typeset
days. Recall that his |\lecture| macro already got passed a date, which we did
not use, yet. We can now use it to place the lecture's title next to the date
when the lecture will be held:
%
\begin{codeexample}[code only]
\def\lecture#1#2#3#4#5#6{
  % As before:
  \node [annotation, #3, scale=0.65, text width=4cm, inner sep=2mm] at (#4) {
    Lecture #1: \textcolor{orange}{\textbf{#2}}
    \list{--}{\topsep=2pt\itemsep=0pt\parsep=0pt
              \parskip=0pt\labelwidth=8pt\leftmargin=8pt
              \itemindent=0pt\labelsep=2pt}
    #5
    \endlist
  };
  % New:
  \node [anchor=base west] at (cal-#6.base east) {\textcolor{orange}{\textbf{#2}}};
}
\end{codeexample}
\def\lecture#1#2#3#4#5#6{
  \node [anchor=base west] at (cal-#6.base east) {\textcolor{orange}{\textbf{#2}}};
}

Johannes can now use this new |\lecture| command as follows (in the example,
only the new part of the definition is used):
%
\begin{codeexample}[
    preamble={\usetikzlibrary{calendar}},
    pre={ % !!! replace all `##x` with `#x`
\def\lecture##1##2##3##4##5##6{
  \node [anchor=base west] at (cal-##6.base east) {\textcolor{orange}{\textbf{##2}}};
}},
]
\tiny
\begin{tikzpicture}
  \calendar [day list downward,
             name=cal,
             dates=2009-04-01 to 2009-04-14]
    if (weekend)
      [black!25];

  % As before:
  \lecture{1}{Computational Problems}{above,xshift=-3mm}
  {Computational Problems.north}{
    \item Knowledge of several key problems
    \item Knowledge of problem encodings
    \item Being able to formalize problems
  }{2009-04-08}
\end{tikzpicture}
\end{codeexample}

As a final step, Johannes needs to add a few more options to the calendar
command: He uses the |month text| option to configure how the text of a month
is rendered (see Section~\ref{section-calender} for details) and then typesets
the month text at a special position at the beginning of each month.
%
\begin{codeexample}[
    leave comments,
    preamble={\usetikzlibrary{calendar}},
    pre={ % !!! replace all `##x` with `#x`
\def\lecture##1##2##3##4##5##6{
  \node [anchor=base west] at (cal-##6.base east) {\textcolor{orange}{\textbf{##2}}};
}},
]
\tiny
\begin{tikzpicture}
  \calendar [day list downward,
             month text=\%mt\ \%y0,
             month yshift=3.5em,
             name=cal,
             dates=2009-04-01 to 2009-05-01]
    if (weekend)
      [black!25]
    if (day of month=1) {
      \node at (0pt,1.5em) [anchor=base west] {\small\tikzmonthtext};
    };

  \lecture{1}{Computational Problems}{above,xshift=-3mm}
  {Computational Problems.north}{
    \item Knowledge of several key problems
    \item Knowledge of problem encodings
    \item Being able to formalize problems
  }{2009-04-08}

  \lecture{2}{Computational Models}{above,xshift=-3mm}
  {Computational Models.north}{
    \item Knowledge of Turing machines
    \item Being able to compare the computational power of different
      models
  }{2009-04-15}
\end{tikzpicture}
\end{codeexample}


\subsection{The Complete Code}

Putting it all together, Johannes gets the following code:

First comes the definition of the |\lecture| command:
%
\begin{codeexample}[code only]
\def\lecture#1#2#3#4#5#6{
  % As before:
  \node [annotation, #3, scale=0.65, text width=4cm, inner sep=2mm, fill=white] at (#4) {
    Lecture #1: \textcolor{orange}{\textbf{#2}}
    \list{--}{\topsep=2pt\itemsep=0pt\parsep=0pt
              \parskip=0pt\labelwidth=8pt\leftmargin=8pt
              \itemindent=0pt\labelsep=2pt}
    #5
    \endlist
  };
  % New:
  \node [anchor=base west] at (cal-#6.base east) {\textcolor{orange}{\textbf{#2}}};
}
\end{codeexample}

This is followed by the main mindmap setup\dots
%
\begin{codeexample}[code only]
\noindent
\begin{tikzpicture}
  \begin{scope}[
    mindmap,
    every node/.style={concept, circular drop shadow,execute at begin node=\hskip0pt},
    root concept/.append style={
      concept color=black,
      fill=white, line width=1ex,
      text=black, font=\large\scshape},
    text=white,
    computational problems/.style={concept color=red,faded/.style={concept color=red!50}},
    computational models/.style={concept color=blue,faded/.style={concept color=blue!50}},
    measuring complexity/.style={concept color=orange,faded/.style={concept color=orange!50}},
    solving problems/.style={concept color=green!50!black,faded/.style={concept color=green!50!black!50}},
    grow cyclic,
    level 1/.append style={level distance=4.5cm,sibling angle=90,font=\scshape},
    level 2/.append style={level distance=3cm,sibling angle=45,font=\scriptsize}]
\end{codeexample}
%
\dots and contents:
%
\begin{codeexample}[code only]
  \node [root concept] (Computational Complexity) {Computational Complexity} % root
      child [computational problems] { node [yshift=-1cm] (Computational Problems) {Computational Problems}
        child         { node (Problem Measures) {Problem Measures} }
        child         { node (Problem Aspects) {Problem Aspects} }
        child [faded] { node (problem Domains) {Problem Domains} }
        child         { node (Key Problems) {Key Problems} }
      }
      child [computational models] { node [yshift=-1cm]  (Computational Models) {Computational Models}
        child         { node (Turing Machines) {Turing Machines} }
        child [faded] { node (Random-Access Machines) {Random-Access Machines} }
        child         { node (Circuits) {Circuits} }
        child [faded] { node (Binary Decision Diagrams) {Binary Decision Diagrams} }
        child         { node (Oracle Machines) {Oracle Machines} }
        child         { node (Programming in Logic) {Programming in Logic} }
      }
      child [measuring complexity] { node [yshift=1cm] (Measuring Complexity) {Measuring Complexity}
        child         { node (Complexity Measures) {Complexity Measures} }
        child         { node (Classifying Complexity) {Classifying Complexity} }
        child         { node (Comparing Complexity) {Comparing Complexity} }
        child [faded] { node (Describing Complexity) {Describing Complexity} }
      }
      child [solving problems] { node [yshift=1cm] (Solving Problems) {Solving Problems}
        child         { node (Exact Algorithms) {Exact Algorithms} }
        child         { node (Randomization) {Randomization} }
        child         { node (Fixed-Parameter Algorithms) {Fixed-Parameter Algorithms} }
        child         { node (Parallel Computation) {Parallel Computation} }
        child         { node (Partial Solutions) {Partial Solutions} }
        child         { node (Approximation) {Approximation} }
      };
  \end{scope}
\end{codeexample}
%
Now comes the calendar code:
%
\begin{codeexample}[code only]
  \tiny
  \calendar [day list downward,
             month text=\%mt\ \%y0,
             month yshift=3.5em,
             name=cal,
             at={(-.5\textwidth-5mm,.5\textheight-1cm)},
             dates=2009-04-01 to 2009-06-last]
    if (weekend)
      [black!25]
    if (day of month=1) {
      \node at (0pt,1.5em) [anchor=base west] {\small\tikzmonthtext};
    };
\end{codeexample}
%
The lecture annotations:
%
\begin{codeexample}[code only]
  \lecture{1}{Computational Problems}{above,xshift=-5mm,yshift=5mm}{Computational Problems.north}{
    \item Knowledge of several key problems
    \item Knowledge of problem encodings
    \item Being able to formalize problems
  }{2009-04-08}

  \lecture{2}{Computational Models}{above left}
  {Computational Models.west}{
    \item Knowledge of Turing machines
    \item Being able to compare the computational power of different
      models
  }{2009-04-15}
\end{codeexample}
%
Finally, the background:
%
\begin{codeexample}[code only]
  \begin{pgfonlayer}{background}
    \clip[xshift=-1cm] (-.5\textwidth,-.5\textheight) rectangle ++(\textwidth,\textheight);

    \colorlet{upperleft}{green!50!black!25}
    \colorlet{upperright}{orange!25}
    \colorlet{lowerleft}{red!25}
    \colorlet{lowerright}{blue!25}

     % The large rectangles:
    \fill [upperleft]  (Computational Complexity) rectangle ++(-20,20);
    \fill [upperright] (Computational Complexity) rectangle ++(20,20);
    \fill [lowerleft]  (Computational Complexity) rectangle ++(-20,-20);
    \fill [lowerright] (Computational Complexity) rectangle ++(20,-20);

    % The shadings:
    \shade [left color=upperleft,right color=upperright]
      ([xshift=-1cm]Computational Complexity) rectangle ++(2,20);
    \shade [left color=lowerleft,right color=lowerright]
      ([xshift=-1cm]Computational Complexity) rectangle ++(2,-20);
    \shade [top color=upperleft,bottom color=lowerleft]
      ([yshift=-1cm]Computational Complexity) rectangle ++(-20,2);
    \shade [top color=upperright,bottom color=lowerright]
      ([yshift=-1cm]Computational Complexity) rectangle ++(20,2);
  \end{pgfonlayer}
\end{tikzpicture}
\end{codeexample}

The next page shows the resulting lecture map in all its glory (it
would be somewhat more glorious, if there were more lecture
annotations, but you should get the idea).

\def\lecture#1#2#3#4#5#6{
  % As before:
  \node [annotation, #3, scale=0.65, text width=4cm, inner sep=2mm, fill=white] at (#4) {
    Lecture #1: \textcolor{orange}{\textbf{#2}}
    \list{--}{\topsep=2pt\itemsep=0pt\parsep=0pt
              \parskip=0pt\labelwidth=8pt\leftmargin=8pt
              \itemindent=0pt\labelsep=2pt}
    #5
    \endlist
  };
  % New:
  \node [anchor=base west] at (cal-#6.base east) {\textcolor{orange}{\textbf{#2}}};
}

\noindent
\begin{tikzpicture}
  \begin{scope}[
    mindmap,
    every node/.style={concept, circular drop shadow,execute at begin node=\hskip0pt},
    root concept/.append style={
      concept color=black,
      fill=white, line width=1ex,
      text=black, font=\large\scshape},
    text=white,
    computational problems/.style={concept color=red,faded/.style={concept color=red!50}},
    computational models/.style={concept color=blue,faded/.style={concept color=blue!50}},
    measuring complexity/.style={concept color=orange,faded/.style={concept color=orange!50}},
    solving problems/.style={concept color=green!50!black,faded/.style={concept color=green!50!black!50}},
    grow cyclic,
    level 1/.append style={level distance=4.5cm,sibling angle=90,font=\scshape},
    level 2/.append style={level distance=3cm,sibling angle=45,font=\scriptsize}]
    \node [root concept] (Computational Complexity) {Computational Complexity} % root
      child [computational problems] { node [yshift=-1cm] (Computational Problems) {Computational Problems}
        child         { node (Problem Measures) {Problem Measures} }
        child         { node (Problem Aspects) {Problem Aspects} }
        child [faded] { node (problem Domains) {Problem Domains} }
        child         { node (Key Problems) {Key Problems} }
      }
      child [computational models] { node [yshift=-1cm]  (Computational Models) {Computational Models}
        child         { node (Turing Machines) {Turing Machines} }
        child [faded] { node (Random-Access Machines) {Random-Access Machines} }
        child         { node (Circuits) {Circuits} }
        child [faded] { node (Binary Decision Diagrams) {Binary Decision Diagrams} }
        child         { node (Oracle Machines) {Oracle Machines} }
        child         { node (Programming in Logic) {Programming in Logic} }
      }
      child [measuring complexity] { node [yshift=1cm] (Measuring Complexity) {Measuring Complexity}
        child         { node (Complexity Measures) {Complexity Measures} }
        child         { node (Classifying Complexity) {Classifying Complexity} }
        child         { node (Comparing Complexity) {Comparing Complexity} }
        child [faded] { node (Describing Complexity) {Describing Complexity} }
      }
      child [solving problems] { node [yshift=1cm] (Solving Problems) {Solving Problems}
        child         { node (Exact Algorithms) {Exact Algorithms} }
        child         { node (Randomization) {Randomization} }
        child         { node (Fixed-Parameter Algorithms) {Fixed-Parameter Algorithms} }
        child         { node (Parallel Computation) {Parallel Computation} }
        child         { node (Partial Solutions) {Partial Solutions} }
        child         { node (Approximation) {Approximation} }
      };
  \end{scope}

  \tiny
  \calendar [day list downward,
             month text=\%mt\ \%y0,
             month yshift=3.5em,
             name=cal,
             at={(-.5\textwidth-5mm,.5\textheight-1cm)},
             dates=2009-04-01 to 2009-06-last]
    if (weekend)
      [black!25]
    if (day of month=1) {
      \node at (0pt,1.5em) [anchor=base west] {\small\tikzmonthtext};
    };

  \lecture{1}{Computational Problems}{above,xshift=-5mm,yshift=5mm}{Computational Problems.north}{
    \item Knowledge of several key problems
    \item Knowledge of problem encodings
    \item Being able to formalize problems
  }{2009-04-08}

  \lecture{2}{Computational Models}{above left}
  {Computational Models.west}{
    \item Knowledge of Turing machines
    \item Being able to compare the computational power of different
      models
  }{2009-04-15}

  \begin{pgfonlayer}{background}
    \clip[xshift=-1cm] (-.5\textwidth,-.5\textheight) rectangle ++(\textwidth,\textheight);

    \colorlet{upperleft}{green!50!black!25}
    \colorlet{upperright}{orange!25}
    \colorlet{lowerleft}{red!25}
    \colorlet{lowerright}{blue!25}

     % The large rectangles:
    \fill [upperleft]  (Computational Complexity) rectangle ++(-20,20);
    \fill [upperright] (Computational Complexity) rectangle ++(20,20);
    \fill [lowerleft]  (Computational Complexity) rectangle ++(-20,-20);
    \fill [lowerright] (Computational Complexity) rectangle ++(20,-20);

    % The shadings:
    \shade [left color=upperleft,right color=upperright]
      ([xshift=-1cm]Computational Complexity) rectangle ++(2,20);
    \shade [left color=lowerleft,right color=lowerright]
      ([xshift=-1cm]Computational Complexity) rectangle ++(2,-20);
    \shade [top color=upperleft,bottom color=lowerleft]
      ([yshift=-1cm]Computational Complexity) rectangle ++(-20,2);
    \shade [top color=upperright,bottom color=lowerright]
      ([yshift=-1cm]Computational Complexity) rectangle ++(20,2);
  \end{pgfonlayer}
\end{tikzpicture}