summaryrefslogtreecommitdiff
path: root/graphics/asymptote/array.cc
blob: 311e0cf822dc8d742de19e21cee15d3da2bcfb73 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
/*****
 * array.cc
 * Andy Hammerlindl  2008/01/26
 * 
 * Array type used by virtual machine.
 *****/

#include "array.h"
#include "mod.h"

namespace vm {

const char *dereferenceNullArray="dereference of null array";

inline void checkBackSlice(Int left, Int right)
{
  if (right < left)
    // There isn't a clear behaviour for slices of the form A[5:2], so we don't
    // allow them. (Atleast, not until we can figure out what the behaviour
    // should be.)
    vm::error("slice ends before it begins");
}

inline size_t sliceIndex(Int in, size_t len) {
  if (in < 0)
    // The Python behaviour here would simply be
    //   in += len;
    // but this is inconsistent with Asymptote issuing an error for A[-1] if A
    // is a non-cyclic array, so we also issue an error here.
    vm::error("invalid negative index in slice of non-cyclic array");
  if (in < 0)
    return 0;
  size_t index = (size_t)in;
  return index < len ? index : len;
}

array *array::slice(Int left, Int right)
{
  checkBackSlice(left, right);

  if (left == right)
    return new array();

  size_t length=size();
  if (length == 0)
    return new array();

  if (cycle) {
    size_t resultLength = (size_t)(right - left);
    array *result = new array(resultLength);

    size_t i = (size_t)imod(left, length), ri = 0;
    while (ri < resultLength) {
      (*result)[ri] = (*this)[i];

      ++ri;
      ++i;
      if (i >= length)
        i -= length;
    }

    return result;
  }
  else { // Non-cyclic
    size_t l = sliceIndex(left, length);
    size_t r = sliceIndex(right, length);

    size_t resultLength = r - l;
    array *result = new array(resultLength);

    std::copy(this->begin()+l, this->begin()+r, result->begin());

    return result;
  }
}

void array::setNonBridgingSlice(size_t l, size_t r, mem::vector<item> *a)
{
  assert(0 <= l);
  assert(l <= r);

  size_t asize=a->size();
  if (asize == r-l) {
    // In place
    std::copy(a->begin(), a->end(), this->begin()+l);
  }
  else if (asize < r-l) {
    // Shrinking
    std::copy(a->begin(), a->end(), this->begin()+l);
    this->erase(this->begin()+l+a->size(), this->begin()+r);
  }
  else {
    // Expanding
    // NOTE: As a speed optimization, we could check capacity() to see if the
    // array can fit the new entries, and build the new array from scratch
    // (using swap()) if a new allocation is necessary.
    std::copy(a->begin(), a->begin()+r-l, this->begin()+l);
    this->insert(this->begin()+r, a->begin()+r-l, a->end());
  }
}

void array::setBridgingSlice(size_t l, size_t r, mem::vector<item> *a)
{
  size_t len=this->size();

  assert(r<=l);
  assert(r+len-l == a->size());

  std::copy(a->begin(), a->begin()+(len-l), this->begin()+l);
  std::copy(a->begin()+(len-l), a->end(), this->begin());
}

void array::setSlice(Int left, Int right, array *a)
{
  checkBackSlice(left, right);

  // If we are slicing an array into itself, slice in a copy instead, to ensure
  // the proper result.
  mem::vector<item> *v = (a == this) ? new mem::vector<item>(*a) : a;

  size_t length=size();
  if (cycle) {
    if (right == left) {
      // Notice that assigning to the slice A[A.length:A.length] is the same as
      // assigning to the slice A[0:0] for a cyclic array.
      size_t l = (size_t)imod(left, length);
      setNonBridgingSlice(l, l, v);
    }
    else {
      if (left + (Int) length < right)
        vm::error("assigning to cyclic slice with repeated entries");

      size_t l = (size_t)imod(left, length);

      // Set r to length instead of zero, so that slices that go to the end of
      // the array are properly treated as non-bridging.
      size_t r = (size_t)imod(right, length);
      if (r == 0)
        r = length;

      if (l < r)
        setNonBridgingSlice(l, r, v);
      else {
        if (r + length - l == v->size())
          setBridgingSlice(l, r, v);
        else
          vm::error("assignment to cyclic slice is not well defined");
      }
    }
  }
  else {
    size_t l=sliceIndex(left, length);
    size_t r=sliceIndex(right, length);

    setNonBridgingSlice(l, r, v);
  }
}

item copyItemToDepth(item i, size_t depth)
{
  if(depth == 0)
    return i;
  array* a=get<array*>(i);
  if(a == 0) vm::error(dereferenceNullArray);
  return a->copyToDepth(depth);
}

array *array::copyToDepth(size_t depth)
{
  if (depth == 0) {
    return this;
  } else {
    size_t n=this->size();
    array *a=new array(n);
    a->cycle = this->cycle;

    for (size_t i=0; i<n; ++i)
      (*a)[i]=copyItemToDepth((*this)[i], depth-1);

    return a;
  }
}

array::array(size_t n, item i, size_t depth)
  : mem::vector<item>(n), cycle(false)
{
  for (size_t k=0; k<n; ++k)
    (*this)[k] = copyItemToDepth(i, depth);
}

} // namespace vm