summaryrefslogtreecommitdiff
path: root/graphics/axodraw2/axodraw2-man.tex
blob: ff7bdb8073f765c3a9483bae58e436ccc3a497ab (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
\documentclass[12pt]{article}
\usepackage{a4wide}
% Use fix-cm or lmodern to get scaleable cm fonts
\usepackage{longtable,fix-cm,url,units,hyperref}

\usepackage{axodraw2}

\def\num{$\langle$number$\rangle$}
\def\colorname{$\langle$colorname$\rangle$}

% How to typeset filenames and program names: Use \file and \program
%  to allow stylistic changes.
% Basic definition of \file would be \def\file#1{\texttt{#1}}, but
% that would not allow line breaks in long names.  So define it by
% \DeclareUrlCommand from url package.  (We can't use \url itself,
% because that provokes hyperref into making a hyperlink.)
\DeclareUrlCommand\file{\urlstyle{tt}}

% Similarly specify how to typeset names of programs
\def\program#1{\texttt{#1}}

% Backslash of the kind used in verbatim 
\newcommand\BS{\symbol{`\\}}

% Set the name of a TeX macro (and possibly its signature). 
% In the argument, the initial backslash. Allow \{ and \} in the
% argument.  E.g. \name{SetSpace\{\#\}}}
\newcommand\name[1]{%
 \bgroup
   \def\{{\symbol{`\{}}%
   \def\}{\symbol{`\}}}%
   \texttt{\BS#1}%
 \egroup
}


\hyphenation{Jaxo-Draw}


\begin{document}

%% ?? To get settings useful to test compatibility of axodraw2 with
%% color.sty, uncomment the following line:
%\SetColor{Blue} \color{green} \pagecolor[cmyk]{0,0.02,0.05,0}
%%   Note green is useful, because it is defined in rgb color model
%% and the apparently equivalent Green, cmyk 1 0 1 0, looks quite
%% different on screen. So we can test the colors are entering graphics
%% correctly. 

%% ?? To test whether offsets work correctly, uncomment the following
%% line:
%\SetOffset(10,20) \SetScaledOffset(10,-20)


\setcounter{page}{0}
\thispagestyle{empty}
\hfill \begin{minipage}{3.0cm}
Nikhef 2015-025
\end{minipage}
\vspace{20mm}

\begin{center}
{\LARGE\bf\sc Manual for Axodraw Version 2}
\end{center}
\vspace{5mm}
\begin{center}
{\large John C. Collins$^{\, a}$ and J.A.M. Vermaseren$^{\, b}$} 
\vspace{1cm}\\
{\it $^a$ Department of Physics, Pennsylvania State University, \\
\vspace{0.1cm}
University Park, Pennsylvania 16802, USA} \\
\texttt{jcc8 at psu dot edu} \\
\vspace{0.5cm}
{\it $^b$Nikhef Theory Group \\
\vspace{0.1cm}
Science Park 105, 1098 XG Amsterdam, The Netherlands} \\
\texttt{t68 at nikhef dot nl} \\
\vspace{1.0cm}
(2 September 2019)
\end{center}
\vspace{5mm}

\begin{abstract}
This is the reference manual for version two of the \LaTeX{} graphical
style file Axodraw.  
Relative to version one,
it has a number of new drawing primitives and many extra options, and 
it can now work with \program{pdflatex} to directly produce
output in PDF file format (but with the aid of an auxiliary program).
\end{abstract}

\newpage

\tableofcontents

\newpage


%>>#[ Introduction :
%=========================
\section{Introduction}
\label{sec:intro}

This is the documentation for axodraw2, a \LaTeX{} package for drawing
Feynman graphs (and other simple graphics).  This is version 2 and a
substantial update of the original axodraw package \cite{axodraw1},
which was released in 1994, and which has become rather popular in the
preparation of articles in elementary-particle physics.  One of its
advantages is that its drawing primitives are included in the
\file{.tex} document, in a human-writable form. (This also allows
convenient production of axodraw figures by other software, e.g.,
Jaxodraw \cite{jaxodraw1,jaxodraw2}.)  This is in distinction to
methods that use a separate program to create graphics files that are
read in during the processing of the \LaTeX{} file.  The objects
needed in Feynman graphs are often difficult to draw at high quality
with conventional computer graphics software.

The original axodraw package has hardly been modified since its
introduction.  The new version addresses several later needs.  A
detailed list of the changes is given in Sec.\ \ref{sec:changes}.

One change arises from the fact that \TeX{} (and hence \LaTeX{})
itself does not possess sufficiently useful methods of drawing
complicated graphics, so that the drawing of the graphics is actually
done by inserting suitable code in the final output file (postscript
or pdf).  The original axodraw worked only with the
\program{latex}-\program{dvips} processing chain to put the diagrams
in the final postscript file.\footnote{A pdf file can be produced from
  the postscript file by a program like \program{ps2pdf}.}  Now we
also have in common use the \program{pdflatex} (and \program{lualatex}
and \program{xelatex}) programs that directly produce pdf.  The new
version of axodraw works with \program{pdflatex}, \program{lualatex},
and \program{xelatex}, as well as with the
\program{latex}-\program{dvips} method.

Furthermore, more kinds of graphical object and greater flexibility in
their properties have been found useful for Feynman graphs.  The new
version provides a new kind of line, B\'ezier, and is able to make the
various kinds of line doubled.  There is now a very flexible
configuration of arrows.  Many of the changes correspond to
capabilities of JaxoDraw \cite{jaxodraw1,jaxodraw2}, which is a
graphical program for drawing Feynman graphs, and which is able to
write and to import diagrams in the axodraw format.

Finally, substantial improvements have been made in the handling of
colors, with much better compatibility with modern packages used to
set colors in the normal \LaTeX{} part of a document.

Since some of the changes (especially in the internal coding)
introduce incompatibilities (Sec.\ \ref{sec:compat}) with the original
version of axodraw, the new version of the style file is given a new
name \file{axodraw2.sty}.  Then the many legacy documents (e.g., on
\url{http://arxiv.org}) that use the old axodraw will continue to use
the old version, and will therefore continue to be compilable without
any need for any possible changes in the source document, and with
unchanged output.  Even so, as regards the coding of diagrams, there
are very few backwardly incompatible changes in axodraw2.

The software is available under the GNU General Public License
\cite{GPL} version 3.



%=========================
\section{Changes}
\label{sec:changes}

\subsection{Changes relative to original, axodraw version 1}
\label{sec:changes.wrt.1}

Relative to the original version of axodraw, the current version,
axodraw2, has the following main changes:
\begin{itemize}

\item A bug that the line bounding an oval did not have a uniform
  width has been corrected.

\item A bug has been corrected that axodraw did not work with the
  revtex4 document class when \verb+\maketitle+ and two-column mode
  were used.

\item Axodraw2 works both when pdf output is produced directly using
  the programs \program{pdflatex}, \program{lualatex}, and
  \program{xelatex}, as well as when a postscript file is produced by
  the \program{latex}--\program{dvips} method.  The old version only
  worked when postscript output was produced.  However, an auxiliary
  program is needed when using \program{pdflatex}, \program{lualatex},
  or \program{xelatex}.  See Sec.\ \ref{sec:doc.compile} for how this
  is done.

\item In the original axodraw, a diagram is coded inside a
  \verb+picture+ environment of \LaTeX.  Now, a specialized
  \verb+axopicture+ environment is provided and preferred; it provides
  better behavior, especially when diagrams are to be scaled.

\item In association with this, there are some changes in how scaling
  of diagrams is done.

\item An inconsistency in length units between postscript and \TeX{}
  has been corrected.  All lengths are now specified in terms of
  $\unit[1]{pt} = \unit[1/72.27]{in} = \unit[0.3515]{mm}$.  Previously
  the unit length for graphics was the one defined by postscript to be 
  $\unit[1]{bp} = \unit[1/72]{in} = \unit[0.3528]{mm}$.

\item Substantial improvements have been made in the treatment of
  color.  When named colors are used, axodraw2's use of color is
  generally compatible with that of the modern, \LaTeX-standard
  \file{color.sty} package.  It also provides all the color-setting
  macros that were defined in v.\ 1 of axodraw, including those of the
  \file{colordvi.sty} package used by v.\ 1.

\item The various types of line can now be produced as double lines,
  e.g.,
  \begin{axopicture}(35,5)(0,-2)
    \SetWidth{1}
    \Line[double,sep=2.5](0,2)(35,2)
  \end{axopicture}.
  This is commonly used, for example, for notating Wilson lines. 

\item Lines can be made from B\'ezier curves.
  Currently this is only for simple lines, not photon, gluon, or
  zigzag lines.

\item Gluon, photon, and zigzag lines can be dashed.

\item Macros are provided for drawing gluon circles, without the
  endpoint effects given by the corresponding gluon arc macros.

\item The positions and sizes of arrows can be adjusted.  See Sec.\
  \ref{sec:arrows} for all the possibilities.  One example is 
  \begin{axopicture}(30,6)(0,-2)
    \SetWidth{1}
    \Line[arrow,arrowpos=0.8](0,2)(30,2)
  \end{axopicture}

\item Macros for drawing polygons and filled polygons are provided.

\item Macros for drawing rotated boxes are provided.

\item A macro \verb+\ECirc+ is provided for drawing a circle with a
  transparent interior.

\item A macro \verb+\EBoxc+ is provided for drawing a box with a
  specified center.

\item A macro \verb+\AxoGrid+ is provided for drawing a grid.  One
  use is to provide a useful tool in designing pictures.

\item Since there are now many more possibilities to specify the
  properties of a line, optional arguments to the main line drawing
  commands can be used to specify properties in a keyword style.  

\item A new macro named \verb+\Arc+ is introduced.  With the aid of
  optional arguments, this unifies the behavior of various arc-drawing
  commands in the original axodraw.

\item For consistency with the \verb+\Gluon+ macro, the
  \verb+\GlueArc+ macro has been renamed to \verb+\GluonArc+, with the old
  macro retained as a synonym.

\item The behavior of arcs is changed to what we think is more natural
  behavior when the specified opening angle is outside the natural range.

\item What we call macros for drawing objects with postscript text are
  now implemented within \LaTeX{} instead of relying on instructions
  inserted in the postscript code.  Thus all the normal \LaTeX{}
  commands, including mathematics, can now be used in all text
  objects, with proper scaling.  The placement and scaling of text
  objects are more consistent. 

\item Some new named colors are provided:
  \LightYellow{LightYellow}, \LightRed{LightRed},
  \LightBlue{LightBlue}, \LightGray{LightGray},
  \VeryLightBlue{VeryLightBlue}.  
  (LightYellow, LightRed, LightBlue, LightGray, VeryLightBlue.)

\item The macros originally specified as \verb+\B2Text+,
  \verb+\G2Text+, and \verb+\C2Text+ are now named \verb+\BTwoText+,
  \verb+\GTwoText+, and \verb+\CTwoText+.  The intent of the original
  code was to define macros with names \verb+\B2Text+, etc.  However
  in \TeX, under normal circumstances, macro names of more than one
  character must only contain letters, unlike typical programming
  languages that also allow digits.  So the rules for \TeX{} macro
  names mean that in defining, for example
  \verb+\def\B2Text(#1,#2)#3#4{...}+, the original version of axodraw
  actually defined a macro named named \verb+\B+, obligatorially
  followed by \verb+2Text+.  This caused a conflict if the user wished
  to define a macro \verb+\B+.  If it is desired to retain the old
  behavior, then the following should be placed in the preamble of the
  \file{.tex} file, then the axodraw2 package should be invoked in the
  source document with the \texttt{v1compatible} option:
    \begin{verbatim}
          \usepackage[v1compatible]{axodraw2}
    \end{verbatim}

\end{itemize}

\subsection{Changes relative to axodraw4j distributed with JaxoDraw}
\label{sec:changes.wrt.4j}

The JaxoDraw program \cite{jaxodraw2} is distributed with a version of
axodraw called axodraw4j.  At the time of writing (July 2016), this
was effectively a predecessor of axodraw2, but without the possibility
of working with \program{pdflatex}.  (The suffix ``4j'' is intended to
mean ``for JaxoDraw''.)

The changes in axodraw2 relative to the version of axodraw4j dated
2011/03/22 are the following subset of those listed in Sec.\
\ref{sec:changes.wrt.1}:
\begin{itemize}
\item The ability to work with \program{pdflatex}, \program{lualatex},
  and  \program{xelatex}.
\item The improvements in the handling of color and fonts.
\item The double and arrow options for B\'ezier lines.
\item The dash option for gluons and photons.
\item Color option for all lines.
\item Correction of inconsistency of length unit between \TeX{} and
  postscript. 
\item Better drawing of double gluons and photons.
\item Addition of the macros for making gluon circles, polygons, and rotated
  boxes.
\item Addition of the macros
  \verb+\ECirc+, \verb+\EBoxc+, and \verb+\AxoGrid+.
\item A series of ``LongArrow'' macros for drawing lines with the
  arrow at the end.  The same effect could only be achieved in
  axodraw4j with arrowpos=1 option to the basic line-drawing
  commands.
\item A series of macros like \verb+\DashDoubleLine+ to provide access
  to the dashed and double properties in the style of the macros
  provided in v.\ 1 of axodraw.  This is in addition to the optional
  arguments that allow the same effect in axodraw4j and in axodraw2.
\item The \texttt{v1compatible} and other options are provided for the
  package.
\item Better treatment of the scaling of objects.
\item The treatment of ``postscript text objects'' within \LaTeX{}
  itself. 
\end{itemize}


%---------------
\subsection{Backward compatibility, etc}
\label{sec:compat}

The official user interface of axodraw2 is backward-compatible with
versions 1 and 4j, with the exception of the issue mentioned above
about the commands that had the signatures \verb+\B2Text+,
\verb+\G2Text+, and \verb+\C2Text+ in the old version.

As to behavior, there are some minor changes in the objects that are
drawn, mostly concerning the exact dimensions of default arrows. The
scaling of the sizes of text objects is changed.  The scoping of color
changes is substantially changed, but improved.

The old axodraw only used the tools available in \LaTeX{} in the early
1990s.  The new version needs a more modern installation.
Installations for which axodraw2 has been tested include TeXLive 2011
and 2016.

We have tested backwards compatibility by compiling the version 1
manual with axodraw2; only a trivially modified preamble was needed.
It also worked to compile Collins's QCD book\cite{qcdbook},
which has a large number
of JaxoDraw figures (processed automatically to pieces of axodraw code
imported into the document); only changes in the preamble were needed.

In addition, axodraw2 provides an \verb+axopicture+ environment inside
of which axodraw2's graphics are coded and drawn.  In the old axodraw,
\LaTeX's \verb+picture+ environment was used instead.  In axodraw2, we
recommend only the use of \verb+axopicture+ environment, and that is
the only method we document.  However, old diagrams coded with
\verb+picture+ environment continue to work.

Some possible compatibility issues could arise because the old and new
versions load a different set of external packages.  The old version
loaded the packages \file{epsf.sty} and \file{colordvi.sty}, and so
macros defined by these packages were available.  The new version does
not load these now essentially-obsolete packages; so they should be
loaded from the document if they happen to be needed.  But the new
version does define some macros for setting colors that correspond to
those in \file{colordvi.sty}; these are defined using facilities from
the standard \LaTeX{} \file{color.sty} package.  Axodraw2 loads the
following \LaTeX{} packages: \program{keyval}, \program{ifthen},
\program{graphicx}, \program{color}, \program{ifxetex}.  It defines
its own set of 73 named colors which are the 68 dvips-defined names
(as coded in \file{colordvi.sty} and used in axodraw v.\ 1), plus 5
more.



%=========================
\section{Installation}
\label{sec:installation}

%---------------
\subsection{Installation from standard \TeX{} distribution}

At the moment that this document was updated (January 2018), axodraw2
was part of both the main \TeX{} distributions, TeXLive and MiKTeX.
The easiest way to install axodraw2 is therefore from the package
manager of your \TeX{} distribution.

You can also obtain axodraw2 from CTAN at
\url{http://ctan.org/pkg/axodraw2}, and install it manually, following
the instructions in Sec.\ \ref{sec:manual.install} below.

\paragraph{\program{axohelp} in TeXLive}
In TeXLive 2018 and later, a binary executable for the
\program{axohelp} is provided, as part of the \program{axodraw2}
package.  So \program{axohelp} is available provided that the
\program{axodraw2} package is installed..


\paragraph{\program{axohelp} in MiKTeX}
The axodraw2 package including an executable \program{axohelp.exe} was
provided by MiKTeX when this was checked in January 2018.



%---------------
\subsection{Manual installation}
\label{sec:manual.install}

%For a manual installation, the minimum that needs to be done is to put
For a manual installation, what needs to be done is to put the file
\file{axodraw2.sty} in a place where it will be found by the
\program{latex} program.  If you wish to use axodraw2 with
\program{pdflatex}, you will also need to compile the
\program{axohelp} program --- see Sec.\ \ref{sec:axohelp} --- and put
it in an appropriate directory.  Documentation can also be installed
if you want.

%--
\subsubsection{Style file \texorpdfstring{\protect\file{axodraw2.sty}}{axodraw2.sty}}

If you merely want to try out axodraw2, just put the file
\file{axodraw2.sty} in the same directory as the \file{.tex}
file(s) you are working on. 

Otherwise, put it in an appropriate directory for a \LaTeX{} style
file, and, if necessary, run the texhash program to ensure that the
file is in the \TeX{} system's database of files.  For example,
suppose that you have a TeXLive system installed for all users on a
Unix-like system (e.g., Linux or OS-X), and that TeXLive is installed,
as is usual, under the directory \file{/usr/local/texlive}.  Then an
appropriate place for axodraw2 is in a directory
\file{/usr/local/texlive/texmf-local/tex/latex/axodraw2}.  You will
need to run the \program{texhash} program in this last case.  For such
a system-wide installation, you may have to do these
operations as an administrative user (e.g., root), possibly
supplemented by running the relevant commands with the \program{sudo}
program.

If you later install the axodraw2 package from the package manager of
your \TeX{} distribution, it's a good idea to delete the files you
installed manually.  Otherwise when you use axodraw2 in a document,
then the wrong version of \file{axodraw2.sty} may get used.  This is a
particularly important issue after possible future updates to axodraw2
get installed by the package manager.

%--
\subsubsection{Helper program \program{axohelp}}
\label{sec:axohelp}

If you wish to use axodraw2 with \program{pdflatex},
\program{lualatex}, or \program{xelatex}, then you need to install the
\program{axohelp} program.  \emph{(It is useful to reiterate here that
  the standard distributions of \TeX{} currently supply the
  \program{axohelp} program.  So the steps described here are only
  necessary if for some reason you wish to do a manual installation.
  One possible reason is to use a recent update of \program{axohelp},
  since TeXLive normally only supplies updated versions of binary
  executable files with the initial release of one of TeXLive's yearly
  versions.)}

To install \program{axohelp} manually, you will first need to compile
the program by a C compiler.  Under a Unix-like operating system
(linux or macOS) an appropriate shell command is
\begin{verbatim}
   cc -o axohelp -O3 axohelp.c -lm
\end{verbatim}
(Note that this is a C compiler, \emph{not} a C++ compiler.)  Most linux
systems have the program \program{cc} already installed.  This also applies to
macOS(OS-X) at versions below 10.7.  But on macOS version 10.7 and higher, you
will need to install a compiler, which can be done by installing XCode
and the associated command-line utilities.  If you have the GNU
compilers installed, you might need to use the command \program{gcc}
instead of \program{cc}.

For Microsoft Windows, you will need to have installed a C compiler,
and use it to compile \file{axohelp.c}.

Once you have the executable (named \program{axohelp} on Unix-like
systems, or \program{axohelp.exe} on a Microsoft system), put it in a
directory where it will be found when you run programs from the
command line.


%--
\subsubsection{Testing}

To test whether the installation works, you need a simple test file.
An example is given in Sec.\ \ref{sec:example}, and is provided
with the axodraw2 distribution as \file{example.tex}.

At a command line with the current directory set to the directory
containing the file \file{example.tex}, run the following commands:
\begin{verbatim}
   latex example
   dvips example -o
\end{verbatim}
If all goes well, you will obtain a file \file{example.ps}.  When
you view it, it should contain the diagram shown in Sec.\
\ref{sec:example}.  You can make a pdf file instead by the commands
\begin{verbatim}
   latex example
   dvipdf example
\end{verbatim}
A more extensive test can be made by compiling the manual.

To make a pdf file directly, with \program{pdflatex}, you use the commands
\begin{verbatim}
   pdflatex example
   axohelp example
   pdflatex example
\end{verbatim}
The \program{axohelp} run takes as input a file \file{example.ax1}
produced by the first run of \program{pdflatex} and makes an output
file \file{example.ax2}.  The second run of \program{pdflatex} reads
the \file{example.ax2} file and uses the result to place the axodraw
objects in the \file{example.pdf} file.


%--
\subsubsection{Documentation}

Put the documentation in a place where you can find it.  If you
installed the \file{axodraw2.sty} file in
\file{/usr/local/texlive/texmf-local/tex/latex/axodraw2}, the 
standard place for the documentation would be
\file{usr/local/texlive/texmf-local/doc/latex/axodraw2}.


%=========================
\section{Use}
\label{sec:use}

In this section we show how to use axodraw2, illustrated with an
example.

\subsection{Basic example}
\label{sec:example}

The principles of using axodraw2 are illustrated by the following
complete \LaTeX{} document:
\begin{verbatim}
        \documentclass{article}
        \usepackage{axodraw2}
        \begin{document}
        Example of Feynman graph using axodraw2 macros:
        \begin{center}
          \begin{axopicture}(200,110)
            \SetColor{Red}
            \Arc[arrow](100,50)(40,0,180)
            \Text(100,100){$\alpha P_1 + \beta P_2 + k_\perp$}
            \SetColor{Black}
            \Arc[arrow](100,50)(40,180,360)
            \Gluon(0,50)(60,50){5}{4}
            \Vertex(60,50){2} 
            \Gluon(140,50)(200,50){5}{4}
            \Vertex(140,50){2}
          \end{axopicture}
        \end{center}
        \end{document}
\end{verbatim}
After compilation according to the instructions in Sec.\
\ref{sec:doc.compile}, viewing the resulting file should show the
following Feynman graph:
\begin{center}
  \begin{axopicture}(200,110)
    \SetColor{Red}
    \Arc[arrow](100,50)(40,0,180)
    \Text(100,100){$\alpha P_1 + \beta P_2 + k_\perp$}
    \SetColor{Black}
    \Arc[arrow](100,50)(40,180,360)
    \Gluon(0,50)(60,50){5}{4}
    \Vertex(60,50){2} 
    \Gluon(140,50)(200,50){5}{4}
    \Vertex(140,50){2}
  \end{axopicture}
\end{center}
See Sec.\ \ref{sec:examples} for more examples

\emph{Important note about visibility of graphics objects:} If you
view this document on a computer monitor, Feynman graphs drawn with
narrow lines may not fully match what was intended.  This is because
of the way graphics viewers interact with the limited resolution of
computer monitors. To see the example graphs properly, you may need to
use a large enough magnification, or to use an actual print out.

\emph{Note about sending a document to others}: If for example, you
submit an article to arXiv.org, it is likely that their automated
system for processing the file will not run \program{axohelp}. So together with
the tex file, you one should also submit the \file{.ax2} file.


%-----------------------
\subsection{Document preparation}
\label{sec:doc.prep}

The general rules for preparation of a document are:
\begin{itemize}

\item Insert the following
   \begin{verbatim}
     \usepackage{axodraw2}
  \end{verbatim}
  in the preamble of the \file{.tex} file.
  There are some options and commands that can be used to change axodraw2's
  behavior from its default.  See Secs.\ \ref{sec:invoke} and
  \ref{sec:settings} for details. 

\item Where you want to insert axodraw2 objects, put them inside an
  axopicture environment, specified in Sec.\ \ref{sec:env},
  \begin{verbatim}
     \begin{axopicture}(x,y)
        ...
     \end{axopicture}
  \end{verbatim}
  Here \texttt{x} and \texttt{y} denote the desired size of the box
  that is to be inserted in the document and that contains the graph.
  An optional offset can be specified (as with \LaTeX's
  \texttt{picture} environment). By default the units are
  $\unit[1]{pt} = \unit[1/72.27]{in} = \unit[0.3515]{mm}$.

\end{itemize}
Full details of all these components are in Sec.\
\ref{sec:reference}. 

The design of graphs can be done manually, and this can be greatly
facilitated with the new \verb:\AxoGrid: command.  A convenient way of
constructing diagrams is to use the graphical program
JaxoDraw~\cite{jaxodraw1,jaxodraw2}, which is what most people
do. This program can export axodraw code.  It also uses axodraw as one
way of making postscript and pdf files.  The original version of
axodraw was used by JaxoDraw until version 1.3. In version 2 of
JaxoDraw, a specially adapted version of \file{axodraw.sty} is used,
named \file{axodraw4j.sty}. The output from version 2 of
JaxoDraw is compatible with axodraw2.


%-----------------------
\subsection{Document compilation}
\label{sec:doc.compile}

\subsubsection{To make a postscript file}
\label{sec:doc.compile.ps}

When a postscript file is needed, you just make the postscript file as
usual.  E.g., when the source file is \file{example.tex}, you run
the following commands:
\begin{verbatim}
   latex example
   dvips example -o
\end{verbatim}
which results in a postscript file \file{example.ps}.  Of course, if
there are cross references to be resolved, you may need multiple runs
of \program{latex}, as usual.  When needed, use of \program{bibtex},
\program{makeindex}, and other similar programs is also as usual.
Instead of \program{latex}, one may also use the \program{dvilualatex}
program, which behaves like \program{latex} except for providing some
extra capabilities that are sometimes useful.

Internally, axodraw uses \TeX's \verb+\special+ mechanism to put
specifications of postscript code into the \file{.dvi} file, and
\program{dvips} puts this code in the postscript file.  This postscript
code performs the geometrical calculations needed to specific
axodraw's objects, and then draws them when the file is displayed or
printed. 

\emph{Important note about configuration of \program{dvips}:} You may
possibly find that when you run \program{dvips} that it spends a lot of
time running \program{mktexpk} to make bitmapped fonts, or that the
postscript
file contains bitmapped type-3 fonts.  This is \emph{not} the default
situation in typical current installations.  But if you do find this
situation, which is highly undesirable in most circumstances, you
should arrange for \program{dvips} to use type 1 fonts.  This can be
done either by appropriately configuring your \TeX{} installation, for
which you will have to locate instructions, or by giving
\program{dvips} its \texttt{-V0} option:
\begin{verbatim}
   dvips -V0 example -o
\end{verbatim}
Once you do this, you should see, from \program{dvips}'s output,
symptoms of its use of type 1 fonts. \emph{Let us re-emphasize that
  you do not have to be concerned with this issue, under
  normal circumstances.  But since things were different within our
  memory, we give some suggestions as to what to do in what are
  currently abnormal circumstances.}

\subsubsection{To make a pdf file via \program{latex}}

There are multiple methods of making pdf files for a latex document;
we will not give all the advantages and disadvantages here.

One way is to convert the postscript file, e.g., by
\begin{verbatim}
   ps2pdf example.ps
\end{verbatim}
You can also produce a pdf file from the dvi file produced by
\program{latex} by the \program{dvipdf} command, e.g,.
\begin{verbatim}
   dvipdf example
\end{verbatim}
\emph{Important note:} The program here is \program{dvipdf} and
\emph{not} the similarly named \program{dvipdfm} or \program{dvipdfmx},
which are incompatible with axodraw.  The reason why \program{dvipdf}
works is that it internally makes a postscript file and then converts
it to pdf.


\subsubsection{To make a pdf file by \program{pdflatex},
  \program{lualatex}, or  \program{xelatex}}

A common and standard way to make a pdf file is the \program{pdflatex}
program, which makes pdf directly.  It has certain advantages, among
which are the possibility of importing a wide variety of graphics file
formats.  (In contrast, the \program{latex} program only handles
encapsulated postscript.)

However, to use axodraw2 with \program{pdflatex}, you need an 
auxiliary program, \program{axohelp}, as in
\begin{verbatim}
   pdflatex example
   axohelp example
   pdflatex example
\end{verbatim}
What happens is that during a run of \program{pdflatex}, axodraw2
writes a file \file{example.ax1} containing specifications of its
graphical objects.  Then running \program{axohelp} reads the
\file{example.ax1} file, computes the necessary pdf code to draw the
objects, and writes the results to \file{example.ax2}.  The next run
of \program{pdflatex} reads \file{example.ax2} and uses it to put the
appropriate code in the output pdf file.

The reason for the extra program is that axodraw needs many
geometrical calculations to place and draw its graphical objects.
\LaTeX{} itself does not provide anything convenient and efficient for
these calculations, while the PDF language does not offer sufficient
computational facilities, unlike the postscript language.

If you modify a document, and recompile with \program{pdflatex}, you
will only need to rerun \program{axohelp} if the modifications
involve axodraw objects.  Axodraw2 will output an appropriate message
when a rerun of \program{axohelp} is needed.

If you wish to use \program{lualatex} or \program{xelatex}, instead of
\program{pdflatex}, then you can simply run the program
\program{lualatex} or \program{xelatex} instead of
\program{pdflatex}. These are equally compatible with axodraw2.




%-----------------------
\subsection{Automation of document compilation}
\label{sec:doc.auto.compile}

It can be useful to automate the multiple steps for compiling a
\LaTeX{} document.  One of us has provided a program \program{latexmk}
to do this --- see \url{http://www.ctan.org/pkg/latexmk/}.  Here we
show how to configure 
\program{latexmk} to run \program{axohelp} as needed when a document is
compiled via the \program{pdflatex} route.

All you need to do is to put the following lines in one of
\program{latexmk}'s initialization files (as specified in its
documentation):
\begin{verbatim}
     add_cus_dep( "ax1", "ax2", 0, "axohelp" );
     sub axohelp { return system "axohelp \"$_[0]\""; }
     $clean_ext .= " %R.ax1 %R.ax2";
\end{verbatim}
The first two lines specify that \program{latexmk} is to make
\file{.ax2} files from \file{.ax1} files by the \program{axohelp}
program, whenever necessary.  (After that \program{latexmk}
automatically also does any further runs of \program{pdflatex} that are
necessary.)  The last line is optional; it adds \file{.ax1} and
\file{.ax2} files to the list of files that will be deleted when
\program{latexmk} is requested to do a clean up of generated,
recreatable files.

\program{Latexmk} is installed by default by the currently common
distributions of \TeX{} software, i.e., TeXLive and MiKTeX.  It has as
an additional requirement a properly installed Perl system.  For the
TeXLive distribution, this requirement is always met.

With the above configuration, you need no change in how you invoke
\program{latexmk} to compile a document, when it uses axodraw2.  For
producing postscript, you can simply use
\begin{verbatim}
     latexmk -ps example
\end{verbatim}
and for producing pdf via \program{pdflatex} you can use
\begin{verbatim}
     latexmk -pdf example
\end{verbatim}
Then \program{latexmk} takes care of whatever runs are needed of all
the relevant programs, now including \program{axohelp}, as well
whatever, possibly multiple, runs are needed for the usual programs
(\program{latex}, \program{pdflatex}, \program{bibtex}, etc).



%>>#] Introduction :
%>>#[ The Commands :

\section{Reference}
\label{sec:reference}

\subsection{Package invocation}
\label{sec:invoke}

To use the axodraw2 package in a \LaTeX{} document, you simply put
\begin{verbatim}
     \usepackage{axodraw2}
\end{verbatim}
in the preamble of the document, as normal.  

The \verb+\usepackage+ command takes optional arguments
(comma-separated list of keywords) in square brackets, e.g.,
\begin{verbatim}
     \usepackage[v1compatible]{axodraw2}
\end{verbatim}
The options supported by axodraw2 are
\begin{itemize}
\item \texttt{v1compatible}: This makes axodraw2's operation more
  compatible with v.\ 1.  It allows the use of \verb+\B2Text+,
  \verb+\G2Text+, and \verb+\C2Text+ as synonyms for the macros named
  \verb+\BTwoText+, \verb+\GTwoText+, and \verb+\CTwoText+.
  (You may wish also to use the \texttt{canvasScaleisUnitLength}
  option, so that the scaling of the units in the \texttt{axopicture}
  environment is the same as it was for the \texttt{picture}
  environment used in v.\ 1.)
\item \texttt{canvasScaleIs1pt}: Unit for canvas dimensions
  in an \texttt{axopicture} environment is fixed at $\unit[1]{pt}$,
\item \texttt{canvasScaleIsObjectScale}: Unit for canvas dimensions
  in an \texttt{axopicture} environment are the same as those set for
  axodraw objects (by the \verb+\SetScale+ macro).  This is the
  default setting, so the option need not be given.
\item \texttt{canvasScaleIsUnitLength}: Unit for canvas dimensions
  in an \texttt{axopicture} environment is the current value of
  \verb+\unitlength+, exactly as for \LaTeX{}'s \texttt{picture}
  environment.  (Thus, this corresponds to the behavior of the
  original axodraw v.\ 1, which simply used the \texttt{picture}
  environment.)
\item \texttt{PStextScalesIndependently}: Axodraw's text objects are
  scaled by the factor set by the \verb+\SetTextScale+ command.
\item \texttt{PStextScalesLikeGraphics}: Axodraw's text objects are
  scaled by the factor set by same factor for its graphics objects,
  i.e., the scale set by the \verb+\SetScale+ command.
\end{itemize}
(N.B. Default scaling factors are initialized to unity.)

\emph{Note:} If you use \program{axodraw}'s commands for placing text
and you use the standard \TeX{} Computer Modern fonts for the
document, then when you compile your document you may get a lot of
warning messages.  These are about fonts not being available in
certain sizes.  To fix this problem invoke the package
\program{fix-cm} in your document's preamble:
\begin{verbatim}
    \usepackage{fix-cm}
\end{verbatim}
It is also possible to use the package \program{lmodern} for the same
purpose. 


\subsection{Environment(s)}
\label{sec:env}

The graphical and other objects made by axodraw2 are placed in an
\texttt{axopicture} environment, which is invoked either as
\begin{verbatim}
     \begin{axopicture}(x,y)
        ...
     \end{axopicture}
\end{verbatim}
or
\begin{verbatim}
     \begin{axopicture}(x,y)(xoffset,yoffset)
        ...
     \end{axopicture}
\end{verbatim}
Here, the \dots{} denote sequences of axodraw2 commands, as documented
in later sections, for drawing lines, etc.  The \texttt{axopicture}
environment is just like standard \LaTeX's \texttt{picture}
environment,\footnote{In fact, the \texttt{axopicture} is changed from
  the \texttt{picture} environment only by making some
  axodraw-specific settings. So the \texttt{picture} environment that
  was used in v.\ 1 may also be used with axodraw2; it merely has a
  lack of automation on the setting of the canvas scale relative to
  the object scale, and, in the future, other possible
  initializations.}, except for doing some axodraw-specific
initialization.  It inserts a region of size \texttt{x} by \texttt{y}
(with default units of $\unit[1]{pt} = \unit[1/72.27]{in} =
\unit[0.3515]{mm}$). Here \texttt{x} and \texttt{y} are set to the
numerical values you need.

The positioning of axodraw objects is specified by giving $x$ and $y$
coordinates, e.g., for the ends of lines.  The origin of these
coordinates is, by default, at the lower left corner of the box that
\texttt{axopicture} inserts in your document.  But sometimes,
particularly after editing a graph, you will find this is not
suitable.  To avoid changing a lot of coordinate values to get correct
placement, you can specify an offset by the optional arguments
\texttt{(xoffset,yoffset)} to the \texttt{axopicture} environment,
exactly as for \LaTeX's \texttt{picture} environment.  The offset
\texttt{(xoffset,yoffset)} denotes the position of the bottom left
corner of the box inserted in your document relative to the coordinate
system used for specifying object positions.  Thus
\begin{verbatim}
     \begin{axopicture}(20,20)
        \Line(0,0)(20,20)
     \end{axopicture}
\end{verbatim}
and 
\begin{verbatim}
     \begin{axopicture}(20,20)(-10,20)
        \Line(-10,20)(10,40)
     \end{axopicture}
\end{verbatim}
are exactly equivalent.

Within an \texttt{axopicture} environment, all the commands that can
be used inside an ordinary \texttt{picture} environment can also be
used. 

We can think of the \texttt{axopicture} environment as defining a
drawing canvas for axodraw's graphical and text objects.
There are possibilities for manipulating (separately) the units used
to specify the canvas and the objects.  These can be useful for
scaling a diagram or parts of it from an originally chosen design.
See Secs.\ \ref{sec:units} and \ref{sec:settings} for details.


\subsection{Graphics drawing commands}
\label{sec:commands}

In this section we present commands for drawing graphical objects,
split up by category.  Later, we will give: details of options to the
line-drawing commands, explanations of some details about specifying
gluons and about specifying arrow parameters, and then commands for
textual objects and for adjusting settings (e.g., separation in a
double line).  Mostly, we present the commands by means of examples.
Note that many of the arguments of the commands, notably arguments for
$(x,y)$ coordinate values are delimited by parentheses and commas
instead of the brace delimiters typically used in \LaTeX.

It should also be noted that some commands provide different ways of
performing the same task. For instance
\begin{verbatim}
   \BCirc(50,50){30}
\end{verbatim}
can also be represented by
\begin{verbatim}
   \CCirc(50,50){30}{Black}{White}
\end{verbatim}
when the current color is black. The presence of the BCirc command has been 
maintained both for backward compatibility, and because it represents
a convenient short hand for a common situation. This also holds for similar 
commands involving boxes and triangles. For the new Polygon, FilledPolygon, 
RotatedBox and FilledRotatedBox commands we have selected a more minimal 
scheme.

Similar remarks apply to the new feature of options for line drawing
commands. Originally in v.\ 1, a line with an arrow would be coded as
\begin{verbatim}
   \ArrowLine(30,65)(60,25)
\end{verbatim}
It is now also possible to code using the general \verb+\Line+ macro,
but with a keyword optional argument:
\begin{verbatim}
   \Line[arrow](30,65)(60,25)
\end{verbatim}
One advantage of the option method is a variety of other properties of
an individual line may also be coded, as in
\begin{verbatim}
   \Line[arrow,arrowpos=1](30,65)(60,25)
\end{verbatim}
without the need to use separate global setting for the property, by
the commands listed in Sec.\ \ref{sec:settings}, or by having a
corresponding compulsory argument to the command.
Which way to do things is a matter of user taste in particular
situations.

%--#[ AxoGrid :

\subsubsection{Grid drawing}

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(90,140)(-10,0)}
\AxoGrid(0,0)(10,10)(9,14){LightGray}{0.5}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{axogrid}
\verb:\AxoGrid(0,0)(10,10)(9,14){LightGray}{0.5}: \hfill \\
This command is used in our examples to allow the reader to compare the 
coordinates in the commands with those of the actual picture. The arguments 
are first the position of the left bottom corner, then two values that tell 
the size of the divisions in the $x$ and $y$ direction. Next there are two 
values that specify how many divisions there should be in the $x$ and $y$ 
direction. Then the color of the lines is given and finally the width of 
the lines. Note that if there are $(n_x,n_y)$ divisions there will be 
$n_x+1$ vertical lines and $n_y+1$ horizontal lines. The temporary use of 
this command can also be convenient when designing pictures manually.
\end{minipage}\vspace{4mm}

%--#] AxoGrid :
%--#[ Line :

\subsubsection{Ordinary straight lines}
\label{sec:Line}


All of the commands in this section can be given optional keyword
arguments, which are defined in Secs.\ \ref{sec:options} and
\ref{sec:arrows}.  These can be used to specify the type of line
(dashed, double), to specify the use of an arrow, and its parameters, and
to specify some of the line's parameters.

The basic line drawing command is \verb+\Line+:\\[3mm]
\begin{minipage}{3.83cm}
\begin{axopicture}{(90,40)(-10,0)}
\AxoGrid(0,0)(10,10)(9,4){LightGray}{0.5}
\Line(10,10)(80,30)
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{line}
\verb:\Line(10,10)(80,30): \hfill \\
In this command we have two coordinates. The (solid) line goes from the 
first to the second.
\end{minipage}\vspace{4mm}

Examples of the use of optional arguments are:\\[3mm]
\begin{minipage}{3.83cm}
\begin{axopicture}{(90,80)(-10,0)}
\AxoGrid(0,0)(10,10)(9,8){LightGray}{0.5}
\Line[color=Magenta,arrow](10,70)(80,70)
\Line[dash](10,50)(80,50)
\Line[arrow,double](10,30)(80,30)
\Line[arrow,dash,double](10,10)(80,10)
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{line.options}
\begin{verbatim}
\Line[color=Magenta,arrow](10,70)(80,70)
\Line[dash](10,50)(80,50)
\Line[arrow,double](10,30)(80,30)
\Line[arrow,dash,double](10,10)(80,10)
\end{verbatim}
\end{minipage}
\\[4mm]
Details of the specification of arrows, together with alternative
commands for making lines with arrows are given in Sec.\
\ref{sec:arrows}. 

\vspace{4mm}
%--#] Line :
%--#[ DoubleLine :

Alternative commands for dashed and/or double lines are:\\[3mm]
\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(90,40)(-10,0)}
\AxoGrid(0,0)(10,10)(9,4){LightGray}{0.5}
\DoubleLine(10,25)(80,25){1}
\DoubleLine[color=Red](10,15)(80,15){2}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{doubleline}
\verb:\DoubleLine(10,25)(80,25){1}: \hfill \\
\verb:\DoubleLine[color=Red](10,15)(80,15){2}: \hfill \\
In this command we have two coordinates as in the Line command but two 
lines are drawn. The extra parameter is the separation between the two 
lines. Note however that everything between the lines is blanked out.
\end{minipage}\vspace{4mm}

%--#] DoubleLine :
%--#[ DashLine :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(90,40)(-10,0)}
\AxoGrid(0,0)(10,10)(9,4){LightGray}{0.5}
\DashLine(10,25)(80,25){2}
\DashLine(10,15)(80,15){6}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{dashline}
\verb:\DashLine(10,25)(80,25){2}: \hfill \\
\verb:\DashLine(10,15)(80,15){6}: \hfill \\
In this command we have two coordinates. The dashed line goes from the 
first to the second. The extra parameter is the size of the dashes. The 
space between the dashes is transparent.
\end{minipage}\vspace{4mm}

%--#] DashLine :
%--#[ DashDoubleLine :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(90,40)(-10,0)}
\AxoGrid(0,0)(10,10)(9,4){LightGray}{0.5}
\DashDoubleLine(10,25)(80,25){1.5}{2}
\DashDoubleLine(10,15)(80,15){1.5}{6}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{dashdoubleline}
\verb:\DashDoubleLine(10,25)(80,25){1.5}{2}: \hfill \\
\verb:\DashDoubleLine(10,15)(80,15){1.5}{6}: \hfill \\
In this command we have two coordinates. The dashed lines go from the 
first to the second. The first extra parameter is the separation between 
the lines and the second extra parameter is the size of the dashes.
\end{minipage}\vspace{4mm}

%--#] DashDoubleLine :
%--#[ Arc :

\subsubsection{Arcs}
\label{sec:Arc}

The commands in this section draw circular arcs in types corresponding
to the straight lines of Sec.\ \ref{sec:Line}.  In v.\ 1, some of
these commands had names containing ``Arc'' and some ``CArc''.  Some
kinds had variant names containing ``Arcn'', whose the direction of
drawing was clockwise instead of anticlockwise. In v.\ 2, we have
tried to make the situation more consistent.  First, all the old names
have been retained, for backward compatibility.  Second, a general
purpose command \verb+\Arc+ has been introduced; in a single command,
with the aid of optional arguments, it covers all the variants.  See
Secs.\ \ref{sec:options} and \ref{sec:arrows} for full details.  The
options can be used to specify the type of line (dashed, double,
clockwise or anticlockwise), to specify the use of arrow, and its
parameters, and to specify some of the line's parameters.  The other
commands in this section can also be given optional keyword arguments.

The basic \verb+\Arc+ command has the form\\[3mm]
\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(90,50)(-10,0)}
\AxoGrid(0,0)(10,10)(9,5){LightGray}{0.5}
\Arc(45,0)(40,20,160)
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{carc}
\verb:\Arc(45,0)(40,20,160):\hfill \\
In this command we have one coordinate: the center of the circle. Then 
follow the radius of the circle, the start angle and the finishing angle. 
The arc will be drawn counterclockwise.
\end{minipage}\vspace{4mm}

An example of the use of the optional parameters is:\\[3mm]
\begin{minipage}{3.83cm}
\begin{axopicture}{(80,80)(-10,0)}
\AxoGrid(0,0)(10,10)(8,8){LightGray}{0.5}
\Arc[arrow,dash,clockwise](40,40)(30,20,160)
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{carc.opt}
\verb:\Arc[arrow,dash,clockwise](40,40)(30,20,160):
\end{minipage}\vspace{4mm}

Alternative commands for dashed and/or double arcs are as follows.
\vspace*{4mm}

%--#] Arc :
%--#[ DoubleArc :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(90,50)(-10,0)}
\AxoGrid(0,0)(10,10)(9,5){LightGray}{0.5}
\DoubleArc[color=Green](45,0)(40,20,160){2}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{doublearc}
\verb:\DoubleArc[color=Green](45,0)(40,20,160){2}:\hfill \\
In this command we have one coordinate: the center of the circle. Then 
follow the radius of the circle, the start angle and the finishing angle. 
The arc will be drawn counterclockwise. The last argument is the line 
separation of the double line.
\end{minipage}\vspace{4mm}

%--#] DoubleArc :
%--#[ DashArc :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(90,50)(-10,0)}
\AxoGrid(0,0)(10,10)(9,5){LightGray}{0.5}
\DashArc(45,0)(40,20,160){4}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{dasharc}
\verb:\DashArc(45,0)(40,20,160){4}:\hfill \\
In this command we have one coordinate: the center of the circle. Then 
follow the radius of the circle, the start angle and the finishing angle. 
The arc will be drawn counterclockwise. The last argument is the size of 
the dashes.
\end{minipage}\vspace{4mm}

%--#] DashArc :
%--#[ DashDoubleArc :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(90,50)(-10,0)}
\AxoGrid(0,0)(10,10)(9,5){LightGray}{0.5}
\DashDoubleArc(45,0)(40,20,160){2}{4}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{dashdoublearc}
\verb:\DashDoubleArc(45,0)(40,20,160){2}{4}:\hfill \\
In this command we have one coordinate: the center of the circle. Then 
follow the radius of the circle, the start angle and the finishing angle. 
The arc will be drawn counterclockwise. The last two arguments are the line 
separation of the double line and the size of the dashes.
\end{minipage}\vspace{4mm}

%--#] DashDoubleArc :
%--#[ Bezier :

\subsubsection{B\'ezier lines}
\label{sec:Bezier}

The commands in this section draw B\'ezier curves, specified by 4
points.  The variants are just as for straight lines, Sec.\
\ref{sec:Line}.

All of the commands in this section can be given optional keyword
arguments, which are defined in Sec.\ \ref{sec:options}.  These can be
used to specify the type of line (dashed, double), to specify the use
of an arrow, and its parameters, and to specify some of the line's
parameters.

The basic general purpose command is \verb+\Bezier+:\\[3mm]
\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(60,60)(-25,0)}
\AxoGrid(0,0)(10,10)(6,6){LightGray}{0.5}
\Bezier(10,10)(75,30)(65,40)(20,50)
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{bezier}
\verb:\Bezier(10,10)(75,30)(65,40)(20,50): \hfill \\
Draws a cubic B\'ezier curve based on the four given points. The first
point is the starting point and the fourth the finishing point. The
second and third points are the two control points.
\end{minipage}\vspace{4mm}

An example of the use of optional arguments is
\\[3mm]
\begin{minipage}{3.83cm}
\begin{axopicture}{(60,60)(-25,0)}
\AxoGrid(0,0)(10,10)(6,6){LightGray}{0.5}
\Bezier[color=Red,arrow,double,arrowpos=1](10,10)%
    (75,30)(65,40)(20,50)
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{bezier.opt}
\begin{verbatim}
  \Bezier[color=Red,arrow,double,arrowpos=1](10,10)%
    (75,30)(65,40)(20,50)
\end{verbatim}
\end{minipage}\vspace{4mm}

%--#] Bezier :
%--#[ DoubleBezier :
Alternative ways of making dashed and/or double B\'ezier curves
are:\\[3mm]
\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(60,60)(-25,0)}
\AxoGrid(0,0)(10,10)(6,6){LightGray}{0.5}
\DoubleBezier(10,10)(75,30)(65,40)(20,50){1.5}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{doublebezier}
\verb:\DoubleBezier(10,10)(75,30)(65,40)(20,50){1.5}: \hfill \\
Draws a cubic B\'ezier curve based on the four given points. 
The first four arguments are the same as for \verb+\Bezier+.
The final argument is the line separation.
\end{minipage}\vspace{4mm}

%--#] DoubleBezier :
%--#[ DashBezier :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(60,60)(-25,0)}
\AxoGrid(0,0)(10,10)(6,6){LightGray}{0.5}
\DashBezier(10,10)(75,30)(65,40)(20,50){4}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{dashbezier}
\verb:\DashBezier(10,10)(75,30)(65,40)(20,50){4}: \hfill \\
Draws a cubic B\'ezier curve based on the four given points. 
The first four arguments are the same as for \verb+\Bezier+.
The final argument is the size of the dashes.
\end{minipage}\vspace{4mm}

%--#] DashBezier :
%--#[ DashDoubleBezier :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(60,60)(-25,0)}
\AxoGrid(0,0)(10,10)(6,6){LightGray}{0.5}
\DashDoubleBezier(10,10)(75,30)(65,40)(20,50){1.5}{4}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{dashdoublebezier}
\verb:\DashDoubleBezier(10,10)(75,30)(65,40)(20,50){1.5}{4}:
Draws a cubic B\'ezier curve based on the four given points. 
The first four arguments are the same as for \verb+\Bezier+.
The final two arguments are the line separation and the size of the
dashes.
\end{minipage}\vspace{4mm}

%--#] DashDoubleBezier :
%--#[ Curve :

\subsubsection{Curves}

The commands in this section draw curves through an arbitrary sequence
of points.  They only exist in variants for continuous and dashed
lines.  No optional arguments are allowed.
\vspace{4mm}

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(60,60)(-25,0)}
\AxoGrid(0,0)(10,10)(6,6){LightGray}{0.5}
\Curve{(5,55)(10,32.5)(15,23)(20,18)(25,14.65)(30,12.3)(40,9.5)(55,7)}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{curve}
\verb:\Curve{(5,55)(10,32.5)(15,23)(20,18): \hfill \\
\verb:       (25,14.65)(30,12.3)(40,9.5)(55,7)}: \hfill \\
Draws a smooth curve through the given points. The $x$ coordinates of the 
points should be in ascending order. The curve is obtained by constructing 
quadratic fits to each triplet of adjacent points and then in each interval 
between two points interpolating between the two relevant parabolas.
\end{minipage}\vspace{4mm}

%--#] Curve :
%--#[ DashCurve :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(60,60)(-25,0)}
\AxoGrid(0,0)(10,10)(6,6){LightGray}{0.5}
\DashCurve{(5,55)(10,32.5)(15,23)(20,18)(25,14.65)(30,12.3)(40,9.5)(55,7)}{4}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{dashcurve}
\verb:\DashCurve{(5,55)(10,32.5)(15,23)(20,18): \hfill \\
\verb:       (25,14.65)(30,12.3)(40,9.5)(55,7)}{4}: \hfill \\
Draws a smooth dashed curve through the given points. The $x$ coordinates of 
the points should be in ascending order. The last argument is the size of 
the dashes.
\end{minipage}\vspace{4mm}

%--#] DashCurve :
%--#[ Gluon :

\subsubsection{Gluon lines}
\label{sec:Gluon}

The basic gluon drawing commands are \verb+\Gluon+, \verb+\GluonArc+,
\verb+\GluonCirc+.  There are also variants for dashed and double
gluons. But arrows aren't possible.

See Sec.\ \ref{sec:gluon.remarks} for additional information on the
shape of gluon lines.

All of the commands in this section can be given optional keyword
arguments, which are defined in Sec.\ \ref{sec:options}.  These can be
used to specify the type of line (dashed, double), and to specify some
of the line's parameters.
\vspace{3mm}

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(90,40)(-10,0)}
\AxoGrid(0,0)(10,10)(9,4){LightGray}{0.5}
\Gluon(10,20)(80,20){5}{7}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{gluon}
\verb:\Gluon(10,20)(80,20){5}{7}: \hfill \\
In this command we have coordinates for the start and end of the line,
the amplitude of the windings and the number of windings.  A negative
value for the amplitude reverses the orientation of the windings ---
see Sec.\ \ref{sec:gluon.remarks} for details.
\end{minipage}
\\[4mm]
Optional arguments can be used, e.g., \hfill \\[3mm]
\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(90,40)(-10,0)}
\AxoGrid(0,0)(10,10)(9,4){LightGray}{0.5}
\Gluon[color=Blue,dash,dashsize=1,double](10,20)(80,20){4}{7}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{gluon.opt}
\verb:\Gluon[color=Blue,dash,double](10,20)(80,20){4}{7}:
\end{minipage}


\vspace{4mm}

%--#] Gluon :
%--#[ DoubleGluon :
\noindent
Examples of the other commands for various types of gluon line are as
follows. They can all take optional arguments.
\\[3mm]
\begin{minipage}{3.83cm}
\begin{axopicture}{(90,40)(-10,0)}
\AxoGrid(0,0)(10,10)(9,4){LightGray}{0.5}
\DoubleGluon(10,20)(80,20){5}{7}{1.3}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{doublegluon}
\verb:\DoubleGluon(10,20)(80,20){5}{7}{1.3}:\hfill \\
The first 6 arguments are as in the \verb+\Gluon+ command. The
extra argument is the line separation.
\end{minipage}\vspace{4mm}

%--#] DoubleGluon :
%--#[ DashGluon :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(90,40)(-10,0)}
\AxoGrid(0,0)(10,10)(9,4){LightGray}{0.5}
\DashGluon(10,20)(80,20){5}{7}{1}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{dashgluon}
\verb:\DashGluon(10,20)(80,20){5}{7}{1}:\hfill \\
The first 6 arguments are as in the \verb+Gluon+ command. The 
extra argument is the size of the dashes.
\end{minipage}\vspace{4mm}

%--#] DashGluon :
%--#[ DashDoubleGluon :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(90,40)(-10,0)}
\AxoGrid(0,0)(10,10)(9,4){LightGray}{0.5}
\DashDoubleGluon(10,20)(80,20){5}{7}{1.3}{1}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{dashdoublegluon}
\verb:\DashDoubleGluon(10,20)(80,20){5}{7}{1.3}{1}:\hfill \\
The first 7 arguments are as in the \verb+DoubleGluon+
command.
The last two arguments are the line 
separation of the double line and the size of the dashes.
\end{minipage}
\vspace{8mm}

%--#] DashDoubleGluon :
%--#[ GluonArc :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(90,50)(-10,0)}
\AxoGrid(0,0)(10,10)(9,5){LightGray}{0.5}
\GluonArc(45,0)(40,20,160){5}{8}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{gluonarc}
\verb:\GluonArc(45,0)(40,20,160){5}{8}:\hfill \\
In this command we have one coordinate: the center of the circle. Then 
follow the radius of the circle, the start angle and the finishing angle. 
The arc will be drawn counterclockwise. The final two parameters are the 
amplitude of the windings and the number of windings.
Like the other commands in this section, this command can take
optional arguments, Sec.\ \ref{sec:options}.
\end{minipage}
\vspace{4mm}

%--#] GluonArc :
%--#[ DoubleGluonArc :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(90,50)(-10,0)}
\AxoGrid(0,0)(10,10)(9,5){LightGray}{0.5}
   \DoubleGluonArc[color=Red](45,0)(40,20,160)%
                             {5}{8}{1.3}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{doublegluonarc}
\begin{verbatim}
   \DoubleGluonArc[color=Red](45,0)(40,20,160)%
                             {5}{8}{1.3}
\end{verbatim}
The first 7 arguments are as in the \verb+GluonArc+ command. The extra
argument is the separation in the double line.
\end{minipage}\vspace{4mm}

%--#] DoubleGluonArc :
%--#[ DashGluonArc :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(90,50)(-10,0)}
\AxoGrid(0,0)(10,10)(9,5){LightGray}{0.5}
\DashGluonArc(45,0)(40,20,160){5}{8}{1.5}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{dashgluonarc}
\verb:\DashGluonArc(45,0)(40,20,160){5}{8}{1.5}:\hfill \\
The first 7 arguments are as in the \verb+GluonArc+ command. The extra
argument is the size of the dash segments.
\end{minipage}\vspace{4mm}

%--#] DashGluonArc :
%--#[ DashDoubleGluonArc :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(90,50)(-10,0)}
\AxoGrid(0,0)(10,10)(9,5){LightGray}{0.5}
\DashDoubleGluonArc(45,0)(40,20,160){5}{8}{1.3}{1.5}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{dashdoublegluonarc}
\verb:\DashDoubleGluonArc(45,0)(40,20,160){5}{8}{1.3}{1.5}:\hfill \\
The first 7 arguments are as in the \verb+GluonArc+ command. The extra
arguments are the separation of the lines and the size of the dash
segments.
\end{minipage}\vspace{10mm}

%--#] DashDoubleGluonArc :
%--#[ GluonCirc :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(80,80)(-15,0)}
\AxoGrid(0,0)(10,10)(8,8){LightGray}{0.5}
\GluonCirc(40,40)(30,0){5}{16}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{gluoncirc}
\verb:\GluonCirc(40,40)(30,0){5}{16}:\hfill \\
The arguments are: Coordinates for the center of the circle, the
radius and a phase, the 
amplitude of the gluon windings and the number of windings.
Like the other commands in this section, this command can take
optional arguments, Sec.\ \ref{sec:options}.  The phase argument
specifies a counterclockwise rotation of the line relative to a
default starting point.
\end{minipage}\vspace{4mm}

%--#] GluonCirc :
%--#[ DoubleGluonCirc :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(80,80)(-15,0)}
\AxoGrid(0,0)(10,10)(8,8){LightGray}{0.5}
\DoubleGluonCirc[color=Red](40,40)(30,0){5}{16}{1.3}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{doublegluoncirc}
\verb:\DoubleGluonCirc[color=Red](40,40)(30,0){5}{16}{1.3}:\hfill \\
The first 6 arguments are as for the \verb+GluonCirc+ command.  The
final argument is the line separation.
\end{minipage}\vspace{4mm}

%--#] DoubleGluonCirc :
%--#[ DashGluonCirc :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(80,80)(-15,0)}
\AxoGrid(0,0)(10,10)(8,8){LightGray}{0.5}
\DashGluonCirc(40,40)(30,0){5}{16}{1.5}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{dashgluoncirc}
\verb:\DashGluonCirc(40,40)(30,0){5}{16}{1.5}:\hfill \\
The first 6 arguments are as for the \verb+GluonCirc+ command.  
The final argument is the size of the dashes.
\end{minipage}\vspace{4mm}

%--#] DashGluonCirc :
%--#[ DashDoubleGluonCirc :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(80,80)(-15,0)}
\AxoGrid(0,0)(10,10)(8,8){LightGray}{0.5}
\DashDoubleGluonCirc(40,40)(30,0){5}{16}{1.3}{1.5}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{dashdoublegluoncirc}
\verb:\DashDoubleGluonCirc(40,40)(30,0){5}{16}{1.3}{1.5}:\hfill \\
The first 6 arguments are as for the \verb+GluonCirc+ command.  
The final 2 arguments are the line separation and the size of the
dashes.
\end{minipage}\vspace{4mm}

%--#] DashDoubleGluonCirc :
%--#[ Photon :

\subsubsection{Photon lines}
\label{sec:Photon}

The basic drawing commands for drawing photon lines are \verb+\Photon+
and \verb+\PhotonArc+.  There are also variants for dashed and double
photons. But arrows aren't possible.

All of the commands in this section can be given optional keyword
arguments, which are defined in Sec.\ \ref{sec:options}.  These can be
used to specify the type of line (dashed, double), and to specify some
of the line's parameters.\vspace{3mm}

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(90,40)(-10,0)}
\AxoGrid(0,0)(10,10)(9,4){LightGray}{0.5}
\Photon(10,20)(80,20){5}{7}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{photon}
\verb:\Photon(10,20)(80,20){5}{7}: \hfill \\
In this command we have two coordinates, the amplitude of the wiggles and 
the number of wiggles.
A negative value for the amplitude will reverse the orientation of the
wiggles.
The line will be drawn with the number of wiggles rounded to the
nearest half integer.
Like the other commands in this section, this command can take
optional arguments, Sec.\ \ref{sec:options}.
\end{minipage}\vspace{4mm}

%--#] Photon :
%--#[ DoublePhoton :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(90,40)(-10,0)}
\AxoGrid(0,0)(10,10)(9,4){LightGray}{0.5}
\DoublePhoton(10,20)(80,20){5}{7}{1.3}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{doublephoton}
\verb:\DoublePhoton(10,20)(80,20){5}{7}{1.3}:\hfill \\
The first 6 arguments are as in the \verb+Photon+ command. The 
extra argument is the line separation.
\end{minipage}\vspace{4mm}

%--#] DoublePhoton :
%--#[ DashPhoton :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(90,40)(-10,0)}
\AxoGrid(0,0)(10,10)(9,4){LightGray}{0.5}
\DashPhoton[color=Red](10,20)(80,20){5}{7}{1}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{dashphoton}
\verb:\DashPhoton[color=Red](10,20)(80,20){5}{7}{1}:\hfill \\
The first 6 arguments are as in the \verb+Photon+ command. The 
extra argument is the size of the dashes.
\end{minipage}\vspace{4mm}

%--#] DashPhoton :
%--#[ DashDoublePhoton :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(90,40)(-10,0)}
\AxoGrid(0,0)(10,10)(9,4){LightGray}{0.5}
\DashDoublePhoton(10,20)(80,20){5}{7}{1.3}{1}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{dashdoublephoton}
\verb:\DashDoublePhoton(10,20)(80,20){5}{7}{1.3}{1}:\hfill \\
The first 6 arguments are as in the \verb+Photon+ 
command. 
The final 2 arguments are the line separation and the size of the
dashes.
\end{minipage}\vspace{10mm}

%--#] DashDoublePhoton :
%--#[ PhotonArc :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(90,50)(-10,0)}
\AxoGrid(0,0)(10,10)(9,5){LightGray}{0.5}
\PhotonArc(45,0)(40,20,160){5}{8}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{photonarc}
\verb:\PhotonArc(45,0)(40,20,160){5}{8}:\hfill \\
In this command we have one coordinate: the center of the circle. Then 
follow the radius of the circle, the start angle and the finishing angle. 
The arc will be drawn counterclockwise. The final two parameters are the 
amplitude of the wiggles and the number of wiggles.
Like the other commands in this section, this command can take
optional arguments, Sec.\ \ref{sec:options}.
\end{minipage}\vspace{4mm}

%--#] PhotonArc :
%--#[ DoublePhotonArc :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(90,50)(-10,0)}
\AxoGrid(0,0)(10,10)(9,5){LightGray}{0.5}
\DoublePhotonArc[color=Red](45,0)(40,20,160)%
                           {5}{8}{1.3}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{doublephotonarc}
\begin{verbatim}
\DoublePhotonArc[color=Red](45,0)(40,20,160)%
                           {5}{8}{1.3}
\end{verbatim}
The first 7 arguments are as in the \verb+PhotonArc+ command. The extra
argument is the separation of the double line.
\end{minipage}\vspace{4mm}

%--#] DoublePhotonArc :
%--#[ DashPhotonArc :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(90,50)(-10,0)}
\AxoGrid(0,0)(10,10)(9,5){LightGray}{0.5}
\DashPhotonArc(45,0)(40,20,160){5}{8}{1.5}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{dashphotonarc}
\verb:\DashPhotonArc(45,0)(40,20,160){5}{8}{1.5}:\hfill \\
The first 7 arguments are as in the \verb+PhotonArc+ command. The
extra argument is the size of the dash segments.
\end{minipage}\vspace{4mm}

%--#] DashPhotonArc :
%--#[ DashDoublePhotonArc :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(90,50)(-10,0)}
\AxoGrid(0,0)(10,10)(9,5){LightGray}{0.5}
\DashDoublePhotonArc(45,0)(40,20,160){5}{8}{1.3}{1.5}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{dashdoublephotonarc}
\verb:\DashDoublePhotonArc(45,0)(40,20,160){5}{8}{1.3}{1.5}:\hfill \\
The first 7 arguments are as in the \verb+PhotonArc+ command. The
extra arguments are the separation of the lines and the size of the
dash segments.
\end{minipage}\vspace{4mm}

%--#] DashDoublePhotonArc :
%--#[ ZigZag :

\subsubsection{Zigzag lines}

The basic drawing commands for drawing zigzag lines are \verb+\Zigzag+
and \verb+\ZigzagArc+.  There are also variants for dashed and double
lines. But arrows aren't possible.

All of the commands in this section can be given optional keyword
arguments, which are defined in Sec.\ \ref{sec:options}.  These can be
used to specify the type of line (dashed, double), and to specify some
of the line's parameters.
\vspace{4mm}

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(90,40)(-10,0)}
\AxoGrid(0,0)(10,10)(9,4){LightGray}{0.5}
\ZigZag(10,20)(80,20){5}{7.5}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{zigzag}
\verb:\ZigZag(10,20)(80,20){5}{7.5}: \hfill \\
In this command we have two coordinates, the amplitude of the sawteeth and 
the number of sawteeth.
A negative value for the amplitude will reverse the orientation of the
sawteeth.
The line will be drawn with the number of sawteeth rounded to the
nearest half integer.
\end{minipage}
\\[3mm]
Like the other commands in this section, this command can take
optional arguments, Sec.\ \ref{sec:options}, e.g.,\\[3mm]
\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(90,40)(-10,0)}
\AxoGrid(0,0)(10,10)(9,4){LightGray}{0.5}
\ZigZag[color=Red,double,sep=1.5](10,20)(80,20){5}{7}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{zigzag.opt}
\verb:\ZigZag[color=Red,double,sep=1.5](10,20)(80,20){5}{7}:
\end{minipage}\vspace{6mm}

%--#] ZigZag :
%--#[ DoubleZigZag :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(90,40)(-10,0)}
\AxoGrid(0,0)(10,10)(9,4){LightGray}{0.5}
\DoubleZigZag(10,20)(80,20){5}{7}{1.3}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{doublezigzag}
\verb:\DoubleZigZag(10,20)(80,20){5}{7}{1.3}:\hfill \\
The first 6 arguments are as in the \verb+ZigZag+ command. The 
extra argument is the line separation.
\end{minipage}\vspace{4mm}

%--#] DoubleZigZag :
%--#[ DashZigZag :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(90,40)(-10,0)}
\AxoGrid(0,0)(10,10)(9,4){LightGray}{0.5}
\DashZigZag(10,20)(80,20){5}{7}{1}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{dashzigzag}
\verb:\DashZigZag(10,20)(80,20){5}{7}{1}:\hfill \\
The first 6 arguments are as in the \verb+ZigZag+ command. The 
extra argument is the size of the dashes.
\end{minipage}\vspace{4mm}

%--#] DashZigZag :
%--#[ DashDoubleZigZag :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(90,40)(-10,0)}
\AxoGrid(0,0)(10,10)(9,4){LightGray}{0.5}
\DashDoubleZigZag(10,20)(80,20){5}{7}{1.3}{1}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{dashdoublezigzag}
\verb:\DashDoubleZigZag(10,20)(80,20){5}{7}{1.3}{1}:\hfill \\
The first 6 arguments are as in the \verb+ZigZag+ command. 
The extra arguments are the separation of the lines and the size of
the dash segments.
\end{minipage}\vspace{6mm}

%--#] DashDoubleZigZag :
%--#[ ZigZagArc :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(90,50)(-10,0)}
\AxoGrid(0,0)(10,10)(9,5){LightGray}{0.5}
\ZigZagArc(45,0)(40,20,160){5}{8}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{zigzagarc}
\verb:\ZigZagArc(45,0)(40,20,160){5}{8}:\hfill \\
In this command we have one coordinate: the center of the circle. Then
follow the radius of the circle, the start angle and the finishing
angle.  The arc will be drawn counterclockwise. The final two
arguments are the amplitude of the sawteeth and the number of
sawteeth.  Like the other commands in this section, this command can
take optional arguments, Sec.\ \ref{sec:options}.
\end{minipage}\vspace{4mm}

%--#] ZigZagArc :
%--#[ DoubleZigZagArc :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(90,50)(-10,0)}
\AxoGrid(0,0)(10,10)(9,5){LightGray}{0.5}
\DoubleZigZagArc(45,0)(40,20,160){5}{8}{1.3}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{doublezigzagarc}
\verb:\DoubleZigZagArc(45,0)(40,20,160){5}{8}{1.3}:\hfill \\
The first 7 arguments are as for the \verb+ZigZagArc+ command. The
extra argument is the separation in the double line.
\end{minipage}\vspace{4mm}

%--#] DoubleZigZagArc :
%--#[ DashZigZagArc :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(90,50)(-10,0)}
\AxoGrid(0,0)(10,10)(9,5){LightGray}{0.5}
\DashZigZagArc(45,0)(40,20,160){5}{8}{1.5}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{dashzigzagarc}
\verb:\DashZigZagArc(45,0)(40,20,160){5}{8}{1.5}:\hfill \\
The first 7 arguments are as for the \verb+ZigZagArc+ command. The
extra argument is the size of the dash segments.
\end{minipage}\vspace{4mm}

%--#] DashZigZagArc :
%--#[ DashDoubleZigZagArc :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(90,50)(-10,0)}
\AxoGrid(0,0)(10,10)(9,5){LightGray}{0.5}
\DashDoubleZigZagArc(45,0)(40,20,160){5}{8}{1.3}{1.5}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{dashdoublezigzagarc}
\verb:\DashDoubleZigZagArc(45,0)(40,20,160){5}{8}{1.3}{1.5}:\hfill \\
The first 7 arguments are as for the \verb+ZigZagArc+ command. The
final 2 arguments are the separation of the lines and the size of the
dash segments.
\end{minipage}\vspace{4mm}

%--#] DashDoubleZigZagArc :
%--#[ Vertex :

\subsubsection{Vertices, circles, ovals; other graphics}
\label{sec:other.graphics}

The commands in this section are for graphical elements other
than those that we conceived of as lines in Feynman graphs.  Many of
these have standard uses as components of Feynman graphs\footnote{Of
  course, none of the commands is restricted to its originally
  envisaged use, or to being used to draw Feynman graphs.  But
  especially the line-drawing commands have been designed from the
  point-of-view of being suitable for the needs of drawing particular
  elements of Feynman graphs.}.  The commands here are mostly shown
in association with other objects, to indicate some of their
properties.
\vspace{4mm}

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(80,50)(-15,0)}
\AxoGrid(0,0)(10,10)(8,5){LightGray}{0.5}
\Line(10,10)(70,10)
\Photon(40,10)(40,40){4}{3}
\Vertex(40,10){1.5}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{vertex}
\verb:\Line(10,10)(70,10): \hfill \\
\verb:\Photon(40,10)(40,40){4}{3}: \hfill \\
\verb:\Vertex(40,10){1.5}: \hfill \\
\verb+\Vertex+ gives a vertex, as is often used for connecting lines
in Feynman graphs. It gives a fat dot. The arguments are coordinates
(between parentheses) for its center, and the radius of the dot.
\end{minipage}\vspace{4mm}

%--#] Vertex :
%--#[ ECirc :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(60,60)(-25,0)}
\AxoGrid(0,0)(10,10)(6,6){LightGray}{0.5}
\Red{\Line(0,0)(60,60)}
\ECirc(30,30){20}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{ecirc}
\verb:\Red{\Line(0,0)(60,60)}:\\
\verb:\ECirc(30,30){20}:\\
\verb+\ECirc+ draws a circle with its center at the specified
coordinate (first two arguments) and the specified radius (third
argument).  The interior is transparent, so that it does not erase
previously drawn material.
If you need a filled circle, use the \verb+\Vertex+ command (to which
we have defined a synonym \verb+\FCirc+ to match similar commands for
other shapes).
\end{minipage}\vspace{4mm}

%--#] ECirc :
%--#[ BCirc :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(60,60)(-25,0)}
\AxoGrid(0,0)(10,10)(6,6){LightGray}{0.5}
\Red{\Line(0,0)(60,60)}
\BCirc(30,30){20}
\Blue{\Line(60,0)(0,60)}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{bcirc}
\verb:\Red{\Line(0,0)(60,60)}:\\
\verb:\BCirc(30,30){20}:\\
\verb:\Blue{\Line(60,0)(0,60)}:\\
\verb+\BCirc+
draws a circle with the center at the specified coordinate (first two 
arguments) and the specified radius (third argument). The interior is
white and opaque, so that it erases previously written objects, but not
subsequently drawn objects.
\end{minipage}\vspace{4mm}

%--#] BCirc :
%--#[ GCirc :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(60,60)(-25,0)}
\AxoGrid(0,0)(10,10)(6,6){LightGray}{0.5}
\Red{\Line(0,0)(60,60)}
\GCirc(30,30){20}{0.82}
\Blue{\Line(60,0)(0,60)}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{gcirc}
\verb:\Red{\Line(0,0)(60,60)}:\\
\verb:\GCirc(30,30){20}{0.82}:\\
\verb:\Blue{\Line(60,0)(0,60)}:\\
\verb+\GCirc+ draws a circle with the center at the specified
coordinate (first two arguments) and the specified radius (third
argument).  Previously written contents are overwritten and made gray
according to the grayscale specified by the fourth argument (0=black,
1=white).
\end{minipage}\vspace{4mm}

%--#] GCirc :
%--#[ CCirc :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(60,60)(-25,0)}
\AxoGrid(0,0)(10,10)(6,6){LightGray}{0.5}
\Red{\Line(0,0)(60,60)}
\CCirc(30,30){20}{Red}{Yellow}
\Blue{\Line(60,0)(0,60)}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{ccirc}
\verb:\Red{\Line(0,0)(60,60)}:\\
\verb:\CCirc(30,30){20}{Red}{Yellow}:\\
\verb:\Blue{\Line(60,0)(0,60)}:\\
\verb+\CCirc+ draws a colored circle with the center at the specified
coordinate (first two arguments) and the specified radius (third
argument). The fourth argument is the name of the color for the circle
itself. Its interior is overwritten and colored with the color
specified by name in the fifth argument.
\end{minipage}\vspace{4mm}

%--#] CCirc :
%--#[ Oval :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(80,110)(-15,0)}
\AxoGrid(0,0)(10,10)(8,11){LightGray}{0.5}
\Oval(40,80)(20,30)(0)
\Oval(40,30)(20,30)(30)
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{oval}
\verb:\Oval(40,80)(20,30)(0):\\
\verb:\Oval(40,30)(20,30)(30):\\
\verb:\Oval: draws an oval.  The first pair of values is the center of
the oval. The next pair forms the half-height and the half-width. The
last argument is a (counterclockwise) rotation angle.  The interior is
transparent, so that it does not erase previously drawn material.
\end{minipage}\vspace{4mm}

%--#] Oval :
%--#[ FOval :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(80,60)(-15,0)}
\AxoGrid(0,0)(10,10)(8,6){LightGray}{0.5}
\SetColor{Yellow}
\FOval(40,30)(20,30)(30)
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{foval}
\verb:\SetColor{Yellow}:\\
\verb:\FOval(40,80)(20,30)(30):\\
\verb:\FOval: draws an oval filled with the current color overwriting
previously written material. Its arguments are the same as for the
\verb:\Oval: command. 
\end{minipage}\vspace{4mm}

%--#] FOval :
%--#[ GOval :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(80,60)(-15,0)}
\AxoGrid(0,0)(10,10)(8,6){LightGray}{0.5}
\Red{\Line(0,0)(80,60)}
\GOval(40,30)(20,30)(0){0.6}
\Blue{\Line(80,0)(0,60)}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{goval}
\verb:\Red{\Line(0,0)(80,60)}:\\
\verb:\GOval(40,30)(20,30)(0){0.6}: \\
\verb:\Blue{\Line(80,0)(0,60)}:\\
\verb:\GOval: draws an oval with a gray interior.  
The first 5 arguments are the same as for the \verb:\Oval: command. 
The last argument indicates the
grayscale with which the oval will be filled, overwriting previously
written contents (0=black, 1=white).
\end{minipage}\vspace{4mm}

%--#] GOval :
%--#[ COval :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(80,60)(-15,0)}
\AxoGrid(0,0)(10,10)(8,6){LightGray}{0.5}
\SetWidth{1}
\Green{\Line(0,0)(80,60)}
\COval(40,30)(20,30)(20){Orange}{Blue}
\Yellow{\Line(80,0)(0,60)}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{coval}
\verb:\Green{\Line(0,0)(80,60)}:\\
\verb:\COval(40,30)(20,30)(20){Orange}{Blue}:\\
\verb:\Yellow{\Line(80,0)(0,60)}:\\
\verb:\COval: draws a colored oval.  
The first 5 arguments are the same as for the \verb:\Oval: command. 
The last two arguments are the names of two colors. 
The first is the color of the line that forms the oval and the second is 
the color of the inside.
\end{minipage}\vspace{4mm}

%--#] COval :
%--#[ EBox :

Commands for drawing boxes are in two series.  For the first set, the
box's position is specified by the coordinates of its bottom left
corner and top right corner:\\[4mm]
\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(60,50)(-25,0)}
\AxoGrid(0,0)(10,10)(6,5){LightGray}{0.5}
\EBox(10,10)(50,40)
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{ebox}
\verb:\EBox(10,10)(50,40): \hfill \\
Draws a box. The points specified are the bottom left corner and the top 
right corner.
The interior is transparent, so that it does not erase previously
drawn material. 
\end{minipage}\vspace{4mm}

%--#] EBox :
%--#[ FBox :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(60,50)(-25,0)}
\AxoGrid(0,0)(10,10)(6,5){LightGray}{0.5}
\FBox(10,10)(50,40)
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{fbox}
\verb:\FBox(10,10)(50,40): \hfill \\
Draws a box filled with the current color overwriting
previously written material. Its arguments are the same as for the
\verb:\EBox: command. 
\end{minipage}\vspace{4mm}

%--#] FBox :
%--#[ BBox :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(60,50)(-25,0)}
\AxoGrid(0,0)(10,10)(6,5){LightGray}{0.5}
\BBox(10,10)(50,40)
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{bbox}
\verb:\BBox(10,10)(50,40): \hfill \\
Draws a blanked-out box. The points specified are the bottom left corner 
and the top right corner.
\end{minipage}\vspace{4mm}

%--#] BBox :
%--#[ GBox :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(60,50)(-25,0)}
\AxoGrid(0,0)(10,10)(6,5){LightGray}{0.5}
\GBox(10,10)(50,40){0.9}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{gbox}
\verb:\GBox(10,10)(50,40){0.9}: \hfill \\
Draws a box filled with a grayscale given by the fifth argument (black=0, 
white=1). The points specified are the bottom left corner and the top 
right corner.
\end{minipage}\vspace{4mm}

%--#] GBox :
%--#[ CBox :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(60,50)(-25,0)}
\AxoGrid(0,0)(10,10)(6,5){LightGray}{0.5}
\SetWidth{1.5}
\CBox(10,10)(50,40){Green}{LightRed}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{cbox}
\verb:\CBox(10,10)(50,40){Green}{LightRed}: \hfill \\
Draws a box in the color specified by name in the fifth argument. The
contents are filled with the color specified by name in the sixth
argument. The points specified are the bottom left corner and the top
right corner.
\end{minipage}\vspace{4mm}

%--#] CBox :
%--#[ EBoxc :

For the other series of box-drawing commands, the box's position is
specified by its center, and its width and height.  The command names
end with a ``\texttt{c}'', for ``center'':\\[3mm]
\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(60,50)(-25,0)}
\AxoGrid(0,0)(10,10)(6,5){LightGray}{0.5}
\EBoxc(30,25)(40,30)
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{eboxc}
\label{boxc}
\verb:\EBoxc(30,25)(40,30): \hfill \\
Draws a box. The first two numbers give the center of the box. The next two 
numbers are the width and the height of the box. Instead of \verb:\EBoxc: 
one may also use \verb:\Boxc:.

There is also the similar command \verb:\FBoxc: that draws a filled box.
\end{minipage}\vspace{4mm}

%--#] EBoxc :
%--#[ BBoxc :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(60,50)(-25,0)}
\AxoGrid(0,0)(10,10)(6,5){LightGray}{0.5}
\BBoxc(30,25)(40,30)
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{bboxc}
\verb:\BBoxc(30,25)(40,30): \hfill \\
Draws a box of which the contents are blanked out. The arguments are
the same as for the \verb+\EBoxc+ command.
\end{minipage}\vspace{4mm}

%--#] BBoxc :
%--#[ GBoxc :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(60,50)(-25,0)}
\AxoGrid(0,0)(10,10)(6,5){LightGray}{0.5}
\GBoxc(30,25)(40,30){0.9}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{gboxc}
\verb:\GBoxc(30,25)(40,30){0.9}: \hfill \\
Draws a box filled with a grayscale given by the fifth argument (black=0, 
white=1).
The first 4 arguments are the same as for the \verb+\EBoxc+ command.
\end{minipage}\vspace{4mm}

%--#] GBoxc :
%--#[ CBoxc :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(60,50)(-25,0)}
\AxoGrid(0,0)(10,10)(6,5){LightGray}{0.5}
\SetWidth{1.5}
\CBoxc(30,25)(40,30){Brown}{LightBlue}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{cboxc}
\verb:\CBoxc(30,25)(40,30){Brown}{LightBlue}: \hfill \\
Draws a box in the color specified by name in the fifth argument. The
contents are filled with the color specified by name in the sixth
argument.
The first 4 arguments are the same as for the \verb+\EBoxc+ command.
\end{minipage}\vspace{4mm}

%--#] BBoxc :
%--#] CBoxc :
%--#[ RotatedBox :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(60,50)(-25,0)}
\AxoGrid(0,0)(10,10)(6,5){LightGray}{0.5}
\RotatedBox(30,25)(40,30){30}{Red}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{rotatedbox}
\verb:\RotatedBox(30,25)(40,30){30}{Red}: \hfill \\
Draws a rotated box. The first two numbers give the center of the
box. The next two numbers are the width and the height of the box. The
fifth argument is the counterclockwise rotation angle and the sixth
argument is the color of the box.  The interior of the box is
transparent.
\end{minipage}\vspace{4mm}

%--#] RotatedBox :
%--#[ FilledRotatedBox :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(60,50)(-25,0)}
\AxoGrid(0,0)(10,10)(6,5){LightGray}{0.5}
\FilledRotatedBox(30,25)(40,30){30}{Blue}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{filledrotatedbox}
\verb:\FilledRotatedBox(30,25)(40,30){30}{Blue}: \hfill \\
Draws a rotated box.
The first 4 arguments are the same as for the \verb+\RotatedBox+ command.
The
fifth argument is the counterclockwise rotation angle and the sixth
argument is the color of the inside of the box. If a differently
colored outline is needed, it should be written with the
\verb+RotatedBox+ command.
\end{minipage}\vspace{4mm}

%--#] FilledRotatedBox :
%--#[ ETri :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(60,50)(-25,0)}
\AxoGrid(0,0)(10,10)(6,5){LightGray}{0.5}
\ETri(10,20)(50,10)(40,40)
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{etri}
\verb:\ETri(10,20)(50,10)(40,40): \hfill \\
Draws a triangle. The three points specified are the corners of the 
triangle.
The interior is transparent.

There is also the similar command \verb:\FTri: that draws a filled triangle.
\end{minipage}\vspace{4mm}

%--#] ETri :
%--#[ BTri :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(60,50)(-25,0)}
\AxoGrid(0,0)(10,10)(6,5){LightGray}{0.5}
\BTri(10,20)(50,10)(40,40)
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{btri}
\verb:\BTri(10,20)(50,10)(40,40): \hfill \\
Draws a blanked-out triangle. The three points specified are the corners of 
the triangle.
\end{minipage}\vspace{4mm}

%--#] BTri :
%--#[ GTri :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(60,50)(-25,0)}
\AxoGrid(0,0)(10,10)(6,5){LightGray}{0.5}
\GTri(10,20)(50,10)(40,40){0.9}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{gtri}
\verb:\GTri(10,20)(50,10)(40,40){0.9}: \hfill \\
Draws a triangle of which the content are filled with the grayscale 
specified by the seventh argument (black=0, white=1). The three points 
specified are the corners of the triangle.
\end{minipage}\vspace{4mm}

%--#] GTri :
%--#[ CTri :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(60,50)(-25,0)}
\AxoGrid(0,0)(10,10)(6,5){LightGray}{0.5}
\SetWidth{1}
\CTri(10,20)(50,10)(40,40){Red}{Yellow}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{ctri}
\verb:\CTri(10,20)(50,10)(40,40){Red}{Yellow}: \hfill \\
Draws a triangle in the color named in the seventh argument. The
contents are filled with the color named in the eightth argument. The
three points specified are the corners of the triangle.
\end{minipage}\vspace{4mm}

%--#] CTri :
%--#[ Polygon :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(60,50)(-25,0)}
\AxoGrid(0,0)(10,10)(6,5){LightGray}{0.5}
\Polygon{(10,20)(20,10)(40,20)(50,10)(45,40)(15,30)}{Red}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{polygon}
\verb:\Polygon{(10,20)(20,10)(40,20)(50,10): \hfill \\
  \verb:         (45,40)(15,30)}{Red}: \hfill \\
Draws a polygon. The first argument is a sequence of two dimensional
points which form the corners of the polygon. The second argument is
the name of the color of the polygon. The interior is transparent.
\end{minipage}\vspace{4mm}

%--#] Polygon :
%--#[ FilledPolygon :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(60,50)(-25,0)}
\AxoGrid(0,0)(10,10)(6,5){LightGray}{0.5}
\FilledPolygon{(10,20)(20,10)(40,20)(50,10)(45,40)(15,30)}{Apricot}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{filledpolygon}
\verb:\FilledPolygon{(10,20)(20,10)(40,20)(50,10): \hfill \\
  \verb:               (45,40)(15,30)}{Apricot}: \hfill \\
Draws a polygon. The first argument is a sequence of two dimensional
points which form the corners of the polygon. The second argument is
the name of the color of the interior.
\end{minipage}\vspace{4mm}

%--#] FilledPolygon :
%--#[ LinAxis :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(100,50)(-5,0)}
\AxoGrid(0,0)(10,10)(10,5){LightGray}{0.5}
\LinAxis(10,30)(90,30)(4,5,5,0,1)
\LinAxis(10,10)(90,10)(4,5,5,2,1)
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{linaxis}
\verb:\LinAxis(10,30)(90,30)(4,5,5,0,1):\\
\verb:\LinAxis(10,10)(100,10)(4,5,5,2,1): \\
\verb+\LinAxis+($x_1$,$y_1$)($x_2$,$y_2$)($N_D$,$d$,hashsize,offset,width) \hfill \\
    This draws a line to be used as an axis in a graph. Along the axis 
    are hash marks. Going from the first coordinate to the second, the 
    hash marks are on the left side if `hashsize', which is the size of the 
    hash marks, is positive and on the right side if it is negative. 
    $N_D$ is the number of `decades', indicated by fat hash marks, and 
    $d$ is the (integer) number of subdivisions inside each decade. The offset 
    parameter tells to which subdivision the first coordinate 
    corresponds. When it is zero, this coordinate corresponds to a fat 
    mark of a decade. Because axes have their own width, this is 
    indicated with the last parameter.

    When arguments are outside the natural range, which is a positive
    integer for the number of subdivisions $d$, and a real value
    between 0 and $N_D$ for the offset, corrected values are used as
    follows: For $d$, it is first rounded to the nearest integer, and
    if it is zero or less, $d$ is replaced by 1. The offset is used
    modulo the number of subdivisions. 

\end{minipage}\vspace{4mm}

%--#] LinAxis :
%--#[ LogAxis :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(100,40)(-5,0)}
\AxoGrid(0,0)(10,10)(10,4){LightGray}{0.5}
\LogAxis(0,30)(100,30)(4,3,0,1)
\LogAxis(0,10)(100,10)(4,3,3,1)
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{logaxis}
\verb:\LogAxis(0,30)(100,30)(4,3,0,1): \hfill \\
\verb:\LogAxis(0,10)(100,10)(4,3,3,1): \hfill \\
\verb+\LogAxis+($x_1$,$y_1$)($x_2$,$y_2$)($N_L$,hashsize,offset,width) \hfill \\
    This draws a line to be used as a logarithmic axis in a graph. Along 
    the axis are hash marks. Going from the first coordinate to the second, 
    the hash marks are on the left side if `hashsize', which is the size of 
    the hash marks, is positive and on the right side if it is negative. 
    $N_L$ is the number of orders of magnitude, indicated by fat hash 
    marks. The offset parameter tells to which subdivision the 
    first coordinate corresponds. When it is zero, this coordinate 
    corresponds to a fat mark, which is identical to when the value would 
    have been 1. Because axes have their own width, this is indicated with 
    the last parameter.

    When the offset is outside its natural range, which is a real
    value between 1 and 10, a corrected value is used as
    follows: If the offset is zero or less, it is replaced by 1.  Then
    it is multiplied by an integer power of 10 to bring it into the
    range 1 to 10 (or equivalently, the offset's logarithm to base 10
    is used modulo 1).

\end{minipage}\vspace{4mm}

%--#] LogAxis :
%>>#] The Commands :
%>>#[ Text :

\subsection{Text}
\label{sec:text}

%--#[ Implementation :

Axodraw2 provides several commands for inserting text into diagrams.
Some are for plain text, with a chosen placement and angle.  Some
allow placement of text inside boxes.  There are two sets of commands.
Some we call \TeX-text commands; these use the standard \LaTeX{} fonts
as used in the rest of the document.  The others we call
postscript-text commands; these use a user-specified standard
postscript font or, if the user wishes, the usual document font, at a
user-chosen size.

[\emph{Side issue:} In version 1 of axodraw, the difference between
the classes of text command was caused by a serious implementation
difficulty.  With the then-available \LaTeX{} technology, certain
graphic effects, could not be achieved within \LaTeX, at least not
easily.  So direct programming in postscript was resorted to, with the
result that normal \LaTeX{} commands, including mathematics, were not
available in the postscript-text commands.  With the greatly improved
methods now available, this has all changed, and the restrictions have
gone.  But since the commands and their basic behavior is already
defined, we have retained the distinction between \TeX{}-text commands
and postscript-text commands.]

In the original version of Axodraw the commands for two lines inside a
box were \verb:B2Text:, \verb:G2Text: and \verb:C2Text:. This causes
some problems explained in Sec.\ \ref{sec:changes.wrt.1}.  If you need to
retain compatibility with v.\ 1 on this issue, e.g., with old files or
old diagrams or for personal preference, you can use the
\texttt{v1compatible} option when loading axodraw2 --- see Sec.\
\ref{sec:invoke}.

\vspace{4mm}

%--#] Implementation :
%--#[ Text :

\subsubsection{\TeX-type text}

Illustrated by examples, the commands to insert text are as follows:

\medskip

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(90,90)(-10,0)}
\AxoGrid(0,0)(10,10)(9,9){LightGray}{0.5}
\Text(10,10)[l]{left}
\Text(45,45){centered}
\Text(80,80)[rt]{right-top}
\Text(20,60)(45){$e^{i\pi/4}$}
\SetColor{Red}
\Vertex(10,10){1.5}
\Vertex(45,45){1.5}
\Vertex(80,80){1.5}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{text}
\verb:\Text(10,10)[l]{left}: \hfill \\
\verb:\Text(45,45){centered}: \hfill \\
\verb:\Text(80,80)[rt]{right-top}: \hfill \\
\verb:\Text(20,60)(45){$e^{i\pi/4}$}: \hfill \\
\verb:\SetColor{Red}: \hfill \\
\verb:\Vertex(10,10){1.5}: \hfill \\
\verb:\Vertex(45,45){1.5}: \hfill \\
\verb:\Vertex(80,80){1.5}: \hfill \\
\verb+\Text+ writes text in the current \LaTeX{} font.  The most
general form is \verb+\Text(x,y)(theta)[pos]{text}+; but either or
both of the theta and pos arguments (and their delimiters) can be omitted.
It puts the text
at focal point $(x,y)$, with a rotation by anticlockwise angle theta.
The default angle is zero, and the default position is to 
center the text horizontally and vertically at the focal point.  The
position letters are any relevant combination of `l', `r', `t', and
`b', as in the various 
\TeX/\LaTeX{} box commands to indicate left, right, top or bottom 
adjustment with respect to the focal point. No indication means
centered.
\end{minipage}\vspace{4mm}

%--#] Text :
%--#[ rText :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(90,90)(-10,0)}
\AxoGrid(0,0)(10,10)(9,9){LightGray}{0.5}
\rText(10,10)[l][l]{left-left}
\rText(45,45)[][u]{upside}
\rText(80,10)[r][r]{right-right}
\rText(20,60)[][r]{$e^{i\pi}$}
\SetColor{Red}
\Vertex(10,10){1.5}
\Vertex(45,45){1.5}
\Vertex(80,10){1.5}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{rtext}
\verb:\rText(10,10)[l][l]{left-left}: \hfill \\
\verb:\rText(45,45)[][u]{upside}: \hfill \\
\verb:\rText(80,10)[r][r]{right-right}: \hfill \\
\verb:\rText(20,60)[][r]{$e^{i\pi}$}: \hfill \\
\verb:\SetColor{Red}: \hfill \\
\verb:\Vertex(10,10){1.5}: \hfill \\
\verb:\Vertex(45,45){1.5}: \hfill \\
\verb:\Vertex(80,10){1.5}: \hfill \\
The \verb:\rText: command gives a subset of the functionality of the
\verb+\Text+ command.  It is used for backward compatibility with
Axodraw v.\ 1. The general form of the command is
\verb:\rText(x,y)[mode][rotation]{text}:. 
Unlike the case with the \verb:\Text: command and typical standard
\LaTeX{} commands, if the option letters are omitted, the square
brackets must be retained.  
The coordinates $(x,y)$ are
the focal point of the text.  The third argument is \verb+l+,
\verb+r+, or empty to indicate the justification of the text.  The
fourth argument is \verb+l+, \verb+r+, \verb+u+, or empty to indicate
respectively whether the text is rotated left (anticlockwise) by 90
degrees, is rotated right (clockwise) by 90 degrees, is upside-down,
or is not rotated.  The fifth argument is the text.  
This command is retained only for backward compatibility;
for new diagrams it is probably better to use the the \verb:\Text:.
\end{minipage}\vspace{4mm}

%--#] rText :
%--#[ SetPFont :

\subsubsection{Postscript-type text}
\label{sec:PSText}

The remaining text-drawing commands can use postscript fonts with an
adjustable size.

To set the font for later text-drawing commands in this class, the
\verb:\SetPFont: command sets the `Postscript'
font, e.g.,
\begin{verbatim}
   \SetPFont{Helvetica}{20}
\end{verbatim}
(This font is initialized by axodraw2 to Times-Roman at 10pt.)
The font set in this way is used in the \verb:PText:, \verb:BText:,
\verb:GText:, \verb:CText:, \verb:BTwoText:, \verb:GTwoText: and
\verb:CTwoText: commands. The fonts that can be used are the 35 fonts
that are made available by Adobe and that are normally available in
all postscript interpreters, including printers.  The fonts, together
with the names used to specify them in the normal font-setting
commands of \TeX{} and \LaTeX{}, are shown in Table \ref{tab:Pfont}.

\begin{table}
\begin{tabular}{|l|l|l|l|}
\hline
Font name                   & \LaTeX{} & Font name                & \LaTeX{} \\
\hline
AvantGarde-Book             & pagk  & Helvetica-Narrow            & phvrrn\\
AvantGarde-BookOblique      & pagko & Helvetica-NarrowOblique     & phvron\\
AvantGarde-Demi             & pagd  & NewCenturySchlbk-Bold       & pncb  \\
AvantGarde-DemiOblique      & pagdo & NewCenturySchlbk-BoldItalic & pncbi \\
Bookman-Demi                & pbkd  & NewCenturySchlbk-Italic     & pncri \\
Bookman-DemiItalic          & pbkdi & NewCenturySchlbk-Roman      & pncr  \\
Bookman-Light               & pbkl  & Palatino-Bold               & pplb  \\
Bookman-LightItalic         & pbkli & Palatino-BoldItalic         & pplbi \\
Courier-Bold                & pcrb  & Palatino-Italic             & pplri \\
Courier-BoldOblique         & pcrbo & Palatino-Roman              & pplr  \\
Courier                     & pcrr  & Symbol                      & psyr  \\
Courier-Oblique             & pcrro & Times-Bold                  & ptmb  \\
Helvetica-Bold              & phvb  & Times-BoldItalic            & ptmbi \\
Helvetica-BoldOblique       & phvbo & Times-Italic                & ptmri \\
Helvetica-NarrowBold        & phvbrn& Times-Roman                 & ptmr  \\
Helvetica-NarrowBoldOblique & phvbon& ZapfChancery-MediumItalic   & pzcmi \\
Helvetica                   & phvr  & ZapfDingbats                & pzdr  \\
Helvetica-Oblique           & phvro &                             &       \\
\hline
\end{tabular}
\caption{Available postscript fonts and their corresponding names in
  \LaTeX.}
\label{tab:Pfont}
\end{table}
If you prefer to use the normal document font (which would normally be
Computer Modern in the common document classes), you simply leave the
fontname empty, e.g,.
\begin{verbatim}
   \SetPFont{}{20}
\end{verbatim}
As for the second, fontsize argument, leaving it empty uses the size
that \LaTeX{} is using at the moment the text-drawing command starts,
e.g.,
\begin{verbatim}
   \SetPFont{Helvetica-Bold}{}
\end{verbatim}
\vspace{3mm}

%--#] SetPFont :
%--#[ PText :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(90,90)(-10,0)}
\AxoGrid(0,0)(10,10)(9,9){LightGray}{0.5}
\SetPFont{Helvetica}{13}
\PText(10,10)(0)[l]{left}
\PText(45,45)(30)[]{centered}
\PText(80,80)(20)[rt]{right-top}
%\PText(20,60)(140)[]{$e^{i\pi}$}
\SetColor{Red}
\Vertex(10,10){1.5}
\Vertex(45,45){1.5}
\Vertex(80,80){1.5}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{ptext}
\verb:\SetPFont{Helvetica}{13}: \hfill \\
\verb:\PText(10,10)(0)[l]{left}: \hfill \\
\verb:\PText(45,45)(30)[]{centered}: \hfill \\
\verb:\PText(80,80)(20)[rt]{right-top}: \hfill \\
%\verb:\PText(20,60)(90)[]{$e^{i\pi}$}: \hfill \\
\verb:\SetColor{Red}: \hfill \\
\verb:\Vertex(10,10){1.5}: \hfill \\
\verb:\Vertex(45,45){1.5}: \hfill \\
\verb:\Vertex(80,80){1.5}: \hfill \\
The \verb:\PText: command writes %text 
in Axodraw's current Postscript font. 
The first two arguments give the focal point, the third argument is a 
rotation angle and the fourth argument is as in the various \TeX/\LaTeX{} 
box commands to indicate left, right, top or bottom adjustment with respect 
to the focal point. No indication means centered.

Note that use of normal \LaTeX{} font setting commands or of math-mode
will not normally have the desired effect.
\end{minipage}\vspace{4mm}

%--#] PText :
%--#[ BText :

\noindent
\begin{minipage}{4.53cm}
\begin{axopicture}{(110,110)(-10,0)}
\AxoGrid(0,0)(10,10)(10,9){LightGray}{0.5}
\ArrowLine(30,65)(60,25)
\SetPFont{Bookman-Demi}{14}
\BText(30,65){Who?}
\SetPFont{AvantGarde-Book}{16}
\BText(60,25){Me?}
\end{axopicture}
\end{minipage}
\begin{minipage}{10.8cm}
\label{btext}
\verb:\ArrowLine(30,65)(60,25): \hfill \\
\verb:\SetPFont{Bookman-Demi}{14}: \hfill \\
\verb:\BText(30,65){Who?}: \hfill \\
\verb:\SetPFont{AvantGarde-Book}{16}: \hfill \\
\verb:\BText(60,25){Me?}: \hfill \\
The \verb:\BText: command writes a centered box with text in it. It uses 
Axodraw's current Postscript font.
\end{minipage}\vspace{4mm}

%--#] BText :
%--#[ GText :

\noindent
\begin{minipage}{4.53cm}
\begin{axopicture}{(110,110)(-10,0)}
\AxoGrid(0,0)(10,10)(10,9){LightGray}{0.5}
\ArrowLine(30,65)(60,25)
\SetPFont{Bookman-Demi}{12}
\GText(30,65){0.9}{Why?}
\SetPFont{Courier-Bold}{5}
\GText(60,25){0.75}{We wanted it that way!}
\end{axopicture}
\end{minipage}
\begin{minipage}{10.8cm}
\label{gtext}
\verb:\ArrowLine(30,65)(60,25): \hfill \\
\verb:\SetPFont{Bookman-Demi}{12}: \hfill \\
\verb:\GText(30,65){0.9}{Why?}: \hfill \\
\verb:\SetPFont{Courier-Bold}{5}: \hfill \\
\verb:\GText(60,25){0.75}{We wanted it that way!}: \hfill \\
The \verb:\GText: command writes a centered box with text in it. It uses 
Axodraw's current Postscript font. The third argument is the grayscale
with which
the box will be filled. 0 is black and 1 is white.
\end{minipage}\vspace{4mm}

%--#] GText :
%--#[ CText :
 
\noindent
\begin{minipage}{4.53cm}
\begin{axopicture}{(110,110)(-10,0)}
\AxoGrid(0,0)(10,10)(9,9){LightGray}{0.5}
\ArrowLine(30,65)(60,25)
\SetPFont{Times-Bold}{15}
\CText(30,65){LightYellow}{LightBlue}{Who?}
\SetPFont{Courier-Bold}{14}
\CText(60,25){Red}{Yellow}{You!}
\end{axopicture}
\end{minipage}
\begin{minipage}{10.8cm}
\label{ctext}
\verb:\ArrowLine(30,65)(60,25): \hfill \\
\verb:\SetPFont{Times-Bold}{15}: \hfill \\
\verb:\CText(30,65){LightYellow}{LightBlue}{Who?}: \hfill \\
\verb:\SetPFont{Courier-Bold}{14}: \hfill \\
\verb:\CText(60,25){Red}{Yellow}{You!}: \hfill \\
The \verb:\CText: command writes a centered box with text in it. It uses 
Axodraw's current Postscript font. The third argument is the color of
the box and
the text. The fourth argument is the color with which the box will be 
filled.
\end{minipage}\vspace{4mm}

%--#] CText :
%--#[ BTwoText :
\noindent
\begin{minipage}{4.53cm}
\begin{axopicture}{(110,110)(-10,0)}
\AxoGrid(0,0)(10,10)(9,9){LightGray}{0.5}
\ArrowLine(30,65)(60,25)
\SetPFont{Bookman-Demi}{14}
\BTwoText(30,65){Why}{Me?}
\SetPFont{AvantGarde-Book}{16}
\BTwoText(60,25){You}{did it}
\end{axopicture}
\end{minipage}
\begin{minipage}{10.8cm}
\label{btwotext}
\verb:\ArrowLine(30,65)(60,25): \hfill \\
\verb:\SetPFont{Bookman-Demi}{14}: \hfill \\
\verb:\BTwoText(30,65){Why}{Me?}: \hfill \\
\verb:\SetPFont{AvantGarde-Book}{16}: \hfill \\
\verb:\BTwoText(60,25){You}{did it}: \hfill \\
The \verb:\BTwoText: command writes a centered box with two lines of text in 
it. It uses Axodraw's current Postscript font.
\end{minipage}\vspace{4mm}

%--#] BTwoText :
%--#[ GTwoText :

\noindent
\begin{minipage}{4.53cm}
\begin{axopicture}{(110,110)(-10,0)}
\AxoGrid(0,0)(10,10)(10,9){LightGray}{0.5}
\ArrowLine(30,65)(60,25)
\SetPFont{Bookman-Demi}{12}
\GTwoText(30,65){0.9}{Prove}{it!}
\SetPFont{Courier-Bold}{11}
\GTwoText(60,25){0.75}{Sherlock}{says so}
\end{axopicture}
\end{minipage}
\begin{minipage}{10.8cm}
\label{gtwotext}
\verb:\ArrowLine(30,65)(60,25): \hfill \\
\verb:\SetPFont{Bookman-Demi}{12}: \hfill \\
\verb:\GTwoText(30,65){0.9}{Prove}{it!}: \hfill \\
\verb:\SetPFont{Courier-Bold}{11}: \hfill \\
\verb:\GTwoText(60,25){0.75}{Sherlock}{says so}: \hfill \\
The \verb:\GTwoText: command writes a centered box with two lines of text in 
it. It uses Axodraw's current Postscript font. The third argument is the 
grayscale with which the box will be filled. 0 is black and 1 is white.
\end{minipage}\vspace{4mm}

%--#] GTwoText :
%--#[ CTwoText :
 
\noindent
\begin{minipage}{4.53cm}
\begin{axopicture}{(110,110)(-10,0)}
\AxoGrid(0,0)(10,10)(9,9){LightGray}{0.5}
\ArrowLine(30,65)(60,25)
\SetPFont{Times-Bold}{10}
\CTwoText(30,65){LightYellow}{Blue}{That is}{no proof!}
\SetPFont{Courier-Bold}{14}
\CTwoText(60,25){Red}{Yellow}{Yes}{it is}
\end{axopicture}
\end{minipage}
\begin{minipage}{10.8cm}
\label{ctwotext}
\verb:\ArrowLine(30,65)(60,25): \hfill \\
\verb:\SetPFont{Times-Bold}{10}: \hfill \\
\verb:\CTwoText(30,65){LightYellow}{Blue}: \\
    \verb:{That is}{no proof!}: \hfill \\
\verb:\SetPFont{Courier-Bold}{14}: \hfill \\
\verb:\CTwoText(60,25){Red}{Yellow}{Yes}{it is}: \hfill \\
The \verb:\CTwoText: command writes a centered box with two lines of text in 
it. It uses Axodraw's current Postscript font. The third argument is
the color of both
the box and the text. The fourth argument is the color with which the box 
will be filled.
\end{minipage}\vspace{4mm}
 
%--#] CTwoText :
%--#[ Features :

Note that because you can now use \LaTeX{} commands for the text
arguments of the commands described in this section, the effects of
the \verb+\BTwoText+, \verb+\GTwoText+, and \verb+\CTwoText+ can be
achieved also by the use of regular \verb:\BText: etc commands.
Mathematics can also be used.  (None of these was possible in v.\ 1 of
axodraw.)  Here are some examples: \vspace{4mm}

\noindent
\begin{minipage}{5.5cm}
\begin{axopicture}{(150,90)(-10,0)}
\AxoGrid(0,0)(10,10)(12,9){LightGray}{0.5}
\SetPFont{Helvetica}{15}
\BText(60,45){%
    \begin{minipage}{4.5cm}
      Here is boxed text in a larger size, including
      mathematics: $\alpha^2$.
    \end{minipage}%
}
\end{axopicture}
\end{minipage}
\begin{minipage}{8.5cm}
\label{btext2}
\begin{verbatim}
\SetPFont{Helvetica}{15}
\BText(70,45){%
    \begin{minipage}{4.5cm}
      Here is boxed text in a
      larger size, including
      mathematics: $\alpha^2$.
    \end{minipage}%
}
\end{verbatim}
This example shows that the \verb:\BText: command can also be used
with minipages and other \LaTeX{} methods to make more complicated
boxed texts.
\end{minipage}
\vspace{4mm}

\noindent
\begin{minipage}{5.5cm}
\begin{axopicture}{(150,90)(-10,0)}
\AxoGrid(0,0)(10,10)(13,9){LightGray}{0.5}
\SetPFont{}{15}
\BText(65,45){%
    \begin{minipage}{4cm}
      \sffamily Here is boxed text in a
      large size, including
      mathematics: $\alpha^2$.
    \end{minipage}%
}
\end{axopicture}
\end{minipage}
\begin{minipage}{8.5cm}
\label{btext2.mod}
\begin{verbatim}
\SetPFont{}{15}
\BText(65,45){%
    \begin{minipage}{4cm}
      \sffamily Here is boxed text in a 
      large size, including
      mathematics: $\alpha^2$.
    \end{minipage}%
}
\end{verbatim}
But if you use mathematics, the text may be more elegant if you use
the document font, which has matching fonts for text and mathematics.
Use of a sans-serif font (by \verb:\sffamily:) may be better in a diagram.
\end{minipage}
\vspace{4mm}

%--#] Features :
%>>#] Text :
%>>#[ Options :

\subsection{Options}
\label{sec:options}

Almost all of axodraw2's line-drawing commands take optional
arguments.  The form here is familiar from many standard \LaTeX{}
commands.  The optional arguments are placed in square brackets after
the command name, and are made of a comma-separated list of items of
the form: \texttt{keyword} or \texttt{keyword=value}.  The required
arguments are placed afterwards.

Optional arguments can be used to set particular characteristics of a
line, e.g., whether it is dashed or has an arrow.  They can also be
used to set some of the line's parameters, to be used instead of
default values.  (The default values can be adjusted by commands
listed in Sec.\ \ref{sec:settings}.  Those commands are useful for
adjusting parameters that apply to multiple lines, while the optional
arguments are useful for setting parameters for individual lines.)

The original axodraw only had different command names to determine
whether lines were dashed, or had arrows, etc.  The new version
retains these commands,
but now the basic commands
(\verb:\Line:, \verb:\Arc:, \verb:\Gluon:, etc) can also be treated as
generic commands, with the different varieties (dashed, double, and/or
with an arrow) being set by options.  

The same set of options are available for all types of line.  However,
not all apply or are implemented for particular types of line.  Thus,
\texttt{clockwise} is irrelevant for a straight line, while
\texttt{arrow} is not implemented for gluons, photons and zigzag
lines.  Warnings are given for unimplemented features, while
inapplicable arguments are ignored.

The full set of options.
\begin{center}
\begin{tabular}{ll}
 color=\colorname    & Set the line in this color. \\
 colour=\colorname   & Same as color=\colorname. \\
 dash                & Use a dashed line. \\
 dsize=\num          & Set the dash size (when a line is dashed). \\
 dashsize=\num       & Same as dsize=\num. \\
 double              & Use a double line. \\
 sep=\num            & Sets the separation for a double line. \\
 linesep=\num        & Same as sep=\num. \\
 width=\num          & Sets line width for this line only.\\[2mm]
 clock               & For arcs, makes the arc run clockwise. \\
 clockwise           & For arcs, makes the arc run clockwise. \\[2mm]
 arrow               & Use an arrow.\\
 flip                & If there is an arrow, its direction is flipped. \\

 arrowpos=\num     & The number should be between zero and one and\\
                   & indicates where along the line the arrow should be. \\
                   & 1 is at the end. 0.5 is halfway (the initial default).\\ 
 arrowaspect=\num  & See Sec.\ \ref{sec:arrows}. \\
 arrowlength=\num  & See Sec.\ \ref{sec:arrows}. \\
 arrowheight=\num  & See Sec.\ \ref{sec:arrows}. \\
 arrowinset=\num   & See Sec.\ \ref{sec:arrows}. \\
 arrowscale=\num   & See Sec.\ \ref{sec:arrows}. \\
 arrowstroke=\num  & See Sec.\ \ref{sec:arrows}. \\
 arrowwidth=\num   & See Sec.\ \ref{sec:arrows}. \\
 inset=\num        & Same as arrowinset.\\
\end{tabular}
\end{center}
The options without an extra argument, e.g., \texttt{arrow}, are
actually of a boolean type.  That is, they can also be used with a
suffix ``\texttt{=true}'' or ``\texttt{=false}'', e.g.,
\texttt{arrow=true} or \texttt{arrow=false}.

If an option is not provided, its default value is used. Defaults are
no dashes, no double lines, anticlockwise arcs, no arrow and if an
arrow is asked for, its position is halfway along the line. Other
arrow settings are explained in Sec.\ \ref{sec:arrows}.  There are
also default values for dash size (3) and the separation of double
lines (2).

The full set of the generic line commands with their syntax is
\begin{center}
  \begin{tabular}{l}
     \verb+\Line[options](x1,y1)(x2,y2)+  \\
     \verb+\Arc[options](x,y)(r,theta1,theta2)+  \\
     \verb+\Bezier[options](x1,y1)(x2,y2)(x3,y3)(x4,y4)+  \\
     \verb+\Gluon[options](x1,y1)(x2,y2){amplitude}{windings}+  \\
     \verb+\GluonArc[options](x,y)(r,theta1,theta2){amplitude}{windings}+  \\
     \verb+\GluonCirc[options](x,y)(r,phase){amplitude}{windings}+   \\
     \verb+\Photon[options](x1,y1)(x2,y2){amplitude}{windings}+  \\
     \verb+\PhotonArc[options](x,y)(r,theta1,theta2){amplitude}{windings}+  \\
     \verb+\ZigZag[options](x1,y1)(x2,y2){amplitude}{windings}+  \\
     \verb+\ZigZagArc[options](x,y)(r,theta1,theta2){amplitude}{windings}+  \\
  \end{tabular}
\end{center}
The applicability of the options is as follows
\begin{center}
  \begin{tabular}{lcc}
                        & Arrow, etc & Clockwise \\
     \verb+\Line+       &    Y       &     N     \\
     \verb+\Arc+        &    Y       &     Y     \\
     \verb+\Bezier+     &    Y       &     N     \\
     \verb+\Gluon+      &    N       &     N     \\
     \verb+\GluonArc+   &    N       &     Y     \\
     \verb+\GluonCirc+  &    N       &     N     \\
     \verb+\Photon+     &    N       &     N     \\
     \verb+\PhotonArc+  &    N       &     Y     \\
     \verb+\ZigZag+     &    N       &     N     \\
     \verb+\ZigZagArc+  &    N       &     Y     \\
  \end{tabular}
\end{center}
The arrow options include those for setting the arrow dimensions.
Options not indicated in the last table apply to all cases.

%{\sc The next options still have to be implemented, but it seems the most 
%sensible thing to do.}\vspace{3mm}
%
%The third family is the one of the shapes:
%
%\begin{center}
%\begin{minipage}{14cm}
%\begin{verbatim}
%\Box[options](x1,y1)(x2,y2)
%\Tri[options](x1,y1)(x2,y2)(x3,y3)
%\Polygon[options]{(x1,y1)(x2,y2)...(xn,yn)}
%\Circ[options](x1,y1){radius}
%\Oval[options](x1,y1)(height,width)(rotation)
%\end{verbatim}
%\end{minipage}
%\end{center}
%
%\noindent The options here are:
%\begin{center}
%\begin{tabular}{ll}
% centered            & For boxes: x1,y1 is the center. x2,y2 is width,
%                       height \\
% blanked             & Inside is blanked out. \\
% inside              & (Over)write only the inside. \\
% color,line=$<$color$>$  & Main color. \\
% filled,fill=$<$color$>$ & When both the outline and the inside are written. \\
% gray,grayscale=\num & Inside is in gray. Filled overwrites this. \\
% rotation=\num       & Only for centered boxes: rotation angle.
%\end{tabular}
%\end{center}
%The options gray and filled imply blanked. Hence it is not needed to use 
%blanked when either of those options is used. The default values are that 
%none of these options are used.

Some examples are:
\begin{verbatim}
   \Line[double,sep=1.5,dash,dsize=4](10,10)(70,30)
   \Line[double,sep=1.5,arrow,arrowpos=0.6](10,10)(70,30)
\end{verbatim}
 
The options can also be used on the more explicit commands as extra 
options. Hence it is possible to use
\begin{verbatim}
   \DoubleLine[dash,dsize=4](10,10)(70,30){1.5}
\end{verbatim}
instead of the first line in the previous example.

One may notice that some of the options are not accessible with the more 
explicit commands. For example, it is possible to put arrows on B\'ezier 
curves only by using the option `arrow' for the B\'ezier command.

%>>#] Options :
%>>#[ Remarks about Gluons :
%
\subsection{Remarks about Gluons}
\label{sec:gluon.remarks}

There are 12 commands that concern gluons. This allows much freedom in 
developing one's own style. Gluons can be drawn as single solid lines, as 
double lines, as dashed lines and as dashed double lines.

Gluons have an amplitude and a number of windings. By varying these 
quantities one may obtain completely different gluons as in:

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(90,90)(-10,0)}
\AxoGrid(0,0)(10,10)(9,8){LightGray}{0.5}
\Gluon(10,70)(80,70){3}{5}
\Gluon(10,50)(80,50){3}{9}
\Gluon(10,30)(80,30){5}{7}
\Gluon(10,10)(80,10){8}{9}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{gluons}
\verb:\Gluon(10,70)(80,70){3}{5}: \hfill \\
\verb:\Gluon(10,50)(80,50){3}{9}: \hfill \\
\verb:\Gluon(10,30)(80,30){5}{7}: \hfill \\
\verb:\Gluon(10,10)(80,10){8}{9}:
\end{minipage}\vspace{4mm}

One may change the orientation of the windings by reversing the
direction in which the gluon is drawn and/or changing the sign of the
amplitude:

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(90,90)(-10,0)}
\AxoGrid(0,0)(10,10)(9,8){LightGray}{0.5}
\DoubleGluon(10,70)(80,70){5}{7}{1.2}
\DoubleGluon(80,50)(10,50){5}{7}{1.2}
\DoubleGluon(10,30)(80,30){-5}{7}{1.2}
\DoubleGluon(80,10)(10,10){-5}{7}{1.2}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{gluonss}
\verb:\DoubleGluon(10,70)(80,70){5}{7}{1.2}: \hfill \\
\verb:\DoubleGluon(80,50)(10,50){5}{7}{1.2}: \hfill \\
\verb:\DoubleGluon(10,30)(80,30){-5}{7}{1.2}: \hfill \\
\verb:\DoubleGluon(80,10)(10,10){-5}{7}{1.2}:
\end{minipage}\vspace{4mm}

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(90,70)(-10,0)}
\AxoGrid(0,0)(10,10)(9,7){LightGray}{0.5}
\GluonArc(45,20)(40,20,160){5}{8}
\GluonArc(45,0)(40,20,160){-5}{8}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{gluonarcA}
\verb:\GluonArc(45,20)(40,20,160){5}{8}:\hfill \\
\verb:\GluonArc(45,0)(40,20,160){-5}{8}:\hfill \\
Here one can see that the sign of the amplitude gives a completely 
different aspect to a gluon on an arc segment.
\end{minipage}\vspace{4mm}

There are two ways of drawing a gluon circle. One is with the command 
GluonCirc and the other is an arc of 360 degrees with the GluonArc command. 
The second way has a natural attachment point, because the GluonArc 
command makes gluons with a begin- and endpoint. \vspace{4mm}

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(80,80)(-15,0)}
\AxoGrid(0,0)(10,10)(8,8){LightGray}{0.5}
\GluonCirc(40,40)(30,0){5}{16}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
%\label{gluoncirc}
\verb:\GluonCirc(40,40)(30,0){5}{16}:\hfill \\
This is the `complete circle'. If one likes to attach one or more lines to 
it one should take into account that the best places for this are at a 
distance radius+amplitude from the center of the circle. One can rotate the 
circle by using the phase argument.
\end{minipage}\vspace{4mm}

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(80,80)(-15,0)}
\AxoGrid(0,0)(10,10)(8,8){LightGray}{0.5}
\GluonArc(40,40)(30,0,360){5}{16}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{gluonarc360}
\verb:\GluonArc(40,40)(30,0,360){5}{16}:\hfill \\
In the 360 degree arc there is a natural point of attachment. Of course 
there is only one such point. If one needs more than one such point one 
should use more than one arc segment.
\end{minipage}\vspace{4mm}

Some examples are:

\begin{center} \begin{axopicture}{(460,60)(0,0)}
\Gluon(7,30)(27,30){3}{3}
\GluonCirc(50,30)(20,0){3}{16}
\Gluon(73,30)(93,30){3}{3}
\Vertex(27,30){1.5}
\Vertex(73,30){1.5}
%
\Gluon(110,30)(130,30){3}{3}
\GluonArc(150,30)(20,0,180){3}{8}
\GluonArc(150,30)(20,180,360){3}{8}
\Gluon(170,30)(190,30){3}{3}
\Vertex(130,30){1.5}
\Vertex(170,30){1.5}
%
\Gluon(210,30)(230,30){3}{3}
\GluonArc(250,30)(20,0,180){-3}{8}
\GluonArc(250,30)(20,180,360){-3}{8}
\Gluon(270,30)(290,30){3}{3}
\Vertex(230,30){1.5}
\Vertex(270,30){1.5}
%
\DashLine(310,30)(330,30){3}
\GluonArc(350,30)(20,-180,180){3}{16}
\Vertex(330,30){1.5}
%
\DashLine(387,30)(407,30){3}
\GluonCirc(430,30)(20,0){3}{16}
\Vertex(407,30){1.5}
%
\end{axopicture} \end{center}
This picture was generated with the code:
\begin{verbatim}
\begin{center} \begin{axopicture}{(460,60)(0,0)}
   \Gluon(7,30)(27,30){3}{3}
   \GluonCirc(50,30)(20,0){3}{16}
   \Gluon(73,30)(93,30){3}{3}
   \Vertex(27,30){1.5}
   \Vertex(73,30){1.5}
   \Gluon(110,30)(130,30){3}{3}
   \GluonArc(150,30)(20,0,180){3}{8}
   \GluonArc(150,30)(20,180,360){3}{8}
   \Gluon(170,30)(190,30){3}{3}
   \Vertex(130,30){1.5}
   \Vertex(170,30){1.5}
   \Gluon(210,30)(230,30){3}{3}
   \GluonArc(250,30)(20,0,180){-3}{8}
   \GluonArc(250,30)(20,180,360){-3}{8}
   \Gluon(270,30)(290,30){3}{3}
   \Vertex(230,30){1.5}
   \Vertex(270,30){1.5}
   \DashLine(310,30)(330,30){3}
   \GluonArc(350,30)(20,-180,180){3}{16}
   \Vertex(330,30){1.5}
   \DashLine(387,30)(407,30){3}
   \GluonCirc(430,30)(20,0){3}{16}
   \Vertex(407,30){1.5}
\end{axopicture} \end{center}
\end{verbatim}

%>>#] Remarks about Gluons :
%>>#[ Arrows :

\subsection{Remarks about arrows}
\label{sec:arrows}

%--#[ General :

The old Axodraw arrows were rather primitive little triangles. The JaxoDraw 
program has introduced fancier arrows which the user can also customize. 
There are parameters connected to this as shown in the figure:
\begin{center}
\begin{axopicture}{(150,100)(0,0)}
\AxoGrid(0,0)(10,10)(15,10){LightGray}{0.5}
\SetWidth{3}
%\Line(10,50)(130,50)
%\FilledPolygon{(140,50)(90,90)(105,50)(90,10)}{White}
%\Polygon{(140,50)(90,90)(105,50)(90,10)}{Black}
%\SetWidth{0.5}
%\LongArrow(85,50)(85,90)
%\LongArrow(90,5)(105,5)
%\LongArrow(90,95)(140,95)
%\SetPFont{Helvetica}{9}
%\PText(110,85)(0)[l]{Length}
%\PText(76,71)(90)[c]{Width}
%\PText(110,5)(0)[l]{Inset}
\Line[arrow,arrowinset=0.3,arrowaspect=1,arrowwidth=40,arrowpos=1,
       arrowstroke=3](10,50)(100,50)
\SetWidth{0.5}
\LongArrow(55,50)(55,90)
\LongArrow(60,5)(84,5)
\LongArrow(60,95)(140,95)
\SetPFont{Helvetica}{9}
\PText(100,85)(0)[l]{Length}
\PText(46,71)(90)[c]{Width}
\PText(90,5)(0)[l]{Inset}
\end{axopicture}\vspace{2mm} \\
\verb:\Line[arrow,arrowinset=0.3,arrowaspect=1,arrowwidth=40,arrowpos=1,:\\
\verb:arrowstroke=3](10,50)(100,50):
\end{center}
The full set of parameters is:
\begin{description}
\item[aspect]   A multiplicative parameter when the length is calculated 
from the width. The normal formula is: 
$\mbox{length}=2\times \mbox{width}\times \mbox{aspect}$.
\item[inset] The fraction of the length that is taken inward.
\item[length] The full length of the arrowhead.
\item[position] The position of the arrow in the line as a fraction of the 
length of the line.
\item[scale]    A scale parameter for the complete arrowhead.
\item[stroke]   The width of the line that makes up the arrowhead. If the 
value is not set (default value is zero) the arrow is filled and overwrites 
whatever was there. In the case of a stroke value the contents are 
overwritten in the background color.
\item[width] The half width of the arrowhead.
\end{description}
The parameters can be set in two ways. One is with one of the commands
\begin{center}
\begin{tabular}{ll}
\verb:\SetArrowScale{number}: & Initial value is 1. \\
\verb:\SetArrowInset{number}: & Initial value is 0.2 \\
\verb:\SetArrowAspect{number}: & Initial value is 1.25 \\
\verb:\SetArrowPosition{number}: & Initial value is 0.5 \\
\verb:\SetArrowStroke{number}: & Initial value is 0 \\
\end{tabular} \vspace{2mm} \\
\end{center}
(A complete list of commands for setting defaults is in
Sec.\ \ref{sec:settings}.)
These commands determine settings that will hold for all following
commands, up to the end of whatever \LaTeX{} or \TeX{} grouping the
default setting is given in.  E.g., setting a default value inside an
\texttt{axopicture} environment sets it until the end of the
environment only.  (Thus the settings obey the normal rules of
\LaTeX{} for scoping.)

The other way is to use one or more of these parameters as options in a 
command that uses an arrow. The general use of options is in Sec.\
\ref{sec:options}. The options that are available are 
\begin{center}
\begin{tabular}{ll}
   arrow              & initial default=false \\
   arrowscale=\num    & initial default=1 \\
   arrowwidth=\num    & initial default=0 \\
   arrowlength=\num   & initial default=0 \\
   arrowpos=\num      & initial default=0.5 \\
   arrowinset=\num    & initial default=0.2 \\
   arrowstroke=\num   & initial default=0 \\
   arrowaspect=\num   & initial default=1.25 \\
   flip               & initial default=false
\end{tabular}
\end{center}
The arrow option tells the program to draw an arrow. Without it no
arrow will be drawn. The flip option indicates that the direction of
the arrow should be reversed from the `natural' direction. 

When
neither the width nor the length are specified, but instead both are
given as zero, they are computed from the line width (and the line
separation when there is a double line). The formula is:
\begin{eqnarray}
   \mbox{Arrowwidth} & = & 
   1.2 \times \left( \mbox{linewidth} 
              + 0.7 \times \mbox{separation}
              + 1
         \right) 
     \times \mbox{arrowscale},
\\
\label{arrowlength}
   \mbox{Length} & = &
   2 \times \mbox{arrowwidth} \times  \mbox{arrowaspect}. 
\end{eqnarray}
%If however $\mbox{linewidth} + \frac{1}{4} \times \mbox{separation} <
%0.5$ the formula for the arrow width becomes $\mbox{arrowwidth} = 2.5
%\times \mbox{arrowscale}$.
If, however, $1.2 \times(\mbox{linewidth}+0.7\times\mbox{separation}+1)$ is less
than 2.5, the formula for the arrow width becomes
$\mbox{arrowwidth}=2.5\times\mbox{arrowscale}$.

If only one of the arrowwidth or the arrowlength parameters is zero,
it is computed from the other non-zero parameter using formula
(\ref{arrowlength}). When both are non-zero, those are the values that
are used.

The position of the arrowhead is a bit tricky. The arrowpos parameter is a 
fraction of the length of the line and indicates the position of the center 
of the arrowhead. This means that when arrowpos is one, the arrowhead 
sticks out beyond the end of the line by half the arrowlength. When for 
instance the line width is 0.5, the default length of the arrowhead 
defaults to 6.25. Hence if one would like to compensate for this one should 
make the line 3.125 points shorter. Usually 3 pt will be sufficient.

Because of backward compatibility axodraw2 has many individual commands for 
lines with arrows. We present them here, together with some `options' 
varieties.\vspace{4mm}

%--#] General :
%--#[ ArrowLine :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(90,80)(-10,0)}
\AxoGrid(0,0)(10,10)(9,8){LightGray}{0.5}
\Line[arrow,arrowscale=2](10,70)(80,70)
\Line[arrow,arrowpos=0.8,flip](10,50)(80,50)
\Line[arrow](10,30)(80,30)
\ArrowLine(10,10)(80,10)
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{arrowline}
\verb:\Line[arrow,arrowscale=2](10,70)(80,70): \hfill \\
\verb:\Line[arrow,arrowpos=0.8,flip](10,50)(80,50): \hfill \\
\verb:\Line[arrow](10,30)(80,30): \hfill \\
\verb:\ArrowLine(10,10)(80,10): \hfill \\
The default position for the arrow is halfway (arrowpos=0.5). With the line 
command and the options we can put the arrow in any position.
\end{minipage}\vspace{4mm}

%--#] ArrowLine :
%--#[ LongArrow :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(90,60)(-10,0)}
\AxoGrid(0,0)(10,10)(9,6){LightGray}{0.5}
\Line[arrow,arrowpos=1](10,30)(80,30)
\LongArrow(10,10)(80,10)
\SetWidth{4}
\LongArrow[arrowscale=0.8](10,50)(70,50)
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{longarrow}
\verb:\Line[arrow,arrowpos=1](10,30)(80,30): \hfill \\
\verb:\LongArrow(10,10)(80,10): \hfill \\
\verb:\SetWidth{4}: \hfill \\
\verb:\LongArrow[arrowscale=0.8](10,50)(70,50): \hfill \\
The \verb:\LongArrow: command just places the arrowhead at the end of the 
line. The size of the arrowhead is a function of the linewidth.
\end{minipage}\vspace{4mm}

%--#] LongArrow :
%--#[ ArrowDoubleLine :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(90,100)(-10,0)}
\AxoGrid(0,0)(10,10)(9,10){LightGray}{0.5}
\SetArrowStroke{1}
\Line[arrow,arrowpos=1,double,sep=5,arrowscale=1.3](10,90)(75,90)
\Line[arrow,arrowpos=1,double,sep=2,arrowscale=1.5](10,70)(80,70)
\Line[arrow,arrowpos=1,double,sep=2](10,50)(80,50)
\Line[arrow,double,sep=2](10,30)(80,30)
\ArrowDoubleLine(10,10)(80,10){2}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{arrowdoubleline}
\verb:\SetArrowStroke{1}: \hfill \\
\verb:\Line[arrow,arrowpos=1,double,sep=5,arrowscale=1.3]: \hfill \\
     \verb:    (10,90)(75,90): \hfill \\
\verb:\Line[arrow,arrowpos=1,double,sep=2,arrowscale=1.5]: \hfill \\
     \verb:    (10,70)(80,70): \hfill \\
\verb:\Line[arrow,arrowpos=1,double,sep=2](10,50)(80,50): \hfill \\
\verb:\Line[arrow,double,sep=2](10,30)(80,30): \hfill \\
\verb:\ArrowDoubleLine(10,10)(80,10){2}: \hfill \\
As one can see, the arrows also work with double lines.
\end{minipage}\vspace{4mm}

%--#] ArrowDoubleLine :
%--#[ ArrowDashLine :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(90,80)(-10,0)}
\AxoGrid(0,0)(10,10)(9,8){LightGray}{0.5}
\Line[arrow,arrowpos=0.3,dash,dsize=3,arrowscale=1.5](10,70)(80,70)
\DashArrowLine(10,50)(80,50){3}
\Line[arrow,dash,dsize=3](10,30)(80,30)
\ArrowDashLine(10,10)(80,10){3}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{arrowdashline}
\verb:\Line[arrow,arrowpos=0.3,dash,dsize=3,arrowscale=1.5]: \\
       \verb:(10,70)(80,70): \\
\verb:\DashArrowLine(10,50)(80,50){3}: \\
\verb:\Line[arrow,dash,dsize=3](10,30)(80,30): \\
\verb:\ArrowDashLine(10,10)(80,10){3}: \\
We have not taken provisions for the dashes to be centered in the 
arrowhead, because at times that is nearly impossible. The commands 
\verb:\ArrowDashLine: and \verb:\DashArrowLine: are identical.
\end{minipage}\vspace{4mm}

%--#] ArrowDashLine :
%--#[ ArrowDashDoubleLine :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(90,80)(-10,0)}
\AxoGrid(0,0)(10,10)(9,8){LightGray}{0.5}
\SetArrowStroke{0.5}
\Line[arrow,arrowpos=1,dash,dsize=3,double,sep=1.5,arrowscale=1.5](10,70)(80,70)
\DashArrowDoubleLine(10,50)(80,50){1.5}{3}
\Line[arrow,dash,dsize=3,double,sep=1.5](10,30)(80,30)
\ArrowDashDoubleLine(10,10)(80,10){1.5}{3}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{arrowdashdoubleline}
\verb:\SetArrowStroke{0.5}: \\
\verb:\Line[arrow,arrowpos=1,dash,dsize=3,double: \\
       \verb:,sep=1.5,arrowscale=1.5](10,70)(80,70): \\
\verb:\DashArrowDoubleLine(10,50)(80,50){1.5}{3}: \\
\verb:\Line[arrow,dash,dsize=3](10,30)(80,30): \\
\verb:\ArrowDashDoubleLine(10,10)(80,10){1.5}{3}: \\
The \verb:\ArrowDashDoubleLine: and \verb:\DashArrowDoubleLine: 
commands are identical.
\end{minipage}\vspace{4mm}

%--#] ArrowDashDoubleLine :
%--#[ LongArrowDashLine :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(90,80)(-10,0)}
\AxoGrid(0,0)(10,10)(9,8){LightGray}{0.5}
\Line[arrow,arrowpos=0,dash,dsize=3,arrowscale=1.5,flip](10,70)(80,70)
\DashLongArrowLine(10,50)(80,50){3}
\Line[arrow,arrowpos=1,dash,dsize=3](10,30)(80,30)
\LongArrowDashLine(10,10)(80,10){3}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{longarrowdashline}
\verb:\Line[arrow,arrowpos=0,dash,dsize=3,arrowscale=1.5: \\
       \verb:,flip](10,70)(80,70): \\
\verb:\DashLongArrowLine(10,50)(80,50){3}: \\
\verb:\Line[arrow,arrowpos=1,dash,dsize=3](10,30)(80,30): \\
\verb:\LongArrowDashLine(10,10)(80,10){3}: \\
The commands 
\verb:\LongArrowDashLine:, \verb:\DashLongArrowLine:, 
\verb:\LongArrowDash: and \verb:\DashLongArrow: are identical.
\end{minipage}\vspace{4mm}

%--#] LongArrowDashLine :
%--#[ ArrowArc :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(90,140)(-10,0)}
\AxoGrid(0,0)(10,10)(9,14){LightGray}{0.5}
\Arc[arrow,arrowpos=1,clock](45,95)(40,160,20)
\LongArrowArcn(45,80)(40,160,20)
\Arc[arrow,arrowpos=0.5,clock](45,65)(40,160,20)
\ArrowArcn(45,50)(40,160,20)
\Arc[arrow,arrowpos=1](45,35)(40,20,160)
\LongArrowArc(45,20)(40,20,160)
\Arc[arrow,arrowpos=0.5](45,5)(40,20,160)
\ArrowArc(45,-10)(40,20,160)
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{arrowarc}
\verb:\Arc[arrow,arrowpos=0,flip](45,95)(40,20,160): \\
\verb:\LongArrowArcn(45,80)(40,20,160): \\
\verb:\Arc[arrow,arrowpos=0.5](45,65)(40,20,160): \\
\verb:\ArrowArcn(45,50)(40,20,160): \\
\verb:\Arc[arrow,arrowpos=1](45,35)(40,20,160): \\
\verb:\LongArrowArc(45,20)(40,20,160): \\
\verb:\Arc[arrow,arrowpos=0.5](45,5)(40,20,160): \\
\verb:\ArrowArc(45,-10)(40,20,160): \\
The \verb:Arc: and the \verb:CArc: commands are identical.
\end{minipage}\vspace{4mm}

%--#] ArrowArc :
%--#[ ArrowDashArc :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(90,110)(-10,0)}
\AxoGrid(0,0)(10,10)(9,11){LightGray}{0.5}
\Arc[arrow,dash,dsize=3,arrowpos=0.5,clock](45,65)(40,160,20)
\ArrowDashArcn(45,50)(40,160,20){3}
\Arc[arrow,dash,dsize=3,arrowpos=1](45,35)(40,20,160)
\LongArrowDashArc(45,20)(40,20,160){3}
\Arc[arrow,dash,dsize=3,arrowpos=0.5](45,5)(40,20,160)
\ArrowDashArc(45,-10)(40,20,160){3}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{arrowdasharc}
\verb:\Arc[arrow,dash,dsize=3,arrowpos=0.5]: \\
       \verb:(45,65)(40,20,160): \\
\verb:\ArrowDashArcn(45,50)(40,20,160){3}: \\
\verb:\Arc[arrow,dash,dsize=3,arrowpos=1]: \\
       \verb:(45,35)(40,20,160): \\
\verb:\LongArrowDashArc(45,20)(40,20,160){3}: \\
\verb:\Arc[arrow,dash,dsize=3,arrowpos=0.5]: \\
       \verb:(45,5)(40,20,160): \\
\verb:\ArrowDashArc(45,-10)(40,20,160){3}: \\
The \verb:DashArrowArc: and the \verb:ArrowDashArc: commands are identical.
So are the commands \verb:DashArrowArcn: and \verb:ArrowDashArcn:.
\end{minipage}\vspace{4mm}

%--#] ArrowDashArc :
%--#[ ArrowDashDoubleArc :

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(90,80)(-10,0)}
\AxoGrid(0,0)(10,10)(9,8){LightGray}{0.5}
\Arc[arrow,dash,dsize=3,double,sep=1.5,arrowpos=0.5](45,35)(40,20,160)
\ArrowDashDoubleArc(45,20)(40,20,160){1.5}{3}
\Arc[arrow,double,sep=1.5,arrowpos=0.5](45,5)(40,20,160)
\ArrowDoubleArc(45,-10)(40,20,160){1.5}
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{arrowdashdoublearc}
\verb:\Arc[arrow,dash,dsize=3,double,sep=1.5: \\
      \verb:,arrowpos=0.5](45,35)(40,20,160): \\
\verb:\ArrowDashDoubleArc(45,20)(40,160,20){1.5}{3}: \\
\verb:\Arc[arrow,double,sep=1.5,arrowpos=0.5]: \\
      \verb:(45,5)(40,20,160): \\
\verb:\ArrowDoubleArc(45,-10)(40,20,160){1.5}: \\
Other commands involving Long do not exist. The options can take care of 
their functionality.
\end{minipage}\vspace{4mm}

%--#] ArrowDashDoubleArc :
%--#[ Bezier :
 
Computing the position of the arrow in a B\'ezier curve is a bit complicated. 
Let us recall the definition of a cubic B\'ezier curve:
\begin{eqnarray}
 x & = & x_0 (1-t)^3 + 3 x_1 t (1-t)^2 + 3 x_2 t^2 (1-t) + x_3 t^3 
            \nonumber \\
 y & = & y_0 (1-t)^3 + 3 y_1 t (1-t)^2 + 3 y_2 t^2 (1-t) + y_3 t^3
\end{eqnarray}
Computing the length of the curve is done with the integral
\begin{eqnarray}
   L & = & \int_0^1 dt
   \sqrt{ \left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right )^2 },
\end{eqnarray}
which is an integral over the square root of a quartic polynomial. This we 
do with a 16 point Gaussian quadrature and it gives us more than enough 
accuracy\footnote{We need to compute the length of the B\'ezier curve also 
when we want to put a dash pattern on it. The exact dash size is determined 
such that an integer number of patterns fits in the line.}. Let us assume 
now that we want the arrow at 0.6 of the length. To find the exact fraction 
of the length involves finding the upper limit of the integral for which 
the length is $0.6 L$. This requires an iteration procedure till we have a 
reasonable accuracy for the position $(x,y)$. After that we have to calculate 
the derivative in this point as well.

Because the B\'ezier curves are new commands in axodraw2 there is no need for 
backwards compatibility in the use of arrows. Hence all arrow commands are 
done by means of the options. Some examples are:
\vspace{4mm}

\noindent
\begin{minipage}{3.83cm}
\begin{axopicture}{(80,80)(-15,0)}
\AxoGrid(0,0)(10,10)(8,8){LightGray}{0.5}
\Bezier[arrow](10,10)(30,30)(10,50)(30,70)
\Bezier[arrow,dash,dsize=3](30,10)(50,30)(30,50)(50,70)
\Bezier[arrow,arrowpos=1,double,sep=1,arrowstroke=0.5](50,10)(70,30)(50,50)(70,70)
\end{axopicture}
\end{minipage}
\begin{minipage}{11.5cm}
\label{arrowbezier}
\verb:\Bezier[arrow](10,10)(30,30)(10,50)(30,70): \\
\verb:\Bezier[arrow,dash,dsize=3](30,10)(50,30): \\
       \verb:(30,50)(50,70): \\
\verb:\Bezier[arrow,arrowpos=1,double,sep=1,arrowstroke: \\
       \verb:=0.5](50,10)(70,30)(50,50)(70,70):
\end{minipage}\vspace{4mm}

%--#] Bezier :
%>>#] Arrows :
%>>#[ Settings :

\subsection{Units and scaling}
\label{sec:units}

When you have constructed a diagram, you may need to change its scale,
to make it larger or smaller.  Axodraw2 provides ways of doing this,
for scaling diagrams without recoding all the individual coordinates.
However the requirements for the nature of the scaling change between
different cases. For example, suppose a diagram is designed for use in
a journal article and you wish to use it in the slides for a seminar.
Then you will want to enlarge both the geometric size of the diagram's
objects and the text labels it contains.  But if you wish to use a
scaled diagram in another place in a journal article, you will wish to
scale its lines etc, but will probably not wish to scale the text (to
preserve its legibility).

Axodraw2 therefore provides tools for the different situations, so we
will now explain what to do.  The commands to achieve this all appear
in the list of parameter-setting commands in Sec.\ \ref{sec:settings}.


\subsubsection{Scaling for slides}

Suppose the original diagram is
\begin{center}
\begin{minipage}{10cm}
\begin{verbatim}
   \SetPFont{Helvetica-Oblique}{12}
   Document text.  Then diagram:
   \begin{axopicture}(60,43)
      \Arc[arrow](30,0)(30,0,180)
      \Text(30,33)[b]{$\alpha P_1$}
      \CText(30,10){Red}{Yellow}{Arc}
   \end{axopicture}
\end{verbatim}
\end{minipage}
\end{center}
to give
\begin{center}
   \SetPFont{Helvetica-Oblique}{12}
   Document text.  Then diagram:
   \begin{axopicture}(60,43)
      \Arc[arrow](30,0)(30,0,180)
      \Text(30,33)[b]{$\alpha P_1$}
      \CText(30,10){Red}{Yellow}{Arc}
   \end{axopicture}
\end{center}
Then you could double the scale of the diagram by
\begin{center}
\begin{minipage}{10cm}
\begin{verbatim}
   \SetScale{2}
   \fontsize{24}{26}\selectfont
   \SetPFont{Helvetica-Oblique}{12}
   Document text.  Then diagram:
   \begin{axopicture}(60,43)
      \Arc[arrow](30,0)(30,0,180)
      \Text(30,33)[b]{$\alpha P_1$}
      \CText(30,10){Red}{Yellow}{Arc}
   \end{axopicture}
\end{verbatim}
\end{minipage}
\end{center}
to get
\begin{center}
   \SetScale{2}
   \fontsize{24}{26}\selectfont
   \SetPFont{Helvetica-Oblique}{12}
   Document text.  Then diagram:
   \begin{axopicture}(60,43)
      \Arc[arrow](30,0)(30,0,180)
      \Text(30,33)[b]{$\alpha P_1$}
      \CText(30,10){Red}{Yellow}{Arc}
   \end{axopicture}
\end{center}
We have changed the size of the document font, as would be appropriate
for a make slides for a presentation; this we did by the
\verb+\fontsize+ command.  The arc and the space inserted
in the document for the diagram have scaled up.  The label inserted by
the \verb:\Text: command has changed to match the document font.  The
postscript text in the \verb:\CText: was specified to be at
$\unit[12]{pt}$, but is now scaled up also.  

The above behavior is what axodraw2 does by default, and is what v.\ 1
did. 


\subsubsection{Scaling within article}

If you wanted to make an enlarged figure in a journal article, you
would not change the document font.  But the obvious modification to
the previous example is
\begin{center}
\begin{minipage}{10cm}
\begin{verbatim}
   \SetScale{2}
   \SetPFont{Helvetica-Oblique}{12}
   Document text.  Then diagram:
   \begin{axopicture}(60,43)
      \Arc[arrow](30,0)(30,0,180)
      \Text(30,33)[b]{$\alpha P_1$}
      \CText(30,10){Red}{Yellow}{Arc}
   \end{axopicture}
\end{verbatim}
\end{minipage}
\end{center}
which gives
\begin{center}
   \SetScale{2}
   \SetPFont{Helvetica-Oblique}{12}
   Document text.  Then diagram:
   \begin{axopicture}(60,43)
      \Arc[arrow](30,0)(30,0,180)
      \Text(30,33)[b]{$\alpha P_1$}
      \CText(30,10){Red}{Yellow}{Arc}
   \end{axopicture}
\end{center}
The label $\alpha P_1$ is now not enlarged, since it copies the
behavior of the document font.  But the postscript text is enlarged,
which is probably undesirable.  If you were scaling down the diagram
instead of scaling it up, the situation would be worse, because the
postscript font would be difficult to read.

So in this situation, of scaling the diagram while keeping the
document font intact, you probably also want to leave unchanged the
size of the postscript font.  You can achieve this by the
\verb:\PSTextScalesLikeGraphicsfalse: command:
\begin{center}
\begin{minipage}{10cm}
\begin{verbatim}
   \SetScale{2}
   \PSTextScalesLikeGraphicsfalse
   \SetPFont{Helvetica-Oblique}{12}
   Document text.  Then diagram:
   \begin{axopicture}(60,43)
      \Arc[arrow](30,0)(30,0,180)
      \Text(30,33)[b]{$\alpha P_1$}
      \CText(30,10){Red}{Yellow}{Arc}
   \end{axopicture}
\end{verbatim}
\end{minipage}
\end{center}
\begin{center}
   \SetScale{2}
   \PSTextScalesLikeGraphicsfalse
   \SetPFont{Helvetica-Oblique}{12}
   Document text.  Then diagram:
   \begin{axopicture}(60,43)
      \Arc[arrow](30,0)(30,0,180)
      \Text(30,33)[b]{$\alpha P_1$}
      \CText(30,10){Red}{Yellow}{Arc}
   \end{axopicture}
\end{center}

To achieve this on a document-wide basis, which is probably what you
want, you can use the \texttt{PStextScalesIndependently} option when you
load axodraw2 --- see Sec.\ \ref{sec:invoke}.

Nevertheless, if you turn off the default scaling of postscript text,
%you may still want to scale text.  To do this you can use the
you may still want to scale text.  For this you can use the
\verb:\SetTextScale: command, as in \verb:\SetTextScale{1.2}:.  This
only has an effect when you have turned off the scaling of postscript
text with graphics objects; but then it applies to \TeX{} text
inserted by axodraw2's \verb:\Text: and \verb:\rText: commands, as
well text inserted by axodraw2's ``postscript-text'' commands.

If you are confused by the above, we recommend experimentation to
understand how to achieve the effects that you specifically need.  We
could have made the set of commands and options simpler, but only at
the expense of not being able to meet the demands of the different
plausible situations that we could imagine and have to deal with
ourselves.

\subsubsection{Canvas and object scales}

When you use \verb:\SetScale: outside an \verb:axopicture:
environment, as above, the scaling applies to both the axodraw2
objects and the space inserted for the \texttt{axopicture} environment
in the document, as is natural.  But you may find you need to scale a
subset of objects inside the diagram, e.g.,
\begin{center}
  \begin{minipage}{10cm}
    \verb:\begin{axopicture}:(\dots)\\
    \hspace*{1cm} (First block)\\
    \verb:\SetScale{0.5}:\\
    \hspace*{1cm} (Second block)\\
    \verb:\end{axopicture}:
  \end{minipage}
\end{center}
In this case, the units for specifying the objects in the second block
are different from those for specifying the \verb:axopicture:
environment's size (as well as the first block of objects).  We thus
distinguish object units from canvas units, where ``canvas'' refers to
the \verb:axopicture: environment as a whole.  

Another complication is that the \LaTeX{} \verb+picture+ environment
has is own \verb:\unitlength: parameter.  In v.\ 1 of axodraw, the
canvas scale was determined by \LaTeX's \verb:\unitlength:.  But there
was an independent unit for the object scale; this was the one
determined by axodraw's \verb:\SetScale: command. Also, not all
objects used the object scale.  The situation therefore got quite
confusing. In v.\ 1, if, as is often natural, you wished to scale the
canvas as well as the objects, you would have needed to set \LaTeX's
\verb:\unitlength: parameter as well as using axodraw's
\verb:\SetScale: command.

So now we have arranged things so that the canvas and object scales
are tied by default, provided that you use axodraw2's \verb:\SetScale:
command, and that axodraw diagrams are inside \verb+axopicture+
environments (in contrast to the \verb+picture+ environment used in
the original axodraw).
However, it may be necessary to keep backward compatibility in some
cases, and we weren't certain that the new behavior is exactly what is
always desired.  So in axodraw2, we have provided three choices, given
by the \texttt{canvasScaleIs1pt}, \texttt{canvasScaleIsObjectScale},
and \texttt{canvasScaleIsUnitLength} options when loading axodraw2 ---
see Sec.\ \ref{sec:invoke}.  Naturally,
\texttt{canvasScaleIsObjectScale} is the default.  If you wish to
change the setting mid-document, there are corresponding commands ---
Sec.\ \ref{sec:settings}.



\subsection{Settings}
\label{sec:settings}

Axodraw2 has a number of parameters that can be set by the user.  The
parameters include defaults for line types, dimensions, etc.  The
parameters can be set either inside the axopicture environment or
outside.  If they are set outside they modify the default value for
subsequent pictures. If set inside they only affect the current
picture.  (In general, the parameters obey the usual rules for the
scope of \LaTeX{} variables.)  In many cases, the parameters provide
default values for a command to draw an object and can be overridden
for a single object by using an optional parameter in invoking the
command for the object.

The unit for lengths is the current object scale, as set by the
\verb+\SetScale+ command.

\break 

The parameter-setting commands are:
%\begin{center}
%\def\arraystretch{1.4}
%%
%% See preamble for definition of \name
%\def\descr#1#2{%
%  % #1 = command-syntax, #2 = description
%  \name{#1} & #2\\
%  \hline
%}
%\def\descrL#1#2{%
%  % #1 = command-syntax, #2 = description
%  % Set #1 on separate line
%  \multicolumn{2}{|l|}{\name{#1}}   \\
%                & #2\\
%  \hline
%}
%\catcode`\#=13
%\def#{\#}
%%
%\begin{longtable}{|p{5cm}|p{10.2cm}|}
%\hline
%   Command & Commentary 
%\\
%\hline
%%
%\descr{SetLineSep\{\#1\}}{
%  This sets the default separation of double lines. Its initial value
%  is 2.
%}
%%
%\descr{SetDashSize\{\#1\}}{
%  This sets the default size for the size of the dashes of dashed
%  lines. Its initial value is 3.
%}
%%
%\descr{SetWidth\{\#1\}}{
%  This sets the default width of lines.  Its initial value is 1.
%}
%%
%\descr{SetScale\{\#1\}}{
%    This sets a scale factor. 
%    This factor applies a magnification factor to all 
%    axodraw2 graphics objects.  When the setting that
%    postscript-text-scales-like-graphics is set (as is true by
%    default), it also applies to axodraw2's ``postscript-text''
%    writing commands (\name{PText}, \name{BText}, etc), but not to
%    its \TeX{}-text commands (\name{Text} etc).  The initial scale
%    factor is unity.
%}
%%
%\descr{SetTextScale\{\#1\}}{
%    This factor applies a magnification factor to all 
%    axodraw2 text objects, but \emph{only when} the setting that
%    postscript-text-scales-like-graphics is turned off.
%}
%%
%\descr{SetOffset(\#1,\#2)}{
%  Sets an offset value 
%  for all commands of 
%  axodraw2. Its value is not affected by the scale variable.
%}
%%
%\descr{SetScaledOffset(\#1,\#2)}{
%  Sets an offset for 
%  all commands of axodraw2. This 
%  offset is affected by the scale factor.
%}
%%
%\descr{SetColor\{\#1\}}{
%    Sets the named color,
%    for both axodraw2 objects and regular text.  See Sec.\
%    \ref{sec:colors} for details on using color with axodraw2.
%}
%%
%\descr{textRed}{
%    Alternative command for setting named a color
%    for both axodraw2 objects and regular text.  See Sec.\
%    \ref{sec:colors} for details on using color with axodraw2.
%    There is one such command for each axodraw2 named color.
%}
%%
%\descr{SetPFont\{\#1\}\{\#2\}}{
%    Sets the Postscript 
%    font, and its size in units of points.  See Sec.\ \ref{sec:PSText}
%    for the commands that use this font, for a table of the names of
%    the fonts.  An empty first argument, instead of a font name,  (as in
%    \name{SetPFont\{\}\{20\}} indicates that the normal document font is
%    to be used at the indicated size.  An empty second argument,
%    instead of the font size, (as in \name{SetPFont\{Helvetica\}\{\}} or
%    \name{SetPFont\{\}\{\}}) indicates that the font size is to be
%    \LaTeX's document font size at the time the text-making command is
%    executed. 
%}
%%
%\descr{SetArrowScale\{\#1\}}{
%   A scale parameter for the 
%   entire head of an arrow.
%}
%%
%\descr{SetArrowInset\{\#1\}}{
%   See Sec.\ \ref{sec:arrows}.
%}
%%
%\descr{SetArrowAspect\{\#1\}}{
%   See Sec.\ \ref{sec:arrows}.
%}
%%
%\descr{SetArrowPosition\{\#1\}}{
%  Determines where the 
%arrowhead is on a line. The position is the fraction of the length of the 
%line. 
%}
%%
%\descr{SetArrowStroke\{\#1\}}{
%    This parameter determines the linewidth of the arrowhead if it is just 
%    outlined. Its initial value is zero (filled arrowhead).
%}
%%
%\descr{canvasScaleOnept}{
%      Sets canvas scale to $\unit[1]{pt}$. 
%}
%%
%\descr{canvasScaleObjectScale}{
%      Sets canvas scale to equal the value set by \name{SetScale} in
%      units of points.  This is the initial default of axodraw2,
%      unless overridden. 
%}
%%
%\descr{canvasScaleUnitLength}{
%      The canvas scale is the same as \LaTeX's length parameter
%      \name{unitlength}. 
%}
%%
%\descrL{PSTextScalesLikeGraphicsfalse}{
%      Text drawn by all of Axodraws's text commands scales with the
%      factor set by \name{SetTextScale}.
%      See Sec.\ \ref{sec:text}. 
%}
%%
%\descrL{PSTextScalesLikeGraphicstrue}{
%      (Default setting.)  Text drawn by Axodraw's postscript-text
%      commands scales with the same factor as graphics objects, as set
%      by \name{SetScale}.   Text drawn by Axodraw's \TeX{}-text
%      commands is unscaled.
%      See Sec.\ \ref{sec:text}.  
%}
%\end{longtable}
%\end{center}
\begin{center}
\def\arraystretch{1.4}
%
% See preamble for definition of \name
\def\descr#1#2{%
  % #1 = command-syntax, #2 = description
  \name{#1} & #2\\
  \hline
}
\def\descrL#1#2{%
  % #1 = command-syntax, #2 = description
  % Set #1 on separate line
  \multicolumn{2}{|l|}{\name{#1}}   \\
                & #2\\
  \hline
}
\def\category#1{%
  % #1 = name of category
  \multicolumn{2}{l}{#1:}
  \\
  \hline
}
\catcode`\#=13
\def#{\#}
%
\begin{longtable}{|p{5cm}|p{10.2cm}|}
\hline
\endfirsthead
   Command & Commentary 
\\
\hline
%====================
\category{Lines}
%
\descr{SetDashSize\{\#1\}}{
  This sets the default size for the size of the dashes of dashed
  lines. Its initial value is 3.
}
%
\descr{SetLineSep\{\#1\}}{
  This sets the default separation of double lines. Its initial value
  is 2.
}
%
\descr{SetWidth\{\#1\}}{
  This sets the default width of lines.  Its initial value is 0.5.
}
%====================
\category{Arrows}
%
\descr{SetArrowAspect\{\#1\}}{
   See Sec.\ \ref{sec:arrows}.
}
%
\descr{SetArrowInset\{\#1\}}{
   See Sec.\ \ref{sec:arrows}.
}
%
\descr{SetArrowPosition\{\#1\}}{
  Determines where the 
arrowhead is on a line. The position is the fraction of the length of the 
line. 
}
%
\descr{SetArrowScale\{\#1\}}{
   A scale parameter for the 
   entire head of an arrow.
}
%
\descr{SetArrowStroke\{\#1\}}{
    This parameter determines the linewidth of the arrowhead if it is just 
    outlined. Its initial value is zero (filled arrowhead).
}
%====================
\category{Scaling}
%
\descr{canvasScaleOnept}{
      Sets canvas scale to $\unit[1]{pt}$. 
}
%
\descr{canvasScaleObjectScale}{
      Sets canvas scale to equal the value set by \name{SetScale} in
      units of points.  This is the initial default of axodraw2,
      unless overridden. 
}
%
\descr{canvasScaleUnitLength}{
      The canvas scale is the same as \LaTeX's length parameter
      \name{unitlength}. 
}
%
\descr{SetScale\{\#1\}}{
    This sets a scale factor. 
    This factor applies a magnification factor to all 
    axodraw2 graphics objects.  When the setting that
    postscript-text-scales-like-graphics is set (as is true by
    default), it also applies to axodraw2's ``postscript-text''
    writing commands (\name{PText}, \name{BText}, etc), but not to
    its \TeX{}-text commands (\name{Text} etc).  The initial scale
    factor is unity.
}
%
\descr{SetTextScale\{\#1\}}{
    This factor applies a magnification factor to all 
    axodraw2 text objects, but \emph{only when} the setting that
    postscript-text-scales-like-graphics is turned off.
}
%
\descrL{PSTextScalesLikeGraphicsfalse}{
      Text drawn by all of Axodraws's text commands scales with the
      factor set by \name{SetTextScale}.
      See Sec.\ \ref{sec:text}. 
}
%
\descrL{PSTextScalesLikeGraphicstrue}{
      (Default setting.)  Text drawn by Axodraw's postscript-text
      commands scales with the same factor as graphics objects, as set
      by \name{SetScale}.   Text drawn by Axodraw's \TeX{}-text
      commands is unscaled.
      See Sec.\ \ref{sec:text}.
}
%
%====================
\category{Offsets}
%
\descr{SetOffset(\#1,\#2)}{
  Sets an offset value 
  for all commands of 
  axodraw2. Its value is not affected by the scale variable.
}
%
\descr{SetScaledOffset(\#1,\#2)}{
  Sets an offset for 
  all commands of axodraw2. This 
  offset is affected by the scale factor.
}
%
%====================
\category{Color}
%
\descr{SetColor\{\#1\}}{
    Sets the named color,
    for both axodraw2 objects and regular text.  See Sec.\
    \ref{sec:colors} for details on using color with axodraw2.
}
%
\descr{textRed}{
    Alternative command for setting named a color
    for both axodraw2 objects and regular text.  See Sec.\
    \ref{sec:colors} for details on using color with axodraw2.
    There is one such command for each axodraw2 named color.
}
%====================
\category{Font}
%
\descr{SetPFont\{\#1\}\{\#2\}}{
    Sets the Postscript 
    font, and its size in units of points.  See Sec.\ \ref{sec:PSText}
    for the commands that use this font, for a table of the names of
    the fonts.  An empty first argument, instead of a font name,  (as in
    \name{SetPFont\{\}\{20\}} indicates that the normal document font is
    to be used at the indicated size.  An empty second argument,
    instead of the font size, (as in \name{SetPFont\{Helvetica\}\{\}} or
    \name{SetPFont\{\}\{\}}) indicates that the font size is to be
    \LaTeX's document font size at the time the text-making command is
    executed. 
}
%
\end{longtable}
\end{center}


%>>#] Settings :
%>>#[ Colors :

\subsection{Colors}
\label{sec:colors}

\TeX{} and \LaTeX{} by themselves do not provide any means to set
colors in a document.  Instead, one must use a suitable package to
achieve the effect; the current standard one is \file{color.sty}.
Such a package performs its work by passing graphics commands to the
viewable output file.  Since axodraw also works in a similar fashion,
there is a potentiality for conflicts.  

Axodraw version 1, released in 1994, used the package
\file{colordvi.sty} for applying color to normal textual material,
and its own separate methods for applying color to its graphical
objects.  They both defined the same convenient set of named colors
that could be used, but they had to be set separately for text and
graphics\footnote{The named colors corresponded to ones defined by the
  \program{dvips} program.}. The \file{colordvi.sty} package also had
an important disadvantage that its color settings did not respect
\TeX{} grouping and \LaTeX{} environments, so that a color setting
made for text in an environment continued to apply after the end of
the environment.

Since then, the available tools, notably in the powerful
\file{color.sty}, have greatly improved.  But this has introduced
both real and potential incompatibilities with the older methods.
Note that \file{color.sty} is currently the most standard way for
implementing color, and is a required part of \LaTeX{} distributions,
as part of the graphics bundle.

In the new version of axodraw, we have arranged to have compatibility
with \file{color.sty}, while allowing as much backward compatibility
as we could with the user interface from v.\ 1.  We fully rely on
\file{color.sty} for setting color\footnote{Except for certain hard
  wired settings in double lines and stroked arrows.}.  But to keep
the best of the old methods, we have defined all the named colors that
were defined in the old version, together with a few extra ones. We
have also defined color-setting commands in the style of
\file{colordvi.sty}, but they now apply uniformly to both text and
axodraw graphical objects, and they respect \TeX{} and \LaTeX{}
grouping and environments.

This results in some changes in behavior in certain situations.  We
think the new behavior is more natural from the user's point of view;
but it is a change.  

There are two classes of graphics-drawing command in axodraw.  One
class has no explicit color argument, and uses the currently set
color; the line-drawing commands are typical of these.  Other commands
have explicit color arguments, and these arguments are named colors.
The named colors are a union of those axodraw defines, with those
defined by \file{color.sty} together with any further ones defined
by the user.

\subsubsection{How to use colors}

Axodraw works with named colors --- see Sec.\ \ref{sec:defined.colors}
--- which are a standard set of 68 originally defined by the \program{dvips}
program and the \file{colordvi.sty}, plus 5 extra colors defined in
axodraw2.  (In addition there are several named colors that are
normally defined by default by \file{color.sty}, and that can also
be used.)

To use them we have several possibilities to specify colors.  Which to
use is mostly a matter of user preference or convenience.
\begin{itemize}

\item The axodraw command \verb+\SetColor{colorname}+: sets the color
  to be the named color for everything until the end of the current
  environment (or \TeX{} group, as relevant.)  The initial default
  color is Black, of course.  An example:
  \begin{center}
    \begin{minipage}{4cm}
        \SetColor{Red}
        Now red is used:\\
        \begin{axopicture}(0,40)
            \Line(0,10)(40,30)
        \end{axopicture}
    \end{minipage}
    \begin{minipage}{7cm}
    \label{SetColor}
    \begin{verbatim}
    \SetColor{Red}
    Now red is used:\\
    \begin{axopicture}(0,40)
        \Line(0,10)(40,30)
    \end{axopicture}
    \end{verbatim}
    \end{minipage}
  \end{center}

\item Completely equivalently, one can use the command
  \verb+\color{colorname}+ defined by the standard \file{color.sty}
  package, with any of its options, e.g., \verb+\color{Red}+ or
  \verb+\color[rgb]{1,0,0}+.  In fact \verb+\SetColor+ is now a
  synonym for \verb+\color+, retained for backward compatibility.

\item The named colors defined by axodraw2 are listed in Sec.\
  \ref{sec:defined.colors}.  Extra ones can be defined by axodraw2's
  \verb+\newcolor+ command.

\item For each of the named colors defined by axodraw2 (and others
  defined by the use of the \verb+\newcolor+ command), there is a
  macro whose name is ``text'' followed by the color name, e.g.,
  \verb+\textMagenta+.  This behaves just like the corresponding call
  to \verb+\SetColor+ or \verb+\color+.  Thus we have
  \begin{center}
    \begin{minipage}{4cm}
        \textMagenta
        Now magenta is used: \hfill \\
        \begin{axopicture}(0,40)
            \Line(0,10)(40,30)
        \end{axopicture}
    \end{minipage}
    \begin{minipage}{7cm}
    \label{textName}
    \begin{verbatim}
    \textMagenta
    Now magenta is used:\\
    \begin{axopicture}(0,40)
        \Line(0,10)(40,30)
    \end{axopicture}
    \end{verbatim}
    \end{minipage}
  \end{center}
  These macros correspond to macros defined by the venerable
  \file{colordvi.sty} package, but now have what is normally an advantage
  that their scope is delimited by the enclosing environment.  
  \begin{center}
    \begin{minipage}{5cm}
        Normal text, then
        \begin{center}
          \Large \bf \color{Blue}
          Large, bold blue\\
          \begin{axopicture}(40,20)
              \Gluon(0,10)(40,10){4}{4}
          \end{axopicture}\\
        \end{center}
        And normal text afterward.
    \end{minipage}
    \begin{minipage}{7.7cm}
    \label{scope}
    \begin{verbatim}
    Normal text, then
    \begin{center}
        \Large \bf \color{Blue}
        Large, bold blue
        \begin{axopicture}(40,20)
          \Gluon(0,10)(40,10){4}{4}
        \end{axopicture}\\
    \end{center}
    And normal text afterward.
    \end{verbatim}
    \end{minipage}
  \end{center}

\item A delimited section of text can be set in a color by using a
  macro named by the color (e.g., $\verb+\Red+$):
  \begin{center}
    \begin{minipage}{6cm}
        In the middle of black text,
        \textcolor{Red}{red text and
          \begin{axopicture}(30,10)
          \Gluon(0,5)(30,5){3}{4}
          \end{axopicture}\ 
          gluon%
        }.
        Then continue \dots
    \end{minipage}
    \begin{minipage}{7.3cm}
    \label{Red}
    \begin{verbatim}
    In the middle of black text,
    \Red{red text and
      \begin{axopicture}(30,10)
          \Gluon(0,5)(30,5){3}{4}
      \end{axopicture}\ 
      gluon%
    }.
    Then continue \dots
    \end{verbatim}
    \end{minipage}
  \end{center}
  These macros correspond to macros defined by the \file{colordvi.sty}
  package, but they now apply to axodraw objects as well.

\item The same effect, for named colors, can be achieved by
  \file{color.sty}'s \verb+\textcolor+ macro.  Thus
  \verb+\textcolor{Red}{...}+ is equivalent to \verb+\Red{...}+.

\end{itemize}

It is also possible to define new named colors, in the CMYK
system. This means that each color is defined by four numbers. New
colors can be introduced with the \verb:\newcolor{#1}{#2}: command as
in \verb:\newcolor{LightRed}{0 0.75 0.7 0}:. This use of this command
defines a named color for use in axodraw, with corresponding macros
\verb:\LightRed: and \verb:\textLightRed{#1}:, and also makes the name
known to \file{color.sty}.  (Use of \file{color.sty}'s
\verb:\definecolor: macro is not supported here: it will affect only
normal \LaTeX{} text, but not axodraw objects, and it will fail to
define the extra macros.)

We define the CMYK values for the named colors in the
\file{axodraw2.sty} file.  These override the definitions provided
by \file{color.sty} (in its file dvipsnam.def), which are the same
(at least currently).

There can be differences in how colors render on different devices.
In principle, there should be compensations made by the driver to
compensate for individual device properties. Our experience is however
that such compensations are not always implemented well enough. Most
notorious are differences between the shades of green on the screen,
on projectors, and on output from a printer.  These colors are usually
much too light on a projector and one way to correct this is to
redefine those colors when the output is prepared for a projector,
e.g., by use of axodraw's \verb:\newcolor{#1}{#2}: macro.  An example
is illustrated by
\begin{center}
  \color{green} 
  \begin{axopicture}(100,20)
  \Text(25,15){color.sty's green}
  \Line[width=2](0,0)(50,0)
  \end{axopicture}
%
  \color{Green} 
  \begin{axopicture}(100,20)
  \Text(25,15){axodraw's Green}
  \Line[width=2](0,0)(50,0)
  \end{axopicture}
\end{center}
coded by
\begin{verbatim}
  \color{green} 
  \begin{axopicture}(100,20)
  \Text(25,15){color.sty's green}
  \Line[width=2](0,0)(50,0)
  \end{axopicture}
%
  \color{Green} 
  \begin{axopicture}(100,20)
  \Text(25,15){axodraw's Green}
  \Line[width=2](0,0)(50,0)
  \end{axopicture}
\end{verbatim}
On a typical screen or projector, we find that the two greens are
quite distinct, the ``green'' being much lighter than the
``Green''\footnote{The ``green'' is defined in the RGB scheme from the
  values $(0,1,0)$, while ``Green'' is defined in the CMYK scheme from
  the values $(1,0,1,0)$.}.  But on the paper output from our
printers, they give close results.



\subsubsection{Defined named colors}
\label{sec:defined.colors}

The first set of predefined colors are those defined by dvips (and
defined in \file{colordvi.sty}, or in \file{color.sty} with the
use of both of its usenames and dvipsnames options).  They are
\begin{quote}
\sloppy
\GreenYellow{GreenYellow},
\Yellow{Yellow},
\Goldenrod{Goldenrod},
\Dandelion{Dandelion},
\Apricot{Apricot},
\Peach{Peach},
\Melon{Melon},
\YellowOrange{YellowOrange},
\Orange{Orange},
\BurntOrange{BurntOrange},
\Bittersweet{Bittersweet},
\RedOrange{RedOrange},
\Mahogany{Mahogany},
\Maroon{Maroon},
\BrickRed{BrickRed},
\Red{Red},
\OrangeRed{OrangeRed},
\RubineRed{RubineRed},
\WildStrawberry{WildStrawberry},
\Salmon{Salmon},
\CarnationPink{CarnationPink},
\Magenta{Magenta},
\VioletRed{VioletRed},
\Rhodamine{Rhodamine},
\Mulberry{Mulberry},
\RedViolet{RedViolet},
\Fuchsia{Fuchsia},
\Lavender{Lavender},
\Thistle{Thistle},
\Orchid{Orchid},
\DarkOrchid{DarkOrchid},
\Purple{Purple},
\Plum{Plum},
\Violet{Violet},
\RoyalPurple{RoyalPurple},
\BlueViolet{BlueViolet},
\Periwinkle{Periwinkle},
\CadetBlue{CadetBlue},
\CornflowerBlue{CornflowerBlue},
\MidnightBlue{MidnightBlue},
\NavyBlue{NavyBlue},
\RoyalBlue{RoyalBlue},
\Blue{Blue},
\Cerulean{Cerulean},
\Cyan{Cyan},
\ProcessBlue{ProcessBlue},
\SkyBlue{SkyBlue},
\Turquoise{Turquoise},
\TealBlue{TealBlue},
\Aquamarine{Aquamarine},
\BlueGreen{BlueGreen},
\Emerald{Emerald},
\JungleGreen{JungleGreen},
\SeaGreen{SeaGreen},
\Green{Green},
\ForestGreen{ForestGreen},
\PineGreen{PineGreen},
\LimeGreen{LimeGreen},
\YellowGreen{YellowGreen},
\SpringGreen{SpringGreen},
\OliveGreen{OliveGreen},
\RawSienna{RawSienna},
\Sepia{Sepia},
\Brown{Brown},
\Tan{Tan},
\Gray{Gray},
\Black{Black},
White.
\end{quote}
In addition \file{axodraw2.sty} defines the following extra colors:
\begin{quote}
\LightYellow{LightYellow},
\LightRed{LightRed},
\LightBlue{LightBlue}, 
\LightGray{LightGray},
\VeryLightBlue{VeryLightBlue}.
\end{quote}

Note that \file{color.sty} by default also defines a set of other
named colors: black, white, red, green, blue, cyan, magenta, and
yellow (with purely lower-case names).  Depending on properties of
your screen, projector or printer, these may or may not agree with the
similarly named axodraw colors (which have capitalized names).  These
names can also be used in the \verb+\SetColor+ and \verb+\color+
commands and for color names to those axodraw commands that take named
colors for arguments.


%\subsection{Background issues on color}
%\label{sec:color.issues}




%>>#] Colors :
%>>#[ Some examples :

\section{Some examples}
\label{sec:examples}

\subsection{A Feynman diagram}

When computing the singlet part of structure functions in polarized Deep 
Inelastic Scattering one approach is to use spin two currents to determine 
all anomalous dimensions. At the three loop level this can give diagrams 
like the following:
\begin{center}
\begin{axopicture}{(200,140)(0,0)}
\SetArrowStroke{0.5}
\SetArrowScale{0.8}
\Photon(7,70)(37,70){4}{3}
\Photon(7,70)(37,70){-4}{3}
\GluonArc(70,70)(30,90,270){3}{10}
\Line[arrow](100,100)(70,100)
\Line[arrow](130,100)(100,100)
\Line[arrow,arrowpos=0.25](70,100)(130,40)
\Line[arrow](100,40)(70,40)
\Line[arrow](130,40)(100,40)
\Line[arrow,arrowpos=0.75](70,40)(130,100)
\GluonArc(130,70)(30,270,450){3}{10}
\Photon(163,70)(193,70){4}{3}
\Photon(163,70)(193,70){-4}{3}
\Gluon(100,100)(100,130){3}{4}
\Gluon(100,40)(100,10){3}{4}
\Vertex(37,70){2}
\Vertex(163,70){2}
\Vertex(70,100){2}
\Vertex(70,40){2}
\Vertex(130,100){2}
\Vertex(130,40){2}
\Vertex(100,100){2}
\Vertex(100,40){2}
\end{axopicture}
\end{center}
for which the code is:
\begin{verbatim}
  \begin{center} \begin{axopicture}{(200,140)(0,0)}
  \SetArrowStroke{0.5} \SetArrowScale{0.8}
  \Photon(7,70)(37,70){4}{3}
  \Photon(7,70)(37,70){-4}{3}
  \GluonArc(70,70)(30,90,270){3}{10}
  \Line[arrow](100,100)(70,100) \Line[arrow](130,100)(100,100)
  \Line[arrow,arrowpos=0.25](70,100)(130,40)
  \Line[arrow](100,40)(70,40) \Line[arrow](130,40)(100,40)
  \Line[arrow,arrowpos=0.75](70,40)(130,100)
  \GluonArc(130,70)(30,270,450){3}{10}
  \Photon(163,70)(193,70){4}{3}
  \Photon(163,70)(193,70){-4}{3}
  \Gluon(100,100)(100,130){3}{4}
  \Gluon(100,40)(100,10){3}{4}
  \Vertex(37,70){2} \Vertex(163,70){2} \Vertex(70,100){2}
  \Vertex(70,40){2} \Vertex(130,100){2} \Vertex(130,40){2}
  \Vertex(100,100){2} \Vertex(100,40){2}
  \end{axopicture} \end{center}
\end{verbatim}
The diagrams can become a bit more complicated when more lines meet in a 
single vertex. One could compose some lines from straight lines and arcs, 
but in this case we selected some B\'ezier curves. The result is
\begin{center}
\begin{axopicture}{(200,140)(0,0)}
\SetArrowStroke{0.5}
\SetArrowScale{0.8}
\Photon(7,70)(40,70){4}{3}
\Photon(7,70)(40,70){-4}{3}
\GluonArc(70,70)(30,180,270){3}{5}
\Bezier[arrow](100,100)(55,100)(40,95)(40,70)
\Line[arrow](130,100)(100,100)
\Bezier[arrow,arrowpos=0.37](40,70)(110,70)(130,70)(130,40)
\Line[arrow](100,40)(70,40)
\Line[arrow](130,40)(100,40)
\Line[arrow,arrowpos=0.75](70,40)(130,100)
\GluonArc(130,70)(30,270,450){3}{10}
\Photon(163,70)(193,70){4}{3}
\Photon(163,70)(193,70){-4}{3}
\Gluon(100,100)(100,130){3}{4}
\Gluon(100,40)(100,10){3}{4}
\Vertex(40,70){2}
\Vertex(163,70){2}
\Vertex(70,40){2}
\Vertex(130,100){2}
\Vertex(130,40){2}
\Vertex(100,100){2}
\Vertex(100,40){2}
\end{axopicture}
\end{center}
for which the code is:
\begin{verbatim}
  \begin{center}
  \begin{axopicture}{(200,140)(0,0)}
  \SetArrowStroke{0.5} \SetArrowScale{0.8}
  \Photon(7,70)(40,70){4}{3}
  \Photon(7,70)(40,70){-4}{3}
  \GluonArc(70,70)(30,180,270){3}{5}
  \Bezier[arrow](100,100)(55,100)(40,95)(40,70)
  \Line[arrow](130,100)(100,100)
  \Bezier[arrow,arrowpos=0.37](40,70)(100,70)(130,70)(130,40)
  \Line[arrow](100,40)(70,40) \Line[arrow](130,40)(100,40)
  \Line[arrow,arrowpos=0.75](70,40)(130,100)
  \GluonArc(130,70)(30,270,450){3}{10}
  \Photon(163,70)(193,70){4}{3}
  \Photon(163,70)(193,70){-4}{3}
  \Gluon(100,100)(100,130){3}{4} \Gluon(100,40)(100,10){3}{4}
  \Vertex(40,70){2} \Vertex(163,70){2} \Vertex(70,40){2}
  \Vertex(130,100){2} \Vertex(130,40){2} \Vertex(100,100){2}
  \Vertex(100,40){2}
  \end{axopicture}
  \end{center}
\end{verbatim}

%\subsection{A flowchart}

%\subsection{A histogram}
 
\subsection{A diagrammatic equation}

This example is from ref~\cite{twopap}. The equations in that paper were 
rather untransparent, because each Feynman diagram represents a complicated 
two loop integral and to solve these integrals one needed many different 
recursion relations in terms of the powers of the propagators. We defined a 
number of macro's for the diagrams, each containing one picture. Here are 
three of them:

\begin{verbatim}
  \def\TAA(#1,#2,#3,#4,#5,#6){
    \raisebox{-19.1pt}{ \hspace{-12pt}
      \begin{axopicture}{(50,39)(0,-4)}
      \SetScale{0.5}\SetColor{Blue}%
      \CArc(40,35)(25,90,270) \CArc(60,35)(25,270,90)
      \Line(40,60)(60,60) \Line(40,10)(60,10) \Line(50,10)(50,60)
      \Line(0,35)(15,35) \Line(85,35)(100,35)
      \SetColor{Black}\SetPFont{Helvetica}{14}%
      \PText(55,39)(0)[lb]{#5} \PText(55,36)(0)[lt]{#6}
      \PText(35,62)(0)[rb]{#1} \PText(65,62)(0)[lb]{#2}
      \PText(65,8)(0)[lt]{#3} \PText(35,8)(0)[rt]{#4}
      \SetColor{Red} \SetWidth{3}
      \Line(50,35)(50,60) \Line(40,60)(50,60)
      \CArc(40,35)(25,90,180) \Vertex(50,60){1.3}
      \end{axopicture}
      \hspace{-12pt}
    }
  }
\end{verbatim}
\def\TAA(#1,#2,#3,#4,#5,#6){
  \raisebox{-18.1pt}{ \hspace{-12pt}
    \begin{axopicture}{(50,39)(0,-4)}
    \SetScale{0.5}\SetColor{Blue}%
    \CArc(40,35)(25,90,270) \CArc(60,35)(25,270,90)
    \Line(40,60)(60,60) \Line(40,10)(60,10) \Line(50,10)(50,60)
    \Line(0,35)(15,35) \Line(85,35)(100,35)
    \SetColor{Black}\SetPFont{Helvetica}{14}%
    \PText(55,39)(0)[lb]{#5} \PText(55,36)(0)[lt]{#6}
    \PText(35,62)(0)[rb]{#1} \PText(65,62)(0)[lb]{#2}
    \PText(65,8)(0)[lt]{#3} \PText(35,8)(0)[rt]{#4}
    \SetColor{Red} \SetWidth{3}
    \Line(50,35)(50,60) \Line(40,60)(50,60)
    \CArc(40,35)(25,90,180) \Vertex(50,60){1.3}
    \end{axopicture}
    \hspace{-12pt}
  }
}
\begin{verbatim}
  \def\TABs(#1,#2,#3,#4,#5){
    \raisebox{-18.1pt}{ \hspace{-12pt}
      \begin{axopicture}{(50,39)(0,-4)}
      \SetScale{0.5}\SetColor{Blue}%
      \CArc(40,35)(25,90,270) \CArc(60,35)(25,270,90)
      \Line(40,60)(60,60) \Line(40,10)(60,10) \Line(50,10)(50,60)
      \Line(0,35)(15,35) \Line(85,35)(100,35)
      \SetColor{Black}\SetPFont{Helvetica}{14}%
      \PText(55,38)(0)[l]{#5}
      \PText(35,62)(0)[rb]{#1} \PText(65,62)(0)[lb]{#2}
      \PText(65,8)(0)[lt]{#3} \PText(35,8)(0)[rt]{#4}
      \SetColor{Red} \SetWidth{3}
      \Line(50,10)(50,60) \Vertex(50,60){1.3}
      \Line(40,60)(50,60) \CArc(40,35)(25,90,180)
      \end{axopicture}
      \hspace{-12pt}
    }
  }
\end{verbatim}
\def\TABs(#1,#2,#3,#4,#5){
  \raisebox{-18.1pt}{ \hspace{-12pt}
    \begin{axopicture}{(50,39)(0,-4)}
    \SetScale{0.5}\SetColor{Blue}%
    \CArc(40,35)(25,90,270) \CArc(60,35)(25,270,90)
    \Line(40,60)(60,60) \Line(40,10)(60,10) \Line(50,10)(50,60)
    \Line(0,35)(15,35) \Line(85,35)(100,35)
    \SetColor{Black}\SetPFont{Helvetica}{14}%
    \PText(55,38)(0)[l]{#5}
    \PText(35,62)(0)[rb]{#1} \PText(65,62)(0)[lb]{#2}
    \PText(65,8)(0)[lt]{#3} \PText(35,8)(0)[rt]{#4}
    \SetColor{Red} \SetWidth{3}
    \Line(50,10)(50,60) \Vertex(50,60){1.3}
    \Line(40,60)(50,60) \CArc(40,35)(25,90,180)
    \end{axopicture}
    \hspace{-12pt}
  }
}
\begin{verbatim}
  \def\TACs(#1,#2,#3,#4,#5){
    \raisebox{-19.1pt}{ \hspace{-12pt}
      \begin{axopicture}{(50,39)(0,-4)}
      \SetScale{0.5}\SetColor{Blue}%
      \CArc(40,35)(25,90,270) \CArc(60,35)(25,270,90)
      \Line(40,60)(60,60) \Line(40,10)(60,10) \Line(50,10)(50,60)
      \Line(0,35)(15,35) \Line(85,35)(100,35)
      \SetColor{Black}\SetPFont{Helvetica}{14}%
      \PText(53,38)(0)[l]{#5}
      \PText(35,62)(0)[rb]{#1} \PText(65,62)(0)[lb]{#2}
      \PText(65,8)(0)[lt]{#3} \PText(35,8)(0)[rt]{#4}
      \SetColor{Red} \SetWidth{3}
      \Line(40,60)(50,60) \CArc(40,35)(25,90,180)
      \end{axopicture}
      \hspace{-12pt}
    }
  }
\end{verbatim}
\def\TACs(#1,#2,#3,#4,#5){
  \raisebox{-19.1pt}{ \hspace{-12pt}
    \begin{axopicture}{(50,39)(0,-4)}
    \SetScale{0.5}\SetColor{Blue}%
    \CArc(40,35)(25,90,270) \CArc(60,35)(25,270,90)
    \Line(40,60)(60,60) \Line(40,10)(60,10) \Line(50,10)(50,60)
    \Line(0,35)(15,35) \Line(85,35)(100,35)
    \SetColor{Black}\SetPFont{Helvetica}{14}%
    \PText(53,38)(0)[l]{#5}
    \PText(35,62)(0)[rb]{#1} \PText(65,62)(0)[lb]{#2}
    \PText(65,8)(0)[lt]{#3} \PText(35,8)(0)[rt]{#4}
    \SetColor{Red} \SetWidth{3}
    \Line(40,60)(50,60) \CArc(40,35)(25,90,180)
    \end{axopicture}
    \hspace{-12pt}
  }
}
and together with two extra little macro's
\begin{verbatim}
\def\plus{\!+\!}
\def\minus{\!-\!}
\end{verbatim}
\def\plus{\!+\!}
\def\minus{\!-\!}
the equations became rather transparent and easy to program. This is the 
code
\begin{verbatim}
   \begin{eqnarray}
     \TAA({n,m},1,1,1,1,1) & = & \frac{1}{\tilde{N}\plus 5\plus n\minus
     m\minus D}\ (\ n\ \ \TAA({n+1,m},0,1,1,1,1)
       \ \ -n\ \ \TACs({n+1,m},1,1,1,1)  \\ & &
       +\ \ \TAA({n,m},1,0,2,1,1)
       \ \ -\ \ \TABs({n,m},1,1,2,1)
       \ \ +m\ \ \TACs({n,m-1},1,1,1,1) 
       \ \ -m\ \ \TABs({n,m-1},1,1,1,1)\ \ \ ) \, .\nonumber
   \end{eqnarray}
\end{verbatim}
and the equation becomes
\begin{eqnarray}
     \TAA({n,m},1,1,1,1,1) & = & \frac{1}{\tilde{N}\plus 5\plus n\minus
     m\minus D}\ (\ n\ \ \TAA({n+1,m},0,1,1,1,1)
       \ \ -n\ \ \TACs({n+1,m},1,1,1,1)  \\ & &
       +\ \ \TAA({n,m},1,0,2,1,1)
       \ \ -\ \ \TABs({n,m},1,1,2,1)
       \ \ +m\ \ \TACs({n,m-1},1,1,1,1) 
       \ \ -m\ \ \TABs({n,m-1},1,1,1,1)\ \ \ ) \, .\nonumber
\end{eqnarray}
The diagrams are actually four-point diagrams. A momentum $P$ flows through 
the diagram (the fat red line), but because the method of computation 
involves an expansion in terms of this momentum the remaining diagrams are 
like two-point functions. Details are in the paper.

%>>#] Some examples :
%>>#[ Acknowledgements :

\section*{Acknowledgements}

JAMV's work is part of the research program of the ``Stichting voor 
Fundamenteel Onderzoek der Materie (FOM)'', which is financially supported 
by the ``Nederlandse organisatie voor Wetenschappelijke Onderzoek (NWO)'' and 
is also supported by the ERC Advanced Grant no.~320651, HEPGAME.
JCC is supported in part by the U.S. Department of Energy under Grant
No.\ DE-SC0008745.  

We like to thank Lucas Theussl for discussions during the development of 
axodraw2.

%>>#] Acknowledgements :
%--#[ Appendix :

\appendix

\section{The \program{axohelp} program: Information for developers}
\label{sec:axohelp.devel}

This appendix provides some details on how the \program{axohelp} program works.
Most of the information is only relevant to people who wish to modify
or extend axodraw2 and therefore may need to modify \program{axohelp} as well.

The reason for \program{axohelp}'s existence is that axodraw needs to perform
substantial geometric calculations.  When axodraw is used with
pdflatex to produce pdf output directly, suitable calculational
facilities are not available, neither within the PDF language nor
within \LaTeX{} itself.  Therefore when axodraw is used under
pdflatex, we use our program \program{axohelp} to perform the calculations.

The mode of operation is as follows.  Let us assume that the
\file{.tex} file being compiled by the \program{pdflatex} program is
called \file{paper.tex}.  When one issues the command
\begin{verbatim}
  pdflatex paper
\end{verbatim}
the reaction of the system is of course to translate all \TeX{}
related objects into a PDF file. Most (but not all) axodraw objects
need non-trivial calculations and hence their specifications are
placed inside a file called \file{paper.ax1}. At the end of the
processing \program{pdflatex} will place a message on the screen that
mentions that the user should run the command
\begin{verbatim}
  axohelp paper
\end{verbatim}
for the processing of this graphical information. In principle it is
possible to arrange for \program{axohelp} to be invoked automatically from
within pdflatex.  But for this to be done, the running of general
external commands from pdflatex would have to be enabled.  That is a
security risk, and is therefore normally disabled by default for
pdflatex.

When run, \program{axohelp} reads the file \file{paper.ax1}, processes the
contents, and produces a file \file{paper.ax2}. For each axodraw
object, it contains both the code to be placed in the pdf file, and a
copy of the corresponding specification that was in \file{paper.ax1}.

When pdflatex is run again, it sees that the file \file{paper.ax2} is
present and reads it in to give essentially an array of objects, one
for each processed axodraw object.  Then during the processing of the
document, whenever axodraw runs into an axodraw object in need of
external calculation, it determines whether an exactly corresponding
specification was present in the file \file{paper.ax2}. If not, it
means that the graphical information in the file \file{paper.tex} has
changed since the last run of \program{axohelp} and the graphics information is
invalidated. In that case, at the end of the program the message to
run \program{axohelp} will be printed again. But if instead there is an exact
match between an axodraw object in the current \file{paper.tex} and
its specification in \file{paper.ax2}, then the corresponding pdf code
will be placed in the PDF file. If all axodraw commands have a proper
match in the \file{paper.ax2} file, there will be no message in the
paper.log file and on the screen about rerunning \program{axohelp}; then the PDF
file should contain the correct information for drawing the axodraw
objects (at least if there are no \TeX{} errors).

In a sense the situation with \program{axohelp} is no different from the use of
makeindex when one prepares a document that contains an index. In that
case one also has to run \LaTeX{} once to prepare a file for the
makeindex program, then run this program which prepares another file
and finally run \LaTeX{} again. Note that if you submit a paper to
arXiv.org, it is likely that their automated system for processing the
file will not run \program{axohelp}. So together with \file{paper.tex}, you one
should also submit the \file{.ax2} file.

The complete source of the \program{axohelp} program can be found in the file
\file{axohelp.c}. This file contains a bit less than 4000 lines of C
code but should translate without problems with any C compiler --- see
Sec.\ \ref{sec:axohelp} for an appropriate command line on typical
Unix-like systems.

The \program{axohelp} program functions as follows:
\begin{enumerate}
\item The \file{.ax1} file is located, space is allocated for it and
  the complete file is read and closed again.
\item The input is analysed and split in individual object
  specifications, of which a list is made.
\item The list of object specifications is processed one by
  one. Before the processing of each object specification, the system
  is brought to a default state to avoid that there is a memory of the
  previous object. 
\item In the \file{.ax2} file, for each object is written both the
  corresponding pdf code and a copy of the specification of the object
  as was earlier read from the \file{.ax1} file.  Before the output
  for an object is written to the \file{.ax2} file it is optimized a
  bit to avoid superfluous spaces and linefeeds.
\end{enumerate}

Processing an object from the input involves finding the proper routine for 
it and testing that the number of parameters is correct. Some objects have 
a special input (like the Curve, DashCurve, Polygon and FilledPolygon 
commands). All relevant information is stored in an array of double 
precision numbers. Then some generic action is taken (like setting the 
linewidth and the color) and the right routine is 
called. The output is written to an array of fixed (rather large) length. 
Finally the array is optimized and written to file.

A user who would like to extend the system with new objects should
take the above structure into account. There is an array that gives
the correspondence between axodraw object names and the corresponding
routine in \program{axohelp}.  For each object, this array also gives the number
of parameters and whether the stroking or non-stroking color space
should be used. 

Naturally, when adding new kinds of object, it is necessary to add new
items to the just-mentioned array, and to add a corresponding
subroutine.  One should also try to do all the writing of PDF code by
means of some routines like the ones sitting in the file in the
section named ``PDF utilities''. This is important from the viewpoint
of future action. When new graphical languages will be introduced and
it will be needed to modify axodraw2 such that it can produce code for
those languages, it should be much easier if code in the supporting
\program{axohelp} program needs to be changed in as few places as possible.
They form a set of graphics primitives used by other subroutines.
Some of these subroutines in the ``PDF utilities'' section of
\file{axohelp.c} have names similar to operators in the postscript
language that perform the same function.

%--#] Appendix :
%>>#[ bibliography :

\begin{thebibliography}{9}

\bibitem{axodraw1} J.A.M. Vermaseren,
  Comput.\ Phys.\ Commun.\ {\bf 83} (1994) 45--58

\bibitem{jaxodraw1} D. Binosi and L. Theussl,
  Comput.\ Phys.\ Commun.\ {\bf 161} (2004) 76--86.

\bibitem{jaxodraw2}
D. Binosi, J. Collins, C. Kaufhold, L. Theussl, 
  Comput.\ Phys.\ Commun.\ {\bf 180} (2009) 1709--1715

\bibitem{GPL} GNU General Public
  License. \url{http://www.gnu.org/copyleft/gpl.html}. 
  
\bibitem{qcdbook}
J.C. Collins, ``Foundations of Perturbative QCD'' (Cambridge
  University Press, 2011).

\bibitem{twopap} S. Moch and J.A.M. Vermaseren,
  Nucl.\ Phys.\ {\bf B573} (2000) 853.
  %%CITATION = NUPHA,B573,853;%%.

\end{thebibliography}

%>>#] bibliography :
\end{document}