1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
|
/*****
* knot.h
* Andy Hammerlindl 200/02/10
*
* Describes a knot, a point and its neighbouring specifiers, used as an
* intermediate structure in solving paths.
*****/
#ifndef KNOT_H
#define KNOT_H
#include <iostream>
#include <vector>
#include <algorithm>
#include "mod.h"
#include "pair.h"
#include "path.h"
namespace camp {
using mem::vector;
// The choice of branch cuts of atan2 disguishes between y=+0.0 and y=-0.0 in
// the case where x<0. This can lead to strange looking paths being
// calculated from guides of the form a..b..cycle. To avoid these degenerate
// cases, the niceAngle routine moves the branch cut so that the sign of a
// zero won't matter.
double niceAngle(pair z);
// A cyclic vector: ie. a vector where the index is taken mod the size of the
// vector.
template <typename T>
class cvector : public vector<T> {
public:
cvector() {}
cvector(size_t n) : vector<T>(n) {}
cvector(size_t n, const T& t) : vector<T>(n,t) {}
cvector(const vector<T>& v) : vector<T>(v) {}
T& operator[](Int j) {
return vector<T>::operator[](imod(j,(Int) this->size()));
}
const T& operator[](Int j) const {
return vector<T>::operator[](imod(j,(Int) this->size()));
}
};
// Forward declaration.
class knotlist;
/* A linear equation (one of a set of equations to solve for direction through
knots in a path). The i-th equation is:
pre*theta[i-1] + piv*theta[i] + post*theta[i+1] = aug
where indices are taken mod n.
*/
struct eqn {
double pre,piv,post,aug;
eqn(double pre, double piv, double post, double aug)
: pre(pre), piv(piv), post(post), aug(aug) {}
friend ostream& operator<< (ostream& out, const eqn& e)
{
return out << e.pre << " * pre + "
<< e.piv << " * piv + "
<< e.post << " * post = "
<< e.aug;
}
};
// A direction specifier, telling how the path behaves coming in or out of a
// point. The base class represents the "open" specifier.
class spec : public gc {
public:
virtual ~spec() {}
// If the knot is open, it gives no restriction on the behavior of the
// path.
virtual bool open() { return true; }
virtual bool controlled() { return false; }
virtual pair control() {return pair(0.0,0.0);}
virtual double curl() { return -1.0; }
virtual pair dir() { return pair(0.0,0.0); }
// When a knot has a restriction on one side but is open on the other, the
// restriction implies a restriction on the other side. This is the partner
// restriction defined here, where the pair argument is for the location of
// the knot.
virtual spec *outPartner(pair) { return this; }
virtual spec *inPartner(pair) { return this; }
virtual void print(ostream&) const {}
};
inline ostream& operator<< (ostream& out, spec& s)
{
s.print(out);
return out;
}
// Specifier used at an endpoint.
class endSpec : public spec {
public:
bool open() { return false; }
// Returns an equation used to solve for the thetas along the knot. These are
// called by eqnprop in the non-cyclic case for the first and last equations.
virtual eqn eqnOut(Int j, knotlist& l,
cvector<double>& d, cvector<double>& psi) = 0;
virtual eqn eqnIn (Int j, knotlist& l,
cvector<double>& d, cvector<double>& psi) = 0;
};
// A specifier with a given direction (in radians).
class dirSpec : public endSpec {
double given;
public:
// Direction should be given in the range [-PI,PI]
dirSpec(double given)
: given(given) {}
dirSpec(pair z)
: given(niceAngle(z)) {}
pair dir() { return expi(given); }
eqn eqnOut(Int j, knotlist& l, cvector<double>& d, cvector<double>& psi);
eqn eqnIn (Int j, knotlist& l, cvector<double>& d, cvector<double>& psi);
void print(ostream& out) const {
out << "{dir(" << degrees(given) << ")}";
}
};
// A curl specifier. The curvature at the end knot should be gamma times the
// curvature at the neighbouring knot.
class curlSpec : public endSpec {
double gamma;
public:
// Gamma should be non-negative.
curlSpec(double gamma=1.0)
: gamma(gamma) {
if(gamma < 0)
reportError("curl cannot be less than 0");
}
double curl() { return gamma; }
eqn eqnOut(Int j, knotlist& l, cvector<double>& d, cvector<double>& psi);
eqn eqnIn (Int j, knotlist& l, cvector<double>& d, cvector<double>& psi);
void print(ostream& out) const {
out << "{curl " << gamma << "}";
}
};
// A specifier with a control point. All information for this portion of the
// curve has been determined.
class controlSpec : public spec {
public:
pair cz;
bool straight;
controlSpec(pair cz, bool straight=false)
: cz(cz), straight(straight) {}
bool open() { return false; }
bool controlled() { return true; }
pair control() { return cz; }
// The partner spec will be a dirSpec in the same direction the specifier
// takes the path, unless the velocity is zero, then it uses a curl
// specifier.
spec *outPartner(pair);
spec *inPartner(pair);
void print(ostream& out) const {
// NOTE: This format cannot be read back in.
out << "{control " << cz << "}";
}
};
// The tension information for one side of a knot.
struct tension {
double val;
bool atleast;
tension(double val=1.0, bool atleast=false)
: val(val), atleast(atleast) {
if(val < 0.75)
reportError("tension cannot be less than 3/4");
}
};
inline
ostream& operator<<(ostream& out, tension t)
{
return out << "tension" << (t.atleast ? " atleast " : " ") << t.val;
}
// A knot, a point with specifiers to double the path coming in and going out
// of the knot.
struct knot {
pair z;
spec *in;
spec *out;
tension tin, tout;
knot() {}
knot(pair z, spec *in, spec *out,
tension tin=tension(), tension tout=tension())
: z(z), in(in), out(out), tin(tin), tout(tout) {}
double alpha() { return 1.0/tout.val; }
double beta() { return 1.0/tin.val; }
};
ostream& operator<<(ostream& out, const knot& k);
// Abstract base class for a section of a guide.
class knotlist {
public:
virtual ~knotlist() {}
virtual Int length() = 0;
virtual bool cyclic() = 0;
// Returns the number of knots.
Int size() {
return cyclic() ? length() : length() + 1;
}
bool empty() {
return size()==0;
}
virtual knot& cell(Int) = 0;
virtual knot& operator[] (Int i) {
#if 0
assert(cyclic() || (0 <= i && i <= length())); // Bounds check.
#endif
return cell(i);
}
knot& front() {
return (*this)[0];
}
knot& back() {
return (*this)[length()];
}
};
// Defines a knotlist as a piece of another knotlist.
class subknotlist : public knotlist {
knotlist& l;
Int a,b;
public:
subknotlist(knotlist& l, Int a, Int b)
: l(l), a(a), b(b) {}
Int length() { return b-a; }
bool cyclic() { return false; }
knot& cell(Int i) { return l[a+i]; }
};
struct simpleknotlist : public knotlist {
cvector<knot> nodes;
bool cycles;
simpleknotlist(cvector<knot> nodes, bool cycles=false)
: nodes(nodes), cycles(cycles) {}
Int length() { return cycles ? (Int) nodes.size() : (Int) nodes.size() - 1; }
bool cyclic() { return cycles; }
knot& cell(Int j) { return nodes[j]; }
};
// A protopath is a path being made.
struct protopath {
bool cycles;
Int n;
mem::vector<solvedKnot> nodes;
protopath(Int n, bool cycles)
: cycles(cycles), n(n), nodes(n) {}
solvedKnot& operator[](Int j) {
return nodes[imod(j,n)];
}
bool& straight(Int j) {
return (*this)[j].straight;
}
pair& pre(Int j) {
return (*this)[j].pre;
}
pair& point(Int j) {
return (*this)[j].point;
}
pair& post(Int j) {
return (*this)[j].post;
}
void controlEnds() {
if (!cycles) {
solvedKnot& start=(*this)[0];
solvedKnot& end=(*this)[n-1];
start.pre=start.point;
end.post=end.point;
}
}
// Once all the controls are set, return the final (constant) path.
path fix() {
return path(nodes,n,cycles);
}
};
// Represents properties that can be computed along a knotlist.
// Examples include distances (d), turning angles (psi), and the linear
// equations used to solve for the thetas.
template <typename T>
class knotprop {
protected:
knotlist& l;
// Calculate the property for the usual case in the iteration (and for a
// cyclic knot, the only case), at the index given.
virtual T mid(Int) = 0;
// The special cases, these default to the usual case: mid.
virtual T solo(Int j) // Calculates the property for a list of length 0.
{
return mid(j);
}
virtual T start(Int j) // Calculates it at the start of the list.
{
return mid(j);
}
virtual T end(Int j) // Calculate it at the end.
{
return mid(j);
}
virtual cvector<T> linearCompute()
{
Int n=l.length();
cvector<T> v;
if (n==0)
v.push_back(solo(0));
else {
v.push_back(start(0));
for (Int j=1; j<n; ++j)
v.push_back(mid(j));
v.push_back(end(n));
}
return v;
}
virtual cvector<T> cyclicCompute()
{
Int n=l.length();
cvector<T> v;
for (Int j=0; j<n; ++j)
v.push_back(mid(j));
return v;
}
virtual cvector<T> linearBackCompute()
{
Int n=l.length();
cvector<T> v;
if (n==0)
v.push_back(solo(0));
else {
v.push_back(end(n));
for (Int j=1; j<n; ++j)
v.push_back(mid(n-j));
v.push_back(start(0));
}
return v;
}
virtual cvector<T> cyclicBackCompute()
{
Int n=l.length();
cvector<T> v;
for (Int j=1; j<=n; ++j)
v.push_back(mid(n-j));
return v;
}
public:
virtual ~knotprop() {}
virtual cvector<T> compute() {
return l.cyclic() ? cyclicCompute() : linearCompute();
}
// Compute the values in the opposite order. This is needed for instance if
// the i-th calculation needed a result computed in the i+1-th, such as in the
// back substitution for solving thetas.
virtual cvector<T> backCompute() {
cvector<T> v=l.cyclic() ? cyclicBackCompute() : linearBackCompute();
// Even though they are computed in the backwards order, return them in the
// standard order.
reverse(v.begin(),v.end());
return v;
}
knotprop(knotlist& l)
: l(l) {}
};
// A knot transforms, it takes in one knotlist and transforms it knot for knot
// into a new one.
class knottrans : public knotprop<knot> {
protected:
virtual knot mid(Int j) {
/* By default, just copy the knot. */
return l[j];
}
public:
virtual ~knottrans() {}
knottrans(knotlist& l)
: knotprop<knot>(l) {}
virtual simpleknotlist trans() {
return simpleknotlist(compute(),l.cyclic());
}
};
// Like a knotprop, but it doesn't compute a vector of values for the knot. It
// iterates over the knotlist calling method for side-effect. For instance,
// this is used to plug control points into protopaths.
class knoteffect {
protected:
knotlist& l;
virtual void mid(Int) = 0;
// The special cases, these default to the usual case: mid.
virtual void solo(Int j) {
mid(j);
}
virtual void start(Int j) {
mid(j);
}
virtual void end(Int j) {
mid(j);
}
virtual void linearExec()
{
Int n=l.length();
if (n==0)
solo(0);
else {
start(0);
for (Int j=1; j<n; ++j)
mid(j);
end(n);
}
}
virtual void cyclicExec()
{
Int n=l.length();
for (Int j=0; j<n; ++j)
mid(j);
}
virtual void linearBackExec()
{
Int n=l.length();
if (n==0)
solo(0);
else {
end(n);
for (Int j=1; j<n; ++j)
mid(n-j);
start(0);
}
}
virtual void cyclicBackExec()
{
Int n=l.length();
for (Int j=1; j<=n; ++j)
mid(n-j);
}
public:
virtual ~knoteffect() {}
virtual void exec() {
if (l.cyclic())
cyclicExec();
else
linearExec();
}
virtual void backCompute() {
if (l.cyclic())
cyclicBackExec();
else
linearBackExec();
}
knoteffect(knotlist& l)
: l(l) {}
};
path solve(knotlist& l);
path solveSimple(cvector<pair>& z);
double velocity(double theta, double phi, tension t);
} // namespace camp
GC_DECLARE_PTRFREE(camp::eqn);
GC_DECLARE_PTRFREE(camp::tension);
#endif // KNOT_H
|