1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
|
/*****
* simplex.asy
* Andy Hammerlindl 2004/07/27
*
* Solves the two-variable linear programming problem using the simplex method.
* This problem is specialized in that the second variable, "b", does not have
* a non-negativity condition, and the first variable, "a", is the quantity
* being maximized.
* Correct execution of the algorithm also assumes that the coefficient of "b"
* will be +1 or -1 in every added restriction, and that the problem can be
* initialized to a valid state by pivoting b with one of the slack
* variables. This assumption may in fact be incorrect.
*****/
struct problem {
typedef int var;
static var VAR_A = 0;
static var VAR_B = 1;
static int OPTIMAL = -1;
static var UNBOUNDED = -2;
static int INVALID = -3;
struct row {
real c, t[];
}
// The variables of the rows.
// Initialized for the two variable problem.
var[] v = {VAR_A, VAR_B};
// The rows of equalities.
row rowA() {
row r = new row;
r.c = 0;
r.t = new real[] {1, 0};
return r;
}
row rowB() {
row r = new row;
r.c = 0;
r.t = new real[] {0, 1};
return r;
}
row[] rows = {rowA(), rowB()};
// The number of original variables.
int n = rows.length;
// Pivot the variable v[col] with vp.
void pivot(int col, var vp)
{
var vc=v[col];
// Recalculate rows v[col] and vp for the pivot-swap.
row rvc = rows[vc], rvp = rows[vp];
real factor=1/rvp.t[col]; // NOTE: Handle rvp.t[col] == 0 case.
rvc.c=-rvp.c*factor;
rvp.c=0;
rvc.t=-rvp.t*factor;
rvp.t *= 0;
rvc.t[col]=factor;
rvp.t[col]=1;
var a=min(vc,vp);
var b=max(vc,vp);
// Recalculate the rows other than the two used for the above pivot.
for (var i = 0; i < a; ++i) {
row r=rows[i];
real m = r.t[col];
r.c += m*rvc.c;
r.t += m*rvc.t;
r.t[col]=m*factor;
}
for (var i = a+1; i < b; ++i) {
row r=rows[i];
real m = r.t[col];
r.c += m*rvc.c;
r.t += m*rvc.t;
r.t[col]=m*factor;
}
for (var i = b+1; i < rows.length; ++i) {
row r=rows[i];
real m = r.t[col];
r.c += m*rvc.c;
r.t += m*rvc.t;
r.t[col]=m*factor;
}
// Relabel the vars.
v[col] = vp;
}
// As b does not have a non-negativity condition, it must initially be
// pivoted out for a variable that does. This selects the initial
// variable to pivot with b. It also assumes that there is a valid
// solution with a == 0 to the linear programming problem, and if so, it
// picks a pivot to get to that state. In our case, a == 0 corresponds to
// a picture with the user coordinates shrunk down to zero, and if that
// doesn't fit, nothing will.
//
// If b has a minimal value, choose a pivot that will give b its minimal
// value. Otherwise, if b has maximal value, choose a pivot to give b its
// maximal value.
var initVar()
{
real min;
var argmin;
var i=2;
for (; i < rows.length; ++i) {
row r=rows[i];
if (r.t[VAR_B] > 0) {
min=r.c/r.t[VAR_B];
argmin=i;
break;
}
}
for (; i < rows.length; ++i) {
row r=rows[i];
if (r.t[VAR_B] > 0) {
real val=r.c/r.t[VAR_B];
if (val < min) {
min=val;
argmin=i;
}
}
}
if(argmin != 0) return argmin;
real max;
var argmax;
var i=2;
for (; i < rows.length; ++i) {
row r=rows[i];
if (r.t[VAR_B] < 0) {
max=r.c/r.t[VAR_B];
argmax=i;
break;
}
}
for (; i < rows.length; ++i) {
row r=rows[i];
if (r.t[VAR_B] < 0) {
real val=r.c/r.t[VAR_B];
if (val > max) {
max=val;
argmax=i;
}
}
}
if(argmax != 0) return argmax;
return UNBOUNDED;
}
// Initialize the linear program problem by moving into an acceptable state
// this assumes that b is unrestrained and is the second variable.
// NOTE: Works in limited cases, may be bug-ridden.
void init()
{
// Find the lowest constant term in the equations.
var lowest = 0;
for (var i = 2; i < rows.length; ++i) {
if (rows[i].c < rows[lowest].c)
lowest = i;
}
// Pivot if necessary.
if (lowest != 0)
pivot(VAR_B, lowest);
}
// Selects a column to pivot on. Returns OPTIMAL if the current state is
// optimal. Assumes we are optimizing the first row.
int selectColumn()
{
int i=find(rows[0].t > 0,1);
return (i >= 0) ? i : OPTIMAL;
}
// Select the new variable associated with a pivot on the column given.
// Returns UNBOUNDED if the space is unbounded.
var selectVar(int col)
{
// We assume that the first two vars (a and b) once swapped out, won't be
// swapped back in. This finds the variable which gives the tightest
// non-negativity condition restricting our optimization. This turns
// out to be the max of c/t[col]. Note that as c is positive, and
// t[col] is negative, all c/t[col] will be negative, so we are finding
// the smallest in magnitude.
var vp=UNBOUNDED;
real max=0;
int i=2;
for (; i < rows.length; ++i) {
row r=rows[i];
if(r.c < 0) r.c=0; // Fix any numerical precision error
if(r.t[col] < 0) {
max=r.c/r.t[col]; vp=i;
break;
}
}
for (; i < rows.length; ++i) {
row r=rows[i];
if(r.c < 0) r.c=0; // Fix any numerical precision error
if(r.c < max*r.t[col]) {
max=r.c/r.t[col]; vp=i;
}
}
return vp;
}
// Checks that the rows are in a valid state.
bool valid()
{
// Checks that constants are valid.
bool validConstants() {
for (int i = 0; i < rows.length; ++i)
// Do not test the row for b, as it does not have a non-negativity
// condition.
if (i != VAR_B && rows[i].c < 0)
return false;
return true;
}
// Check a variable to see if its row is simple.
// NOTE: Simple rows could be optimized out, since they are not really
// used.
bool validVar(int col) {
var vc = v[col];
row rvc = rows[vc];
if (rvc.c != 0)
return false;
for (int i = 0; i < n; ++i)
if (rvc.t[i] != (i == col ? 1 : 0))
return false;
return true;
}
if (!validConstants()) {
return false;
}
for (int i = 0; i < n; ++i)
if (!validVar(i)) {
return false;
}
return true;
}
// Perform the algorithm to find the optimal solution. Returns OPTIMAL,
// UNBOUNDED, or INVALID (if no solution is possible).
int optimize()
{
// Put into a valid state to begin and pivot b out.
var iv=initVar();
if (iv == UNBOUNDED)
return iv;
pivot(VAR_B, iv);
if (!valid())
return INVALID;
while(true) {
int col = selectColumn();
if (col == OPTIMAL)
return col;
var vp = selectVar(col);
if (vp == UNBOUNDED)
return vp;
pivot(col, vp);
}
// Shouldn't reach here.
return INVALID;
}
// Add a restriction to the problem:
// t1*a + t2*b + c >= 0
void addRestriction(real t1, real t2, real c)
{
row r = new row;
r.c = c;
r.t = new real[] {t1, t2};
rows.push(r);
}
// Return the value of a computed.
real a()
{
return rows[VAR_A].c;
}
// Return the value of b computed.
real b()
{
return rows[VAR_B].c;
}
}
|