summaryrefslogtreecommitdiff
path: root/graphics/asymptote/path3.h
blob: 095d4698af4e087da0edf9e2beb724c9c1c502b1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
/*****
 * path.h
 * John Bowman
 *
 * Stores a 3D piecewise cubic spline with known control points.
 *
 *****/

#ifndef PATH3_H
#define PATH3_H

#include <cfloat>

#include "mod.h"
#include "triple.h"
#include "bbox3.h"
#include "path.h"
#include "arrayop.h"

// For CYGWIN
#undef near
#undef far

namespace camp {

void checkEmpty3(Int n);

// Used in the storage of solved path3 knots.
struct solvedKnot3 : public gc {
  triple pre;
  triple point;
  triple post;
  bool straight;
  solvedKnot3() : straight(false) {}

  friend bool operator== (const solvedKnot3& p, const solvedKnot3& q)
  {
    return p.pre == q.pre && p.point == q.point && p.post == q.post;
  }
};

class path3 : public gc {
  bool cycles;  // If the path3 is closed in a loop

  Int n; // The number of knots

  mem::vector<solvedKnot3> nodes;
  mutable double cached_length; // Cache length since path3 is immutable.

  mutable bbox3 box;
  mutable bbox3 times; // Times where minimum and maximum extents are attained.

public:
  path3()
    : cycles(false), n(0), nodes(), cached_length(-1) {}

  // Create a path3 of a single point
  path3(triple z, bool = false)
    : cycles(false), n(1), nodes(1), cached_length(-1)
  {
    nodes[0].pre = nodes[0].point = nodes[0].post = z;
    nodes[0].straight = false;
  }

  // Creates path3 from a list of knots.  This will be used by camp
  // methods such as the guide solver, but should probably not be used by a
  // user of the system unless he knows what he is doing.
  path3(mem::vector<solvedKnot3>& nodes, Int n, bool cycles = false)
    : cycles(cycles), n(n), nodes(nodes), cached_length(-1)
  {
  }

  friend bool operator== (const path3& p, const path3& q)
  {
    return p.cycles == q.cycles && p.nodes == q.nodes;
  }

public:
  path3(solvedKnot3 n1, solvedKnot3 n2)
    : cycles(false), n(2), nodes(2), cached_length(-1)
  {
    nodes[0] = n1;
    nodes[1] = n2;
    nodes[0].pre = nodes[0].point;
    nodes[1].post = nodes[1].point;
  }

  // Copy constructor
  path3(const path3& p)
    : cycles(p.cycles), n(p.n), nodes(p.nodes), cached_length(p.cached_length),
      box(p.box), times(p.times)
  {}

  path3 unstraighten() const
  {
    path3 P=path3(*this);
    for(int i=0; i < n; ++i)
      P.nodes[i].straight=false;
    return P;
  }

  virtual ~path3()
  {
  }

  // Getting control points
  Int size() const
  {
    return n;
  }

  bool empty() const
  {
    return n == 0;
  }

  Int length() const
  {
    return cycles ? n : n-1;
  }

  bool cyclic() const
  {
    return cycles;
  }

  mem::vector<solvedKnot3>& Nodes() {
    return nodes;
  }

  bool straight(Int t) const
  {
    if (cycles) return nodes[imod(t,n)].straight;
    return (t >= 0 && t < n) ? nodes[t].straight : false;
  }

  bool piecewisestraight() const
  {
    Int L=length();
    for(Int i=0; i < L; ++i)
      if(!straight(i)) return false;
    return true;
  }

  triple point(Int t) const
  {
    return nodes[adjustedIndex(t,n,cycles)].point;
  }

  triple point(double t) const;

  triple precontrol(Int t) const
  {
    return nodes[adjustedIndex(t,n,cycles)].pre;
  }

  triple precontrol(double t) const;

  triple postcontrol(Int t) const
  {
    return nodes[adjustedIndex(t,n,cycles)].post;
  }

  triple postcontrol(double t) const;

  inline double norm(const triple& z0, const triple& c0, const triple& c1,
                     const triple& z1) const {
    return Fuzz2*camp::max((c0-z0).abs2(),
                           camp::max((c1-z0).abs2(),(z1-z0).abs2()));
  }

  triple predir(Int t, bool normalize=true) const {
    if(!cycles && t <= 0) return triple(0,0,0);
    triple z1=point(t);
    triple c1=precontrol(t);
    triple dir=3.0*(z1-c1);
    if(!normalize) return dir;
    triple z0=point(t-1);
    triple c0=postcontrol(t-1);
    double epsilon=norm(z0,c0,c1,z1);
    if(dir.abs2() > epsilon) return unit(dir);
    dir=2.0*c1-c0-z1;
    if(dir.abs2() > epsilon) return unit(dir);
    return unit(z1-z0+3.0*(c0-c1));
  }

  triple postdir(Int t, bool normalize=true) const {
    if(!cycles && t >= n-1) return triple(0,0,0);
    triple c0=postcontrol(t);
    triple z0=point(t);
    triple dir=3.0*(c0-z0);
    triple z1=point(t+1);
    triple c1=precontrol(t+1);
    double epsilon=norm(z0,c0,c1,z1);
    if(!normalize) return dir;
    if(dir.abs2() > epsilon) return unit(dir);
    dir=z0-2.0*c0+c1;
    if(dir.abs2() > epsilon) return unit(dir);
    return unit(z1-z0+3.0*(c0-c1));
  }

  triple dir(Int t, Int sign, bool normalize=true) const {
    if(sign == 0) {
      triple v=predir(t,normalize)+postdir(t,normalize);
      return normalize ? unit(v) : 0.5*v;
    }
    if(sign > 0) return postdir(t,normalize);
    return predir(t,normalize);
  }

  triple dir(double t, bool normalize=true) const {
    if(!cycles) {
      if(t <= 0) return postdir((Int) 0,normalize);
      if(t >= n-1) return predir(n-1,normalize);
    }
    Int i=Floor(t);
    t -= i;
    if(t == 0) return dir(i,0,normalize);
    triple z0=point(i);
    triple c0=postcontrol(i);
    triple c1=precontrol(i+1);
    triple z1=point(i+1);
    triple a=3.0*(z1-z0)+9.0*(c0-c1);
    triple b=6.0*(z0+c1)-12.0*c0;
    triple c=3.0*(c0-z0);
    triple dir=a*t*t+b*t+c;
    if(!normalize) return dir;
    double epsilon=norm(z0,c0,c1,z1);
    if(dir.abs2() > epsilon) return unit(dir);
    dir=2.0*a*t+b;
    if(dir.abs2() > epsilon) return unit(dir);
    return unit(a);
  }

  triple postaccel(Int t) const {
    if(!cycles && t >= n-1) return triple(0,0,0);
    triple z0=point(t);
    triple c0=postcontrol(t);
    triple c1=precontrol(t+1);
    return 6.0*(z0+c1)-12.0*c0;
  }

  triple preaccel(Int t) const {
    if(!cycles && t <= 0) return triple(0,0,0);
    triple z0=point(t-1);
    triple c0=postcontrol(t-1);
    triple c1=precontrol(t);
    triple z1=point(t);
    return 6.0*(z1+c0)-12.0*c1;
  }

  triple accel(Int t, Int sign) const {
    if(sign == 0) return 0.5*(preaccel(t)+postaccel(t));
    if(sign > 0) return postaccel(t);
    return preaccel(t);
  }

  triple accel(double t) const {
    if(!cycles) {
      if(t <= 0) return postaccel((Int) 0);
      if(t >= n-1) return preaccel(n-1);
    }
    Int i=Floor(t);
    t -= i;
    if(t == 0) return 0.5*(postaccel(i)+preaccel(i));
    triple z0=point(i);
    triple c0=postcontrol(i);
    triple c1=precontrol(i+1);
    triple z1=point(i+1);
    return 6.0*t*(z1-z0+3.0*(c0-c1))+6.0*(z0+c1)-12.0*c0;
  }

  // Returns the path3 traced out in reverse.
  path3 reverse() const;

  // Generates a path3 that is a section of the old path3, using the time
  // interval given.
  path3 subpath(Int start, Int end) const;
  path3 subpath(double start, double end) const;

  // Special case of subpath used by intersect.
  void halve(path3 &first, path3 &second) const;

  // Used by picture to determine bounding box.
  bbox3 bounds() const;

  triple mintimes() const {
    checkEmpty3(n);
    bounds();
    return camp::triple(times.left,times.bottom,times.near);
  }

  triple maxtimes() const {
    checkEmpty3(n);
    bounds();
    return camp::triple(times.right,times.top,times.far);
  }

  template<class T>
  void addpoint(bbox3& box, T i) const {
    box.addnonempty(point(i),times,(double) i);
  }

  double cubiclength(Int i, double goal=-1) const;
  double arclength () const;
  double arctime (double l) const;

  triple max() const {
    checkEmpty3(n);
    return bounds().Max();
  }

  triple min() const {
    checkEmpty3(n);
    return bounds().Min();
  }

  pair ratio(double (*m)(double, double)) const;

// Increment count if the path3 has a vertical component at t.
  bool Count(Int& count, double t) const;

// Count if t is in (begin,end] and z lies to the left of point(i+t).
  void countleft(Int& count, double x, Int i, double t,
                 double begin, double end, double& mint, double& maxt) const;

// Return the winding number of the region bounded by the (cyclic) path3
// relative to the point z.
  Int windingnumber(const triple& z) const;
};

double arcLength(const triple& z0, const triple& c0, const triple& c1,
                 const triple& z1);

path3 transformed(const vm::array& t, const path3& p);
path3 transformed(const double* t, const path3& p);

extern path3 nullpath3;
extern const unsigned maxdepth;

bool intersect(double& S, double& T, path3& p, path3& q, double fuzz,
               unsigned depth=maxdepth);
bool intersections(double& s, double& t, std::vector<double>& S,
                   std::vector<double>& T, path3& p, path3& q,
                   double fuzz, bool single, bool exact,
                   unsigned depth=maxdepth);
void intersections(std::vector<double>& S, path3& g,
                   const triple& p, const triple& q, double fuzz);

bool intersections(std::vector<double>& T, std::vector<double>& U,
                   std::vector<double>& V, path3& p, triple *P,
                   double fuzz, bool single, unsigned depth=maxdepth);
bool intersections(double& U, double& V, const triple& v, triple *P,
                   double fuzz, unsigned depth=maxdepth);

// Concatenates two path3s into a new one.
path3 concat(const path3& p1, const path3& p2);

// return the perpendicular displacement of a point z from the line through
// points p and q.
inline triple displacement(const triple& z, const triple& p, const triple& q)
{
  triple Z=z-p;
  triple Q=unit(q-p);
  return Z-dot(Z,Q)*Q;
}

typedef double bound_double(double *P, double (*m)(double, double), double b,
                            double fuzz, int depth);

typedef double bound_triple(triple *P, double (*m)(double, double),
                            double (*f)(const triple&), double b, double fuzz,
                            int depth);

bound_double bound,boundtri;

double bound(triple z0, triple c0, triple c1, triple z1,
             double (*m)(double, double),
             double (*f)(const triple&),
             double b, double fuzz, int depth=maxdepth);
double bound(double *p, double (*m)(double, double),
             double b, double fuzz, int depth);
double bound(triple *P, double (*m)(double, double),
             double (*f)(const triple&), double b, double fuzz,
             int depth);

double boundtri(double *P, double (*m)(double, double), double b,
                double fuzz, int depth);
double boundtri(triple *P, double (*m)(double, double),
                double (*f)(const triple&), double b, double fuzz,
                int depth);
}

#ifndef BROKEN_COMPILER
// Delete the following line to work around problems with old broken compilers.
GC_DECLARE_PTRFREE(camp::solvedKnot3);
#endif

#endif