summaryrefslogtreecommitdiff
path: root/graphics/epix/intersections.cc
blob: 6789e64dbe34dead1a8c5f1b176c0f9e225ccfe5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
/* 
 * intersections.cc -- ePiX's intersection operators
 *
 * This file is part of ePiX, a C++ library for creating high-quality 
 * figures in LaTeX 
 *
 * Version 1.1.17
 * Last Change: September 13, 2007
 */

/* 
 * Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007
 * Andrew D. Hwang <rot 13 nujnat at zngupf dot ubylpebff dot rqh>
 * Department of Mathematics and Computer Science
 * College of the Holy Cross
 * Worcester, MA, 01610-2395, USA
 */

/*
 * ePiX is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * ePiX is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
 * License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with ePiX; if not, write to the Free Software Foundation, Inc.,
 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 */
#include <cmath>

#include "constants.h"
#include "errors.h"

#include "circle.h"
#include "plane.h"
#include "segment.h"
#include "sphere.h"

#include "intersections.h"

namespace ePiX {

  static const double EPS(EPIX_EPSILON);

  Segment operator* (const Circle& arg1, const Circle& arg2)
  {
    if (arg1.malformed() || arg2.malformed())
      return Segment(true);

    const P p2(arg2.center());
    const P n2(arg2.perp());

    P dir(p2 - arg1.center()); // displacement between centers

    const double r1(arg1.radius());
    const double r2(arg2.radius());
    const double rad_diff(fabs(r2 - r1));
    const double rad_sum(r2 + r1);
    const double sep(norm(dir));

    if ( EPS < norm(arg1.perp()*arg2.perp()) || // non-coplanar
	 rad_sum <= sep || // separated
	 sep <= rad_diff ) // concentric, catches equality
      return Segment(true);

    // else
    dir *= 1.0/sep;

    const double COS(((r1-r2)*(r1+r2) - sep*sep)/(2*r2*sep));
    const double SIN(sqrt((1-COS)*(1+COS)));

    return Segment(p2 + r2*(COS*dir + SIN*(n2*dir)),
		   p2 + r2*(COS*dir - SIN*(n2*dir)));
  }


  Segment operator* (const Circle& circ,  const Plane& pl)
  {
    if (circ.malformed() || pl.malformed())
      return Segment(true);

    // else
    P bi_perp(circ.perp()*pl.perp());
    const double denom(norm(bi_perp));

    if (denom < EPS) // parallel
      return Segment(true);

    // else
    bi_perp *= 1.0/denom;

    const P dir(bi_perp*circ.perp()); // unit vector toward pl in circ plane

    // shortest distance from circ.center() to pl in circ plane
    const double x(-((circ.center() - pl.pt())|pl.perp())/(dir|pl.perp()));

    const double rad(circ.radius());

    if (rad <= fabs(x)) // disjoint
      return Segment(true);

    // else
    const P vec_y(sqrt((rad-x)*(rad+x))*bi_perp);
    const P midpt(circ.center() + x*dir);

    return Segment(midpt - vec_y, midpt + vec_y);
  }

  // Extend seg into a line, look for two crossings
  Segment operator* (const Circle& circ, const Segment& seg)
  {
    if (seg.malformed() || circ.malformed())
      return Segment(true);

    // else
    const P dir(seg.end2() - seg.end1());

    if (EPS < fabs(dir|circ.perp()))
      return Segment(true);

    // else
    P to_ctr(circ.center() - seg.end1());
    P perp(circ.perp()*dir);
	
    const double dist((to_ctr|perp)/norm(perp));
    const double rad(circ.radius());

    if (rad <= fabs(dist))
      return Segment(true);

    // else
    const P vec_x(circ.center() - (dist/norm(perp))*perp);
    const P vec_y((sqrt((rad-dist)*(rad+dist))/norm(dir))*dir);

    return Segment(vec_x + vec_y, vec_x - vec_y);
  }


  // cut plane of circ by S, intersect
  Segment operator* (const Circle& circ,  const Sphere& S)
  {
    Plane pl(circ.center(), circ.perp());
    return circ*(pl*S);
  }

  Segment operator* (const Plane& pl1, const Plane& pl2)
  {
    if (pl1.malformed() || pl2.malformed())
      return Segment(true);

    // else
    P N3((pl1.perp())*(pl2.perp()));
    const double temp(norm(N3));

    if (temp < EPS) // parallel
      return Segment(true);

    // else N3 non-zero, parallel to intersection
    N3 *= 1/temp; // normalize

    P perp((pl1.perp())*N3); // unit vector in pl, perp to intersection
    P pt(pl1.pt() + (((pl2.pt()-pl1.pt())|pl2.perp())/(perp|pl2.perp()))*perp);
    P ctr(pt %= N3); // closest pt to origin on line
    // P ctr(pt - (pt|N3)*N3);

    return Segment(ctr - EPIX_INFTY*N3, ctr + EPIX_INFTY*N3);
  }


  P operator* (const Plane& pl, const Segment& seg)
  {
    if (pl.malformed() || seg.malformed())
      epix_warning("Malformed argument(s) to Plane*Segment");

    const P tail(seg.end1());
    const P head(seg.end2());

    const double ptail((tail - pl.pt())|pl.perp());
    const double phead((head - pl.pt())|pl.perp());

    if (fabs(phead - ptail) < EPS)
      epix_warning("Plane parallel to Segment in intersection");

    return tail + (ptail/(ptail-phead))*(head-tail);
  }


  Circle  operator* (const Plane& pl, const Sphere& S)
  {
    if (pl.malformed() || S.malformed())
      return Circle(true);

    // else
    const double rad(S.radius());
    const double ht((pl.pt() - S.center())|pl.perp());

    if (rad <= fabs(ht)) // disjoint
      return Circle(true);

    else
      return Circle(S.center() + ht*pl.perp(),
		    sqrt((rad - ht)*(rad + ht)),
		    pl.perp());
  }


  P operator* (const Segment& seg1, const Segment& seg2)
  {
    if (seg1.malformed() || seg2.malformed())
      epix_warning("Malformed argument(s) in Segment intersection");

    const P p1(seg1.end1());
    const P dir1(seg1.end2() - p1);

    const P p3(seg2.end1());
    const P p4(seg2.end2());
    const P dir2(p4 - p3);

    P perp(dir1*dir2);
    double normal_length();

    // non-coplanar or parallel
    if (EPS < fabs((dir1*(p3 - p1)) | (p4 - p1)) || norm(perp) < EPS)
      epix_warning("Non-generic arguments in Segment intersection");

    // perp lies in plane of segments, is orthog to dir2
    perp *= dir2;

    // get t so that normal|(X - p3) = (normal|(p1 - p3 + t*dir1)) = 0.
    // note: X may not lie on either segment
    return p1 + ((perp|(p3-p1))/(perp|dir1))*dir1;
  }

  // extend seg into a line
  Segment operator* (const Segment& seg, const Sphere& S)
  {
    if (seg.malformed() || S.malformed())
      return Segment(true);

    // else
    P dir(seg.end2() - seg.end1());
    dir *= 1.0/norm(dir);

    const P posn(S.center() - seg.end1());
    const P perp(posn%dir);

    if (S.radius() <= norm(perp)) // disjoint
      return Segment(true);

    // else
    const double B(dir|posn);
    const double C((posn|posn)-pow(S.radius(), 2));
    const double discrim(sqrt(B*B - C)); // [sic]

    return Segment(seg.end1() + (B-discrim)*dir,
		   seg.end1() + (B+discrim)*dir);
  }

  Circle operator* (const Sphere& sph1, const Sphere& sph2)
  {
    if (sph1.malformed() || sph2.malformed())
      return Circle(true);

    // else
    const double r1(sph1.radius());
    const double r2(sph2.radius());
    P dir(sph2.center() - sph1.center());

    const double dist(norm(dir));

    // separated, tangent, or concentric
    if (r1+r2 <= dist || dist <= fabs(r2-r1))
      return Circle(true);

    // else
    const double x(0.5*(dist + (r1-r2)*(r1+r2)/dist));
    const P perp((1/dist)*dir);

    return Circle(sph1.center() + x*perp, sqrt((r1-x)*(r1+x)), perp);
  }


  // derived operators
  Segment operator* (const Plane& pl,   const Circle& circ)
  {
    return circ*pl;
  }

  Segment operator* (const Segment& seg, const Circle& circ)
  {
    return circ*seg;
  }

  Segment operator* (const Sphere& S,  const Circle& circ)
  {
    return circ*S;
  }

  P       operator* (const Segment& seg, const Plane& pl)
  {
    return pl*seg;
  }

  Circle  operator* (const Sphere& S,  const Plane& pl)
  {
    return pl*S;
  }

  Segment operator* (const Sphere& S,  const Segment& seg)
  {
    return seg*S;
  }
} // end of namespace