summaryrefslogtreecommitdiff
path: root/graphics/asymptote/base/bsp.asy
blob: 526f264a772ca342a0f4cad0d9bf1e0c58ee55d7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
private import math;
import three;

real epsilon=10*realEpsilon;

// Routines for hidden surface removal (via binary space partition):
// Structure face is derived from picture.
struct face {
  picture pic;
  transform t;
  frame fit;
  triple normal,point;
  triple min,max;
  void operator init(path3 p) {
    this.normal=normal(p);
    if(this.normal == O) abort("path is linear");
    this.point=point(p,0);
    min=min(p);
    max=max(p);
  }
  face copy() {
    face f=new face;
    f.pic=pic.copy();
    f.t=t;
    f.normal=normal;
    f.point=point;
    f.min=min;
    f.max=max;
    add(f.fit,fit);
    return f;
  }
}

picture operator cast(face f) {return f.pic;}
face operator cast(path3 p) {return face(p);}

struct line {
  triple point;
  triple dir;
}

private line intersection(face a, face b)
{
  line L;
  L.point=intersectionpoint(a.normal,a.point,b.normal,b.point);
  L.dir=unit(cross(a.normal,b.normal));
  return L;
}

struct half {
  pair[] left,right;

  // Sort the points in the pair array z according to whether they lie on the
  // left or right side of the line L in the direction dir passing through P.
  // Points exactly on L are considered to be on the right side.
  // Also push any points of intersection of L with the path operator --(... z)
  // onto each of the arrays left and right.
  void operator init(pair dir, pair P ... pair[] z) {
    pair lastz;
    pair invdir=dir != 0 ? 1/dir : 0;
    bool left,last;
    for(int i=0; i < z.length; ++i) {
      left=(invdir*z[i]).y > (invdir*P).y;
      if(i > 0 && last != left) {
        pair w=extension(P,P+dir,lastz,z[i]);
        this.left.push(w);
        this.right.push(w);
      }
      if(left) this.left.push(z[i]);
      else this.right.push(z[i]);
      last=left;
      lastz=z[i];
    }
  }
}

struct splitface {
  face back,front;
}

// Return the pieces obtained by splitting face a by face cut.
splitface split(face a, face cut, projection P)
{
  splitface S;

  void nointersection() {
    if(abs(dot(a.point-P.camera,a.normal)) >=
       abs(dot(cut.point-P.camera,cut.normal))) {
      S.back=a;
      S.front=null;
    } else {
      S.back=null;
      S.front=a;
    }
  }

  if(P.infinity) {
    P=P.copy();
    static real factor=1/sqrtEpsilon;
    P.camera *= factor*max(abs(a.min),abs(a.max),
                           abs(cut.min),abs(cut.max));
  }

  if((abs(a.normal-cut.normal) < epsilon ||
      abs(a.normal+cut.normal) < epsilon)) {
    nointersection();
    return S;
  }

  line L=intersection(a,cut);

  if(dot(P.camera-L.point,P.camera-P.target) < 0) {
    nointersection();
    return S;
  }

  pair point=a.t*project(L.point,P);
  pair dir=a.t*project(L.point+L.dir,P)-point;
  pair invdir=dir != 0 ? 1/dir : 0;
  triple apoint=L.point+cross(L.dir,a.normal);
  bool left=(invdir*(a.t*project(apoint,P))).y >= (invdir*point).y;

  real t=intersect(apoint,P.camera,cut.normal,cut.point);
  bool rightfront=left ^ (t <= 0 || t >= 1);

  face back=a, front=a.copy();
  pair max=max(a.fit);
  pair min=min(a.fit);
  half h=half(dir,point,max,(min.x,max.y),min,(max.x,min.y),max);
  if(h.right.length == 0) {
    if(rightfront) front=null;
    else back=null;
  } else if(h.left.length == 0) {
    if(rightfront) back=null;
    else front=null;
  }
  if(front != null)
    clip(front.fit,operator --(... rightfront ? h.right : h.left)--cycle,
         zerowinding);
  if(back != null)
    clip(back.fit,operator --(... rightfront ? h.left : h.right)--cycle,
         zerowinding);
  S.back=back;
  S.front=front;
  return S;
}

// A binary space partition
struct bsp
{
  bsp back;
  bsp front;
  face node;

  // Construct the bsp.
  void operator init(face[] faces, projection P) {
    if(faces.length != 0) {
      this.node=faces.pop();
      face[] front,back;
      for(int i=0; i < faces.length; ++i) {
        splitface split=split(faces[i],this.node,P);
        if(split.front != null) front.push(split.front);
        if(split.back != null) back.push(split.back);
      }
      this.front=bsp(front,P);
      this.back=bsp(back,P);
    }
  }

  // Draw from back to front.
  void add(frame f) {
    if(back != null) back.add(f);
    add(f,node.fit,group=true);
    if(labels(node.fit)) layer(f); // Draw over any existing TeX layers.
    if(front != null) front.add(f);
  }
}

void add(picture pic=currentpicture, face[] faces,
         projection P=currentprojection)
{
  int n=faces.length;
  face[] Faces=new face[n];
  for(int i=0; i < n; ++i)
    Faces[i]=faces[i].copy();

  pic.add(new void (frame f, transform t, transform T,
                    pair m, pair M) {
            // Fit all of the pictures so we know their exact sizes.
            face[] faces=new face[n];
            for(int i=0; i < n; ++i) {
              faces[i]=Faces[i].copy();
              face F=faces[i];
              F.t=t*T*F.pic.T;
              F.fit=F.pic.fit(t,T*F.pic.T,m,M);
            }

            bsp bsp=bsp(faces,P);
            if(bsp != null) bsp.add(f);
          });

  for(int i=0; i < n; ++i) {
    picture F=Faces[i].pic;
    pic.userBox3(F.userMin3(), F.userMax3());
    pic.bounds.append(F.T, F.bounds);
    // The above 2 lines should be replaced with a routine in picture which
    // copies only sizing data from another picture.
  }
}