summaryrefslogtreecommitdiff
path: root/graphics/epix/functions.cc
blob: ae1c9649ae913eca5e0bbd1b3ef20c348962a7bb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
/* 
 * functions.cc -- non-standard mathematical functions
 *
 * This file is part of ePiX, a preprocessor for creating high-quality 
 * line figures in LaTeX 
 *
 * Version 1.2.0-2
 * Last Change: September 26, 2007
 */

/* 
 * Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007
 * Andrew D. Hwang <rot 13 nujnat at zngupf dot ubylpebff dot rqh>
 * Department of Mathematics and Computer Science
 * College of the Holy Cross
 * Worcester, MA, 01610-2395, USA
 */

/*
 * ePiX is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * ePiX is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
 * License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with ePiX; if not, write to the Free Software Foundation, Inc.,
 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 */

#include <cmath>

#include "constants.h"
#include "errors.h"
#include "deriv.h"

#include "angle_units.h"
#include "triples.h"

#include "functions.h"

namespace ePiX {

  // trig functions with angle units
  double Cos(double t)
  {
    return std::cos(the_angle_style().to_radians(t));
  }

  double Sin(double t)
  {
    return std::sin(the_angle_style().to_radians(t));
  }

  double Tan(double t)
  {
    return std::tan(the_angle_style().to_radians(t));
  }

  double Sec(double t)
  {
    return 1.0/std::cos(the_angle_style().to_radians(t));
  }

  double Csc(double t)
  {
    return 1.0/std::sin(the_angle_style().to_radians(t));
  }

  double Cot(double t)
  {
    return 1.0/std::tan(the_angle_style().to_radians(t));
  }

  // and inverses
  double Acos(double arg)
  {
    return std::acos(arg)/the_angle_style().to_radians(1);
  }

  double Asin(double arg)
  {
    return std::asin(arg)/the_angle_style().to_radians(1);
  }

  double Atan(double arg)
  {
    return std::atan(arg)/the_angle_style().to_radians(1);
  }

  double Atan2(double y, double x)
  {
    return std::atan2(y, x)/the_angle_style().to_radians(1);
  }

  // Additional hyperbolic tric functions and inverses
  double sech(double x)
  {
    return 1.0/cosh(x);
  }

  double csch(double x)
  {
    return 1.0/sinh(x);
  }

  double coth(double x)
  {
    return 1.0/tanh(x);
  }

  double asech(double x)
  {
    return log((1+sqrt((1-x)*(1+x)))/x);
  }

  double acsch(double x)
  {
    return log((1+sqrt(1+x*x))/x);
  }

  double acoth(double x)
  {
    return 0.5*log((x+1)/(x-1));
  }

  double zero(double arg)
  {
    return 0;
  }

  double zero(double x, double y)
  {
    return 0;
  }

  double zero(double x, double y, double z)
  {
    return 0;
  }

  double zero(const P& arg)
  {
    return 0;
  }

  P xyz(double x, double y, double z) 
  {
    return P(x, y, z);
  }

  P cyl(double r, double t, double z) 
  {
    return P(r*Cos(t), r*Sin(t), z);
  }

  P sph(double r, double t, double phi) 
  {
    return P(r*(Cos(t))*(Cos(phi)), r*(Sin(t))*(Cos(phi)), r*(Sin(phi)));
  }

  P log_log(double x, double y, double z)
  {
    return P(log10(x), log10(y), z);
  }

  P log_lin(double x, double y, double z)
  {
    return P(log10(x), y, z);
  }

  P lin_log(double x, double y, double z)
  {
    return P(x, log10(y), z);
  }


  // for plot templates, arg mustn't be const P&
  P cylindrical(P arg)
  {
    return cyl(arg.x1(), arg.x2(), arg.x3());
  }

  P spherical(P arg)
  {
    return sph(arg.x1(), arg.x2(), arg.x3());
  }

  P polar(double r, double t)
  {
    return cyl(r, t, 0);
  }

  P cis(double t)
  {
    return cyl(1, t, 0);
  }

  double recip (double x)
  {
    return 1.0/x;
  }

  // sin(x)/x
  double sinx (double x)
  {
    if (1. + x*x == 1.) // from Don Hatch
      return 1.;
    else
      return Sin(x)/the_angle_style().to_radians(x);
  }

  // signum, x/|x|, defined to be 0 at 0
  double sgn (double x)
  {
    if (x > 0)
      return 1;
    else if (x < 0)
      return -1;
    else
      return 0;
  }

  // Charlie Brown: Period-2 extension of |x| on [-1,1] /\/\/\/\/\/
  double cb (double x)
  {
    x = fabs(x);
    x -= 2*floor(0.5*x);
    return min(x, 2-x);
  }

  // N.B.: gcd(0,i) = |i|
  int gcd (int i, int j)
  {
    int temp;

    i=abs(i);
    j=abs(j);

    if (i==0 || j==0) // (1,0) and (0,1) coprime, others not
      return i+j;

    else {
      if (j < i) // swap them
	{
	  temp = j;
	  j=i;
	  i=temp;
	}
      // Euclidean algorithm
      while ((temp = j%i)) // i does not evenly divide j
	{
	  j=i;
	  i=temp;
	}
    
      return i;
    }
  }

  double min(double a, double b)
  {
    return a < b ? a : b;
  }

  double max(double a, double b)
  {
    return b < a ? a : b;
  }

  double snip_to(double var, double arg1, double arg2)  
  {
    if (var < min(arg1, arg2))
      var = min(arg1,arg2);
    else if (var > max(arg1, arg2))
      var = max(arg1,arg2);
    return var;
  }

  // inf and sup of f on [a,b]
  double inf (double f(double), double a, double b)
  {
    const int N((int) ceil(fabs(b-a))); // N >= 1 unless a=b
    double y(f(a));
    const double dx((b-a)/(N*EPIX_ITERATIONS));

    for (unsigned int i=1; i <= N*EPIX_ITERATIONS; ++i)
      y = min(y, f(a + i*dx));

    return y;
  }

  double sup (double f(double), double a, double b)
  {
    const int N((int) ceil(fabs(b-a))); // N >= 1 unless a=b
    double y(f(a));
    const double dx((b-a)/(N*EPIX_ITERATIONS));

    for (unsigned int i=1; i <= N*EPIX_ITERATIONS; ++i)
      y = max(y, f(a + i*dx));

    return y;
  }

  // Integral class helper
  double integrand(double f(double), double t, double dt)
  {
    return (1.0/6)*(f(t) + 4*f(t+0.5*dt)+f(t + dt))*dt;
  } // Simpson's rule

  Integral::Integral(double func(double), double a)
    : f(func), x0(a) { }

  double Integral::eval(double t) const
  {
    double sum(0); 
    const int N(16*(int)ceil(fabs(t - x0))); // hardwired constant 16

    if (N > 0)
      {
	const double dx((t - x0)/N);

	for (int i=0; i < N; ++i)
	  sum += integrand(f, x0+i*dx, dx);
      }

    return sum;
  }

  P Integral::operator() (const P& arg) const
  {
    double t(arg.x1());
    return P(t, eval(t), 0);
  }

  double newton (double f(double), double g(double), double start)
  {
    double guess(start);
    int count(0); // number of iterations

    // Magic number 5
    const int ITERS(5);
    while ( (fabs(f(guess)-g(guess)) > EPIX_EPSILON) && (count < ITERS) )
      {
	if (fabs(deriv(f, guess)-deriv(g, guess)) < EPIX_EPSILON)
	  {
	    epix_warning("Returning critical point in Newton's method");
	    return guess;
	  }

	guess -= (f(guess)-g(guess))/(deriv(f, guess)-deriv(g, guess));
	++count;
      }

    if (count == ITERS)
      epix_warning("Maximum number of iterations in Newton's method");

    return guess;
  }

  double newton (double f(double), double start)
  {
    return newton(f, zero, start);
  }

  // Member functions
  Deriv::Deriv(double func(double))
    : f(func), dt(EPIX_EPSILON) { }

  Deriv::Deriv(double func(double), double eps)
    : f(func), dt(eps) { }

  P Deriv::operator() (const P& arg) const
  {
    double t(arg.x1());
    return P(t, deriv(f, t, dt), 0);
  }

  double Deriv::eval(double t) const
  {
    return deriv(f, t, dt);
  }

  // one-sided derivatives
  double Deriv::right(double t) const
  {
    return  (2.0/dt)*(f(t+0.5*dt) - f(t));
  }

  double Deriv::left(double t) const
  {
    return (2.0/dt)*(f(t) - f(t-0.5*dt));
  }
} // end of namespace