summaryrefslogtreecommitdiff
path: root/graphics/asymptote/Delaunay.cc
blob: 2090ddfeb3e319ed79140a76e431d507a057cabd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
// Robust version of Gilles Dumoulin's C++ port of Paul Bourke's
// triangulation code available from
// http://astronomy.swin.edu.au/~pbourke/papers/triangulate
// Used with permission of Paul Bourke.
// Segmentation fault and numerical robustness improvements by John C. Bowman

#include <cassert>
#include "Delaunay.h"
#include "predicates.h"

inline double max(double a, double b)
{
  return (a > b) ? a : b;
}

int XYZCompare(const void *v1, const void *v2)
{
  double x1=((XYZ*)v1)->p[0];
  double x2=((XYZ*)v2)->p[0];
  if(x1 < x2)
    return(-1);
  else if(x1 > x2)
    return(1);
  else
    return(0);
}

inline double hypot2(double *x)
{
  return x[0]*x[0]+x[1]*x[1];
}

///////////////////////////////////////////////////////////////////////////////
// Triangulate():
//   Triangulation subroutine
//   Takes as input NV vertices in array pxyz
//   Returned is a list of ntri triangular faces in the array v
//   These triangles are arranged in a consistent clockwise order.
//   The triangle array v should be allocated to 4 * nv
//   The vertex array pxyz must be big enough to hold 3 additional points.
//   By default, the array pxyz is automatically presorted and postsorted.
///////////////////////////////////////////////////////////////////////////////

Int Triangulate(Int nv, XYZ pxyz[], ITRIANGLE v[], Int &ntri,
                bool presort, bool postsort)
{
  Int emax = 200;

  if(presort) qsort(pxyz,nv,sizeof(XYZ),XYZCompare);
  else postsort=false;

/* Allocate memory for the completeness list, flag for each triangle */
  Int trimax = 4 * nv;
  Int *complete = new Int[trimax];
/* Allocate memory for the edge list */
  IEDGE *edges = new IEDGE[emax];
/*
  Find the maximum and minimum vertex bounds.
  This is to allow calculation of the bounding triangle
*/
  double xmin = pxyz[0].p[0];
  double ymin = pxyz[0].p[1];
  double xmax = xmin;
  double ymax = ymin;
  for(Int i = 1; i < nv; i++) {
    XYZ *pxyzi=pxyz+i;
    double x=pxyzi->p[0];
    double y=pxyzi->p[1];
    if (x < xmin) xmin = x;
    if (x > xmax) xmax = x;
    if (y < ymin) ymin = y;
    if (y > ymax) ymax = y;
  }
  double dx = xmax - xmin;
  double dy = ymax - ymin;
/*
  Set up the supertriangle.
  This is a triangle which encompasses all the sample points.
  The supertriangle coordinates are added to the end of the
  vertex list. The supertriangle is the first triangle in
  the triangle list.
*/
  static const double margin=0.01;
  double xmargin=margin*dx;
  double ymargin=margin*dy;
  pxyz[nv+0].p[0] = xmin-xmargin;
  pxyz[nv+0].p[1] = ymin-ymargin;
  pxyz[nv+1].p[0] = xmin-xmargin;
  pxyz[nv+1].p[1] = ymax+ymargin+dx;
  pxyz[nv+2].p[0] = xmax+xmargin+dy;
  pxyz[nv+2].p[1] = ymin-ymargin;
  v->p1 = nv;
  v->p2 = nv+1;
  v->p3 = nv+2;
  complete[0] = false;
  ntri = 1;
/*
  Include each point one at a time into the existing mesh
*/
  for(Int i = 0; i < nv; i++) {
    Int nedge = 0;
    double *d=pxyz[i].p;
/*
  Set up the edge buffer.
  If the point d lies inside the circumcircle then the
  three edges of that triangle are added to the edge buffer
  and that triangle is removed.
*/
    for(Int j = 0; j < ntri; j++) {
      if(complete[j])
        continue;
      ITRIANGLE *vj=v+j;

      double *a=pxyz[vj->p1].p;
      double *b=pxyz[vj->p2].p;
      double *c=pxyz[vj->p3].p;

      if(incircle(a,b,c,d) <= 0.0) { // Point d is inside or on circumcircle
/* Check that we haven't exceeded the edge list size */
        if(nedge + 3 >= emax) {
          emax += 100;
          IEDGE *p_EdgeTemp = new IEDGE[emax];
          for (Int i = 0; i < nedge; i++) {
            p_EdgeTemp[i] = edges[i];
          }
          delete[] edges;
          edges = p_EdgeTemp;
        }
        ITRIANGLE *vj=v+j;
        Int p1=vj->p1;
        Int p2=vj->p2;
        Int p3=vj->p3;
        edges[nedge].p1 = p1;
        edges[nedge].p2 = p2;
        edges[++nedge].p1 = p2;
        edges[nedge].p2 = p3;
        edges[++nedge].p1 = p3;
        edges[nedge].p2 = p1;
        ++nedge;
        ntri--;
        v[j] = v[ntri];
        complete[j] = complete[ntri];
        j--;
      } else {
        double A=hypot2(a);
        double B=hypot2(b);
        double C=hypot2(c);
        double a0=orient2d(a,b,c);
        // Is d[0] > xc+r for circumcircle abc of radius r about (xc,yc)?
        if(d[0]*a0 < 0.5*orient2d(A,a[1],B,b[1],C,c[1]))
          complete[j]=
            incircle(a[0]*a0,a[1]*a0,b[0]*a0,b[1]*a0,c[0]*a0,c[1]*a0,
                     d[0]*a0,0.5*orient2d(a[0],A,b[0],B,c[0],C)) > 0.0;
      }
    }
/*
  Tag multiple edges
  Note: if all triangles are specified anticlockwise then all
  interior edges are opposite pointing in direction.
*/
    for(Int j = 0; j < nedge - 1; j++) {
      for(Int k = j + 1; k < nedge; k++) {
        if((edges[j].p1 == edges[k].p2) && (edges[j].p2 == edges[k].p1)) {
          edges[j].p1 = -1;
          edges[j].p2 = -1;
          edges[k].p1 = -1;
          edges[k].p2 = -1;
        }
      }
    }
/*
  Form new triangles for the current point
  Skipping over any tagged edges.
  All edges are arranged in clockwise order.
*/
    for(Int j = 0; j < nedge; j++) {
      if(edges[j].p1 < 0 || edges[j].p2 < 0)
        continue;
      v[ntri].p1 = edges[j].p1;
      v[ntri].p2 = edges[j].p2;
      v[ntri].p3 = i;
      complete[ntri] = false;
      ntri++;
      assert(ntri < trimax);
    }
  }
/*
  Remove triangles with supertriangle vertices
  These are triangles which have a vertex number greater than nv
*/
  for(Int i = 0; i < ntri; i++) {
    ITRIANGLE *vi=v+i;
    if(vi->p1 >= nv || vi->p2 >= nv || vi->p3 >= nv) {
      ntri--;
      *vi = v[ntri];
      i--;
    }
  }
  delete[] edges;
  delete[] complete;

  if(postsort) {
    for(Int i = 0; i < ntri; i++) {
      ITRIANGLE *vi=v+i;
      vi->p1=pxyz[vi->p1].i;
      vi->p2=pxyz[vi->p2].i;
      vi->p3=pxyz[vi->p3].i;
    }
  }

  return 0;
}