summaryrefslogtreecommitdiff
path: root/fonts/garamond-math/Garamond-Math.tex
blob: f5531501f3586d84be4b1ad720723c795be689c2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
\documentclass[a4paper,fleqn]{article}
\usepackage[a4paper, margin=1in]{geometry}
\usepackage{amsmath}
\usepackage[math-style=ISO, bold-style=ISO]{unicode-math}
\usepackage{metalogo}

% \setmainfont{EB Garamond}
\setmainfont{Libertinus Sans}
\setmonofont{Source Code Pro}[Scale=.86]
\setmathfont{Garamond-Math.otf}[Path=./ ]%, Scale=MatchUppercase]
\setmathfont{Garamond-Math.otf}[version=GaramondMathI   ,StylisticSet={1 },Path=./ ]%, Scale=MatchUppercase]
\setmathfont{Garamond-Math.otf}[version=GaramondMathII  ,StylisticSet={2 },Path=./ ]%, Scale=MatchUppercase]
\setmathfont{Garamond-Math.otf}[version=GaramondMathIII ,StylisticSet={3 },Path=./ ]%, Scale=MatchUppercase]
\setmathfont{Garamond-Math.otf}[version=GaramondMathIV  ,StylisticSet={4 },Path=./ ]%, Scale=MatchUppercase]
\setmathfont{Garamond-Math.otf}[version=GaramondMathV   ,StylisticSet={5 },Path=./ ]%, Scale=MatchUppercase]
\setmathfont{Garamond-Math.otf}[version=GaramondMathVI  ,StylisticSet={6 },Path=./ ]%, Scale=MatchUppercase]
\setmathfont{Garamond-Math.otf}[version=GaramondMathVII ,StylisticSet={7 },Path=./ ]%, Scale=MatchUppercase]
\setmathfont{Garamond-Math.otf}[version=GaramondMathVIII,StylisticSet={8 },Path=./ ]%, Scale=MatchUppercase]
\setmathfont{Garamond-Math.otf}[version=GaramondMathIX  ,StylisticSet={9 },Path=./ ]%, Scale=MatchUppercase]
\setmathfont{Garamond-Math.otf}[version=GaramondMathX   ,StylisticSet={10},Path=./ ]%, Scale=MatchUppercase]

\def\Latinalphabets{ABCDEFGHIJKLMNOPQRSTUVWXYZ}
\def\latinalphabets{abcdefghijklmnopqrstuvwxyz}
\def\Greekalphabets{%
  \Alpha      \Beta       \Gamma      \Delta      \Epsilon
  \Zeta       \Eta        \Theta      \varTheta   \Iota
  \Kappa      \Lambda     \Mu         \Nu         \Xi
  \Omicron    \Pi         \Rho        \Sigma      \Tau
  \Upsilon    \Phi        \Chi        \Psi        \Omega
}
\def\greekalphabets{%
  \alpha      \beta       \gamma      \delta      \epsilon
   \zeta       \eta        \theta      \vartheta 
  \iota       \kappa      \varkappa   \lambda     \mu
  \nu         \xi         \omicron    \pi \varpi        \rho
  \varrho     \sigma      \varsigma   \tau        \upsilon
  \phi        \varphi     \chi        \psi        \omega
}
% ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΩ
% αβγδεζηθικλμνξοπρστυφχψω
\def\TOPACCENT#1{%
  \acute{#1}    \, \bar{#1}   \, \breve{#1} \, \check{#1}   \, \ddddot{#1}    , \quad
  \dddot{#1}    \, \ddot{#1}  \, \dot{#1}   \, \grave{#1}   \, \hat{#1}       , \quad
  \mathring{#1} \, \tilde{#1} \, \vec{#1}   \, \widehat{#1} \, \widetilde{#1}
}
\ExplSyntaxOn
\NewDocumentCommand \TOPACCENTMAP { m m }
  { \fonttest_top_accent_map:Nx #1 {#2} }
\cs_new:Npn \fonttest_top_accent_map:Nn #1#2
  { \tl_map_inline:nn {#2} { \[ \TOPACCENT{#1{##1}} \] } }
\cs_generate_variant:Nn \fonttest_top_accent_map:Nn { Nx }
\NewDocumentCommand \SUPSUBMAP { m m }
  { \[ \exp_args:Nx \tl_map_inline:nn {#2} {{ #1{##1 \sb{\QED}} }} \] }
\NewDocumentCommand \CIRCLEDNUMA { s }
  {
    % with *:    0-50
    % without *: 0-10
    \symbol {"24EA}
    \fonttest_circled_aux:nn {"2460} {"2469}
    \IfBooleanT {#1}
      {
        \fonttest_circled_aux:nn {"246A} {"2473}
        \fonttest_circled_aux:nn {"3251} {"325F}
        \fonttest_circled_aux:nn {"32B1} {"32BF}
      }
  }
\NewDocumentCommand \CIRCLEDNUMB { s }
  {
    % with *:    0-20
    % without *: 0-10
    \symbol {"24FF}
    \fonttest_circled_aux:nn {"2776} {"277F}
    \IfBooleanT {#1}
      { \fonttest_circled_aux:nn {"24EB} {"24F4} }
  }
\NewDocumentCommand \CIRCLEDNUMC { }
  { \fonttest_circled_aux:nn {"24F5} {"24FE} }
\NewDocumentCommand \CIRCLEDLETTERA { }
  { \fonttest_circled_aux:nn {"24B6} {"24CF} }
\NewDocumentCommand \CIRCLEDLETTERB { }
  { \fonttest_circled_aux:nn {"1F150} {"1F169} }
\NewDocumentCommand \CIRCLEDLETTERC { }
  { \fonttest_circled_aux:nn {"24D0} {"24E9} }
\cs_new:Npn \fonttest_circled_aux:nn #1#2
  { \int_step_inline:nnn {#1} {#2} { \symbol {##1} } }
\ExplSyntaxOff
\def\OVERUNDERLINE#1{%
  #1{} \quad #1{b} \quad #1{ab} \quad #1{abc} \quad #1{abcd} \quad #1{abcde} \quad #1{a+b+c}}
\def\LISTTEXT{x_1, \, x_2, \, x_3,\ x_4\, \ \ldots, \, x_n}

\DeclareRobustCommand{\GenericInfo}[2]{}

\def\ee{\symrm{e}}
\def\ii{\symrm{i}}
\def\bm{\symbf}
\newcommand{\innerprod}[2]{\left\langle{#1}\middle\vert{#2}\right\rangle}
\newcommand{\brakket}[3]{\left\langle{#1}\middle\vert{#2}\middle\vert{#3}\right\rangle}
\newcommand{\ket}[1]{\left\lvert{#1}\right\rangle}
\newcommand{\kets}[1]{\lvert{#1}\rangle}
\newcommand{\bra}[1]{\left\langle{#1}\right\rvert}
\newcommand{\ip}[2]{\left\langle{#1}\middle\vert{#2}\right\rangle}
\newcommand{\op}[2]{\left\lvert{#1}\middle\rangle\middle\langle{#2}\right\rvert}
\newcommand{\dd}{\text{d}}
\newcommand{\norm}[1]{\left\lVert{#1}\right\rVert}

\title{Garamond-Math, Ver. 2019-02-05}
\author{Yuansheng Zhao, Xiangdong Zeng}

\begin{document}
\maketitle
\section{Introduction}
Garamond-Math is an open type math font matching the \emph{EB Garamond (Octavio Pardo)}\footnote{https://ctan.org/pkg/ebgaramond/, and https://github.com/octaviopardo/EBGaramond12/} and \emph{EB Garamond (Georg Mayr-Duffner)}\footnote{https://github.com/georgd/EB-Garamond/}.
Many mathematical symbols are derived from other fonts, others are made from scratch. The metric is generated with a python script.

The font is best used with \XeTeX, with other engine, one might end up getting very bad spacing. 

This font is still under development, do not expect the font to be free of bugs. We might update any components any at any time. Issues, bug reports, forks and other contributions are welcome. Please visit GitHub (https://github.com/YuanshengZhao/Garamond-Math/) for development details.

The minimal example with \texttt{unicode-math} package is as following:
\begin{verbatim}
    %Compile with `xelatex' command 
    \documentclass{article}
    \usepackage[math-style=ISO, bold-style=ISO]{unicode-math}
    \setmainfont{EB Garamond}%You should have installed the font
    \setmathfont{Garamond-Math.otf}[StylisticSet={7,9}]%Use StylisticSet that you like
    \begin{document}
        \[x^3+y^3=z^3\]
    \end{document}
\end{verbatim}

\section{Alphabets \& StylisticSet}
\emph{The text font in this document is set to Libertinus Sans deliberately so that the difference between text and math can be easily seen.}
\subsubsection*{Latin and Greek (StylisticSet 4/5 give semi/extra bold for \texttt{\backslash symbf})}
Each letter is regarded as variable, so the spacing is larger than usual text. I recommend typing equations like this (pay attention to \texttt{\backslash symup} $\ee$, $\ii$, and text $\cos$, $\dd$): $\ee^{\ii k z}=\cos k z-\ii\int_0^{kz}\cos \zeta\,\dd\zeta$.
\[ \Latinalphabets\]
\[ \latinalphabets \]
\[ \symup{\Latinalphabets}\]
\[ \symup{\latinalphabets} \]
\[ \symbf{\Latinalphabets}\]
\[ \symbf{\latinalphabets}\]
\[ \symbfup{\Latinalphabets}\]
\[  \symbfup{\latinalphabets} \]
\[ \Greekalphabets \]
\[\greekalphabets\]
\[ \symup{\Greekalphabets} \]
\[\symup{\greekalphabets} \]
\[ \symbf{\Greekalphabets} \]
\[\symbf{\greekalphabets} \]
\[ \symbfup{\Greekalphabets}\]
\[ \symbfup{\greekalphabets} \]
\begingroup\mathversion{GaramondMathIV}\[\symbf{\Latinalphabets}\]
\[\symbf{\latinalphabets}\]\endgroup
\begingroup\mathversion{GaramondMathV}\[\symbf{\Latinalphabets}\]
\[\symbf{\latinalphabets}\]\endgroup

\subsubsection*{Sans and Typerwriter: From Libertinus Math\footnote{https://github.com/khaledhosny/libertinus/}}
\[ \symsf{\Latinalphabets} \]
\[\symsf{\latinalphabets} \]
\[ \symsfup{\Latinalphabets} \]
\[\symsfup{\latinalphabets} \]
\[ \symbfsf{\Latinalphabets} \]
\[\symbfsf{\latinalphabets} \]
\[ \symbfsfup{\Latinalphabets} \]
\[\symbfsfup{\latinalphabets} \]
\[ \symtt{\Latinalphabets}\]
\[\symtt{\latinalphabets} \]

\subsubsection*{Blackboard (StylisticSet 1 gives rounded XITS Math\footnote{https://github.com/khaledhosny/xits/})}
\[ \symbb{\Latinalphabets} \]
\[\symbb{\latinalphabets} \]
\begingroup\mathversion{GaramondMathI}\[\symbb{\Latinalphabets}\]
\[\symbb{\latinalphabets}\]\endgroup

\subsubsection*{Script: Rounded XITS Math [StylisticSet 3 gives scaled CM; 8 gives Garamond-compatible ones (experimental)]}
\[ \symscr{\Latinalphabets} \]
\[\symscr{\latinalphabets} \]
\[ \symbfscr{\Latinalphabets} \]
\[\symbfscr{\latinalphabets} \]
\begingroup\mathversion{GaramondMathIII}\[\symscr{\Latinalphabets}\]
\[\symbfscr{\Latinalphabets}\]\endgroup
\begingroup\mathversion{GaramondMathVIII}\[\symscr{\Latinalphabets}\]
\[\symscr{\latinalphabets}\]\endgroup

\subsubsection*{Digits: Same width between weight and serif/sans}
\[3.141592653589793238462643383279502884197169399375105820974944592307816406286\]
\[\symsf{3.141592653589793238462643383279502884197169399375105820974944592307816406286}\]
\[\symbf{3.141592653589793238462643383279502884197169399375105820974944592307816406286}\]

\subsubsection*{\texttt{\backslash partial}: (StylisticSet 2 gives curved ones)}
\[\partial_\mu(\symup\partial^\mu\phi)-\symbf{\epsilon^{\lambda\mu\nu}\partial_\mu(A_\lambda\symbfup\partial_\nu f)}\]
\begingroup\mathversion{GaramondMathII}\[\partial_\mu(\symup\partial^\mu\phi)-\symbf{\epsilon^{\lambda\mu\nu}\partial_\mu(A_\lambda\symbfup\partial_\nu f)}\]\endgroup

\subsubsection*{\texttt{\backslash hbar}: (StylisticSet 6 gives horizontal bars)}
\[\text{$\hbar$\qquad \begingroup\mathversion{GaramondMathVI} $\hbar$\endgroup}\]

\subsubsection*{Italic $\symbf h$: (StylisticSet 10 gives out-bending ones)}
\[\text{$\displaystyle\hbar=\frac {\symbf{h}}{2\uppi} $\qquad \begingroup\mathversion{GaramondMathX} $\displaystyle\hbar=\frac {\symbf{h}}{2\uppi} $\endgroup}\]

\subsubsection*{\texttt{\backslash tilde}: (StylisticSet 9 gives ``normal'' ones)}
\[\text{$\tilde F$\qquad \begingroup\mathversion{GaramondMathIX} $\tilde F$\endgroup}\]

\subsubsection*{\texttt{\backslash int}: (StylisticSet 7 gives a variant with inversion symmetry)}
\[\oint_{\partial\Sigma}\vec E\cdot \dd{\vec{l}}=-\frac{1}{c}\frac{\dd}{\dd t}\iint_{\Sigma}\vec B \cdot \dd{\vec{S}}\]
\begingroup\mathversion{GaramondMathVII}\[\oint_{\partial\Sigma}\vec E\cdot \dd{\vec{l}}=-\frac{1}{c}\frac{\dd}{\dd t}\iint_{\Sigma}\vec B \cdot \dd{\vec{S}}\]\endgroup
 
\section{Known Issue}
\begin{itemize}
    \item As mentioned before, the font should only be used with \XeTeX.
    \item Various spacing problems. Though math fonts technically should not be kerned, some pairs looks very ugly (Ex. $VA$); sometimes sub/superscript may also have same problem.
    \item Fake optical size. EB Garamond does not contain a complete set of glyphs (normal + bold + optical size of both weights). The ``optical size \texttt{ssty}'' is made by interpolating different weights at the present (without this, the double script is too thin to be readable). 
\end{itemize}

\section{Equation Samples}
\[ 1 + 2 - 3 \times 4 \div 5 \pm 6 \mp 7 \dotplus 8 = -a \oplus b \otimes c -\{z\}\]
\[\forall \epsilon, \exists \delta : x \in A \cup B \subset S \cap T \ntrianglerighteq U\] 
\[R_{\nu\kappa\lambda}^\mu=\partial_\kappa\Gamma_{\lambda\nu}^\mu-\partial_\lambda\Gamma_{\kappa\nu}^\mu+\Gamma_{\kappa\sigma}^\mu\Gamma_{\lambda\nu}^\sigma-\Gamma_{\lambda\sigma}^\mu\Gamma_{\kappa\nu}^\sigma\]
\[T_{\alpha_1\cdots\alpha_k}'^{\beta_1\cdots\beta_l}=T_{i_1\cdots i_k}^{j_1\cdots j_l}
    \frac{\partial x^{i_1}}{\partial x'^{\alpha_1}}\cdots
    \frac{\partial x^{i_k}}{\partial x'^{\alpha_k}}
    \frac{\partial x'^{\beta_1}}{\partial x^{j_1}}\cdots
    \frac{\partial x'^{\beta_l}}{\partial x^{j_l}}
\]
\[\int_{\sqrt{\frac{1-m u+m\Delta/k^2}{2mu/k}}}^{X_p}\widehat{1+2+3+4}+\widetilde{5+6+7+8}\]
\[ x \leftarrow y \leftrightarrow w \Rightarrow b \Leftrightarrow c
    \uparrow   y  \updownarrow    w \Downarrow  b \Updownarrow    c
    \Searrow p \Swarrow p
    x \leftharpoonup    x \upharpoonleft  
    X \mapsfrom Y \mapsto Z \mapsup 
    f \rightleftarrows  f \updownarrows f 
    h \rightthreearrows h \leftthreearrows
    p
\]
\[\int_0^1\frac{\ln (x+1)}{x}\dd{x}=\int_0^1\sum_{i=1}^{\infty}\frac{(-x)^{i-1}}{i}\dd{x}=\sum_{i=1}^{\infty}\int_0^1\frac{(-x)^{i-1}}{i}\dd{x}=\sum_{i=1}^{\infty}\frac{(-1)^{i+1}}{i^2}=\frac{\uppi^2}{12}\]
\[
  \int\limits_0^\infty \int_0^\infty
  \sum_{i=1}^\infty \prod_{j=i}^\infty \coprod_{k=i}^\infty
  \oiiint \varointclockwise \ointctrclockwise \awint \intclockwise
\]
\[
  \Biggl(  \biggl(  \Bigl(  \bigl(   (x)  \bigr)  \Bigr)  \biggr)  \Biggr)  \quad
  \Biggl[  \biggl[  \Bigl[  \bigl[   [x]  \bigr]  \Bigr]  \biggr]  \Biggr]  \quad
  \Biggl\{ \biggl\{ \Bigl\{ \bigl\{ \{x\} \bigr\} \Bigr\} \biggr\} \Biggr\}\quad
   \Biggl\lvert \biggl\lvert \Bigl\lvert \bigl\lvert \lvert x\rvert \bigr\rvert \Bigr\rvert\biggr\rvert \Biggr\rvert\quad
   \Biggl\lVert \biggl\lVert \Bigl\lVert \bigl\lVert \lVert x\rVert \bigr\rVert \Bigr\rVert\biggr\rVert \Biggr\rVert\quad
    \Biggl\langle \biggl\langle \Bigl\langle \bigl\langle \langle x\rangle \bigr\rangle \Bigr\rangle\biggr\rangle \Biggr\rangle\quad
\]
\[       
 \Biggl\lgroup \biggl\lgroup \Bigl\lgroup \bigl\lgroup \lgroup x\rgroup \bigr\rgroup \Bigr\rgroup\biggr\rgroup \Biggr\rgroup\quad
\Biggl\lfloor \biggl\lfloor \Bigl\lfloor \bigl\lfloor \lfloor x\rfloor \bigr\rfloor \Bigr\rfloor\biggr\rfloor \Biggr\rfloor\quad
\Biggl\lceil \biggl\lceil \Bigl\lceil \bigl\lceil \lceil x\rceil \bigr\rceil \Bigr\rceil\biggr\rceil \Biggr\rceil\quad\]
\[
    \bra{x} + \ket{x} + \ip{\alpha}{\beta} + \op{\alpha}{\beta}
  + \bra{\frac{1}{2}} + \ket{\frac{1}{2}}
  + \ip{\frac{1}{2}}{\frac{1}{2}} + \op{\frac{1}{2}}{\frac{1}{2}}
  + \bra{\frac{a^2}{b^2}}
  + \Biggl\vert \frac{\ee^{x^2}}{\ee^{y^2}} \Biggr\rangle
\]
\[
  \CIRCLEDNUMB +
  ABC^{\CIRCLEDNUMA}
\]
\[\left( \begin{matrix}
{{u}_{0}}  \\
{{u}_{1}}  \\
\vdots   \\
{{u}_{N-1}}  \\
\end{matrix} \right)=\sum\limits_{k>0}{\left[ \left( \begin{matrix}
    1  \\
    \cos ka  \\
    \vdots   \\
    \cos k\left( N-1 \right)a  \\
    \end{matrix} \right)\underbrace{{{C}_{k+}}\cos ( {{\omega }_{k}}t+{{\varphi }_{k+}} )}_{\frac{2}{\sqrt{N}}{{q}_{k+}}}+\left( \begin{matrix}
    0  \\
    \sin ka  \\
    \vdots   \\
    \sin k\left( N-1 \right)a  \\
    \end{matrix} \right)\underbrace{{{C}_{k-}}\cos ( {{\omega }_{k}}t+{{\varphi }_{k-}} )}_{\frac{2}{\sqrt{N}}{{q}_{k-}}} \right]}\]
\[
\begin{split}   
\mathcal{F}^{-1}(\kets{j})
&{}=\frac{1}{\sqrt{2^n}}\sum_{k=0}^{2^n-1}\exp\left(-2\uppi \ii \frac{jk}{2^n}\right)\kets{k}.\\
&{}=\frac{1}{\sqrt{2^n}}\sum_{k_{n-1}=0}^1\cdots\sum_{k_{0}=0}^1\exp\left(-2\uppi \ii j\sum_{l=0}^{n-1}\frac{2^l k_l}{2^n}\right)\kets{k_{n-1}\cdots k_0}\\
&{}=\frac{1}{\sqrt{2^n}}\sum_{k_{n-1}=0}^1\cdots\sum_{k_{0}=0}^1\bigotimes_{l=1}^n\left[\exp\left(-2\uppi \ii j\frac{k_{n-l}}{2^l}\right)\kets{k_{n-l}}\right]\\
&{}=\frac{1}{\sqrt{2^n}}\bigotimes_{l=1}^n\left[\sum_{k_{n-l}=0}^1\exp\left(-2\uppi \ii j\frac{k_{n-l}}{2^l}\right)\kets{k_{n-l}}\right]\\
&{}=\frac{1}{\sqrt{2^n}}\bigotimes_{l=1}^n\left[\kets{0}_{n-l}+\ee^{-2\uppi \ii j /2^l}\kets{1}_{n-l}\right]\\
&{}=\frac{1}{\sqrt{2^n}}\bigotimes_{l=1}^n\left[\kets{0}_{n-l}+\ee^{-2\uppi \ii (\overline{0.j_{l-1}\ldots j_0})}\kets{1}_{n-l}\right].
\end{split}
\]

\newcommand{\lb}{\left(}
\newcommand{\rb}{\right)}
\newcommand{\piup}{\uppi}
\newcommand{\ndd}{\,\mathrm{d}}
\[\begin{split}S&{}=\frac{m}{2}\int_0^{t_{\text f}}\left[\lb-\omega x_{\text i}\sin\omega t+\omega \frac{x_{\text f}-x_{\text i}\cos\omega t_{\text f}}{\sin\omega t_{\text f}}\cos\omega t\rb^2+\sum_{n=1}^\infty\lb\frac{a_n n \piup}{t_{\text f}}\rb^2\cos^2\frac{n \piup t}{t_{\text f}}\right]\ndd t\\%
    &\quad{}-\frac{m\omega^2}{2}\int_0^{t_{\text f}}\left[\lb x_{\text i}\cos\omega t+ \frac{x_{\text f}-x_{\text i}\cos\omega t_{\text f}}{\sin\omega t_{\text f}}\sin\omega t\rb^2+\sum_{n=1}^\infty {a_n}^2\sin^2\frac{n \piup t}{t_{\text f}}\right]\ndd t\\%
    &{}=\sum_{n=1}^\infty\int_0^{t_{\text f}}\left[\frac{m}{2}\lb\frac{a_n n \piup}{t_{\text f}}\rb^2\cos^2\frac{n \piup t}{t_{\text f}}-\frac{m\omega^2}{2}{a_n}^2\sin^2\frac{n \piup t}{t_{\text f}}\right]\ndd t\\%
    &\quad{}+\frac{m\omega^2}{2}\int_0^{t_{\text f}}\left[ {x_{\text i}}^2-\lb\frac{x_{\text f}-x_{\text i}\cos\omega t_{\text f}}{\sin\omega t_{\text f}}\rb^2\right]\lb\sin^2\omega t-\cos^2\omega t\rb\ndd t\\%
    &\quad{}-\frac{m\omega^2}{2}\int_0^{t_{\text f}}4 {x_{\text i}}\lb\frac{x_{\text f}-x_{\text i}\cos\omega t_{\text f}}{\sin\omega t_{\text f}}\rb\lb\sin\omega t\cos\omega t\rb\ndd t.\end{split}\]
    \[\begin{split}U\lb x_{\text f},t_{\text f};x_{\text i},t_{\text i}\rb=&\sqrt{\frac{m\omega}{2\piup \ii \hbar\sin\left[\omega\lb t_{\text f}-t_{\text i}\rb\right]}}\\&{}\times\exp\left\{\frac{\ii m\omega}{2\hbar\sin\left[\omega \lb t_{\text f}-t_{\text i}\rb\right]}\left[\lb {x_{\text i}}^2+{x_{\text f}}^2\rb\cos\left[\omega\lb t_{\text f}-t_{\text i}\rb\right]-2 x_{\text i} x_{\text f}\right]\right\}.\end{split}\]
\end{document}