1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
|
\documentclass[a4paper,fleqn]{article}
\usepackage[a4paper, margin=1in]{geometry}
\usepackage{amsmath}
\usepackage[math-style=ISO, bold-style=ISO]{unicode-math}
\usepackage{metalogo}
\usepackage{extarrows}
\makeatletter
\renewcommand{\relbar}{\symbol{"E010}\mkern-.2mu\symbol{"E010}\mkern1.8mu}
\renewcommand{\Relbar}{\symbol{"E011}\mkern-.2mu\symbol{"E011}\mkern1.8mu}
\makeatother
% \setmainfont{EB Garamond}
\setmainfont{EB Garamond}
\setmonofont{Source Code Pro}[Scale=.86]
\setmathfont{Garamond-Math.otf}[Path=../Release/ ]%, Scale=MatchUppercase]
\setmathfont{Garamond-Math.otf}[version=GaramondMathI ,StylisticSet={1 },Path=../Release/ ]%, Scale=MatchUppercase]
\setmathfont{Garamond-Math.otf}[version=GaramondMathII ,StylisticSet={2 },Path=../Release/ ]%, Scale=MatchUppercase]
\setmathfont{Garamond-Math.otf}[version=GaramondMathIII ,StylisticSet={3 },Path=../Release/ ]%, Scale=MatchUppercase]
\setmathfont{Garamond-Math.otf}[version=GaramondMathIV ,StylisticSet={4 },Path=../Release/ ]%, Scale=MatchUppercase]
\setmathfont{Garamond-Math.otf}[version=GaramondMathV ,StylisticSet={5 },Path=../Release/ ]%, Scale=MatchUppercase]
\setmathfont{Garamond-Math.otf}[version=GaramondMathVI ,StylisticSet={6 },Path=../Release/ ]%, Scale=MatchUppercase]
\setmathfont{Garamond-Math.otf}[version=GaramondMathVII ,StylisticSet={7 },Path=../Release/ ]%, Scale=MatchUppercase]
\setmathfont{Garamond-Math.otf}[version=GaramondMathVIII,StylisticSet={8 },Path=../Release/ ]%, Scale=MatchUppercase]
\setmathfont{Garamond-Math.otf}[version=GaramondMathIX ,StylisticSet={9 },Path=../Release/ ]%, Scale=MatchUppercase]
\setmathfont{Garamond-Math.otf}[version=GaramondMathX ,StylisticSet={10},Path=../Release/ ]%, Scale=MatchUppercase]
\setmathfont{Garamond-Math.otf}[version=GaramondMathXI ,StylisticSet={11},Path=../Release/ ]%, Scale=MatchUppercase]
\def\Latinalphabets{ABCDEFGHIJKLMNOPQRSTUVWXYZ}
\def\latinalphabets{abcdefghijklmnopqrstuvwxyz}
\def\Greekalphabets{%
\Alpha \Beta \Gamma \Delta \Epsilon
\Zeta \Eta \Theta \varTheta \Iota
\Kappa \Lambda \Mu \Nu \Xi
\Omicron \Pi \Rho \Sigma \Tau
\Upsilon \Phi \Chi \Psi \Omega
}
\def\greekalphabets{%
\alpha \beta \gamma \delta \epsilon \varepsilon
\zeta \eta \theta \vartheta
\iota \kappa \varkappa \lambda \mu
\nu \xi \omicron \pi \varpi \rho
\varrho \sigma \varsigma \tau \upsilon
\phi \varphi \chi \psi \omega
}
% ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΩ
% αβγδεζηθικλμνξοπρστυφχψω
\def\TOPACCENT#1{%
\acute{#1} \, \bar{#1} \, \breve{#1} \, \check{#1} \, \ddddot{#1} , \quad
\dddot{#1} \, \ddot{#1} \, \dot{#1} \, \grave{#1} \, \hat{#1} , \quad
\mathring{#1} \, \tilde{#1} \, \vec{#1} \, \widehat{#1} \, \widetilde{#1}
}
\ExplSyntaxOn
\NewDocumentCommand \TOPACCENTMAP { m m }
{ \fonttest_top_accent_map:Nx #1 {#2} }
\cs_new:Npn \fonttest_top_accent_map:Nn #1#2
{ \tl_map_inline:nn {#2} { \[ \TOPACCENT{#1{##1}} \] } }
\cs_generate_variant:Nn \fonttest_top_accent_map:Nn { Nx }
\NewDocumentCommand \SUPSUBMAP { m m }
{ \[ \exp_args:Nx \tl_map_inline:nn {#2} {{ #1{##1 \sb{\QED}} }} \] }
\NewDocumentCommand \CIRCLEDNUMA { s }
{
% with *: 0-50
% without *: 0-10
\symbol {"24EA}
\fonttest_circled_aux:nn {"2460} {"2469}
\IfBooleanT {#1}
{
\fonttest_circled_aux:nn {"246A} {"2473}
\fonttest_circled_aux:nn {"3251} {"325F}
\fonttest_circled_aux:nn {"32B1} {"32BF}
}
}
\NewDocumentCommand \CIRCLEDNUMB { s }
{
% with *: 0-20
% without *: 0-10
\symbol {"24FF}
\fonttest_circled_aux:nn {"2776} {"277F}
\IfBooleanT {#1}
{ \fonttest_circled_aux:nn {"24EB} {"24F4} }
}
\NewDocumentCommand \CIRCLEDNUMC { }
{ \fonttest_circled_aux:nn {"24F5} {"24FE} }
\NewDocumentCommand \CIRCLEDLETTERA { }
{ \fonttest_circled_aux:nn {"24B6} {"24CF} }
\NewDocumentCommand \CIRCLEDLETTERB { }
{ \fonttest_circled_aux:nn {"1F150} {"1F169} }
\NewDocumentCommand \CIRCLEDLETTERC { }
{ \fonttest_circled_aux:nn {"24D0} {"24E9} }
\cs_new:Npn \fonttest_circled_aux:nn #1#2
{ \int_step_inline:nnn {#1} {#2} { \symbol {##1} } }
\ExplSyntaxOff
\def\OVERUNDERLINE#1{%
#1{} \quad #1{b} \quad #1{ab} \quad #1{abc} \quad #1{abcd} \quad #1{abcde} \quad #1{a+b+c}}
\def\LISTTEXT{x_1, \, x_2, \, x_3,\ x_4\, \ \ldots, \, x_n}
\DeclareRobustCommand{\GenericInfo}[2]{}
\def\ee{\symrm{e}}
\def\ii{\symrm{i}}
\def\bm{\symbf}
\newcommand{\innerprod}[2]{\left\langle{#1}\middle\vert{#2}\right\rangle}
\newcommand{\brakket}[3]{\left\langle{#1}\middle\vert{#2}\middle\vert{#3}\right\rangle}
\newcommand{\ket}[1]{\left\lvert{#1}\right\rangle}
\newcommand{\kets}[1]{\lvert{#1}\rangle}
\newcommand{\bra}[1]{\left\langle{#1}\right\rvert}
\newcommand{\ip}[2]{\left\langle{#1}\middle\vert{#2}\right\rangle}
\newcommand{\op}[2]{\left\lvert{#1}\middle\rangle\middle\langle{#2}\right\rvert}
\newcommand{\dd}{\text{d}}
\newcommand{\norm}[1]{\left\lVert{#1}\right\rVert}
\title{Garamond-Math, Ver. 2019-08-16}
\author{Yuansheng Zhao, Xiangdong Zeng}
\begin{document}
\maketitle
\section{Introduction}
Garamond-Math is an open type math font matching the \emph{EB Garamond (Octavio Pardo)}\footnote{https://ctan.org/pkg/ebgaramond/, and https://github.com/octaviopardo/EBGaramond12/} and \emph{EB Garamond (Georg Mayr-Duffner)}\footnote{https://github.com/georgd/EB-Garamond/}.
Many mathematical symbols are derived from other fonts, others are made from scratch. The metric is generated with a python script.
The font is mostly tested with \XeTeX, though it shoule also work with \LuaTeX.
Issues, bug reports, forks and other contributions are welcome. Please visit GitHub\footnote{https://github.com/YuanshengZhao/Garamond-Math/} for development details.
A minimal example with \texttt{unicode-math} package is as following:
\begin{verbatim}
%Compile with `xelatex' command
\documentclass{article}
\usepackage[math-style=ISO, bold-style=ISO]{unicode-math}
\setmainfont{EB Garamond}%You should have installed the font
\setmathfont{Garamond-Math.otf}[StylisticSet={7,9}]%Use StylisticSet that you like
\begin{document}
\[x^3+y^3=z^3.\]
\end{document}
\end{verbatim}
The result shoule be
\[x^3+y^3=z^3.\]
\section{Alphabets \& StylisticSets}
\subsubsection*{Latin and Greek (StylisticSet 4/5 give semi/extra bold for \texttt{\backslash symbf})}
\[ \Latinalphabets\]
\[ \latinalphabets \]
\[ \symup{\Latinalphabets}\]
\[ \symup{\latinalphabets} \]
\[ \symbf{\Latinalphabets}\]
\[ \symbf{\latinalphabets}\]
\[ \symbfup{\Latinalphabets}\]
\[ \symbfup{\latinalphabets} \]
\[ \Greekalphabets \]
\[\greekalphabets\]
\[ \symup{\Greekalphabets} \]
\[\symup{\greekalphabets} \]
\[ \symbf{\Greekalphabets} \]
\[\symbf{\greekalphabets} \]
\[ \symbfup{\Greekalphabets}\]
\[ \symbfup{\greekalphabets} \]
\begingroup\mathversion{GaramondMathIV}\[\symbf{\Latinalphabets}\]
\[\symbf{\latinalphabets}\]\endgroup
\begingroup\mathversion{GaramondMathV}\[\symbf{\Latinalphabets}\]
\[\symbf{\latinalphabets}\]\endgroup
\subsubsection*{Sans and Typerwriter: From Libertinus Math\footnote{https://github.com/khaledhosny/libertinus/}}
\[ \symsf{\Latinalphabets} \]
\[\symsf{\latinalphabets} \]
\[ \symsfup{\Latinalphabets} \]
\[\symsfup{\latinalphabets} \]
\[ \symbfsf{\Latinalphabets} \]
\[\symbfsf{\latinalphabets} \]
\[ \symbfsfup{\Latinalphabets} \]
\[\symbfsfup{\latinalphabets} \]
\[ \symtt{\Latinalphabets}\]
\[\symtt{\latinalphabets} \]
\subsubsection*{Blackboard (StylisticSet 1 $\rightarrow$ rounded XITS Math\footnote{https://github.com/khaledhosny/xits/})}
\[ \symbb{\Latinalphabets} \]
\[\symbb{\latinalphabets} \]
\begingroup\mathversion{GaramondMathI}\[\symbb{\Latinalphabets}\]
\[\symbb{\latinalphabets}\]\endgroup
\subsubsection*{Script: Rounded XITS Math [StylisticSet 3 $\rightarrow$ scaled CM; 8 $\rightarrow$ Garamond-compatible ones (experimental)]}
\[ \symscr{\Latinalphabets} \]
\[\symscr{\latinalphabets} \]
\[ \symbfscr{\Latinalphabets} \]
\[\symbfscr{\latinalphabets} \]
\begingroup\mathversion{GaramondMathIII}\[\symscr{\Latinalphabets}\]
\[\symbfscr{\Latinalphabets}\]\endgroup
\begingroup\mathversion{GaramondMathVIII}\[\symscr{\Latinalphabets}\]
\[\symscr{\latinalphabets}\]\endgroup
\subsubsection*{Fraktur: From Noto Sans Math\footnote{https://github.com/googlefonts/noto-fonts/}}
\[ \symfrak{\Latinalphabets} \]
\[\symfrak{\latinalphabets} \]
\[ \symbffrak{\Latinalphabets} \]
\[\symbffrak{\latinalphabets} \]
\subsubsection*{Digits: Same width between weight and serif/sans}
\[3.141592653589793238462643383279502884197169399375105820974944592307816406286\]
\[\symsf{3.141592653589793238462643383279502884197169399375105820974944592307816406286}\]
\[\symbf{3.141592653589793238462643383279502884197169399375105820974944592307816406286}\]
\subsubsection*{\texttt{\backslash partial}: (StylisticSet 2 $\rightarrow$ curved ones)}
\[\partial_\mu(\symup\partial^\mu\phi)-\symbf{\epsilon^{\lambda\mu\nu}\partial_\mu(A_\lambda\symbfup\partial_\nu f)}\]
\begingroup\mathversion{GaramondMathII}\[\partial_\mu(\symup\partial^\mu\phi)-\symbf{\epsilon^{\lambda\mu\nu}\partial_\mu(A_\lambda\symbfup\partial_\nu f)}\]\endgroup
\subsubsection*{\texttt{\backslash hbar}: (StylisticSet 6 $\rightarrow$ horizontal bars)}
\[\text{$\hbar$\qquad \begingroup\mathversion{GaramondMathVI} $\hbar$\endgroup}\]
\subsubsection*{Italic $\symbf h$: (StylisticSet 10 $\rightarrow$ out-bending ones)}
\[\text{$\displaystyle\hbar=\frac {\symbf{h}}{2\uppi} $\qquad \begingroup\mathversion{GaramondMathX} $\displaystyle\hbar=\frac {\symbf{h}}{2\uppi} $\endgroup}\]
\subsubsection*{\texttt{\backslash tilde}: (StylisticSet 9 $\rightarrow$ ``normal'' ones)}
\[\text{$\tilde F$\qquad \begingroup\mathversion{GaramondMathIX} $\tilde F$\endgroup}\]
\subsubsection*{\texttt{\backslash int}: (StylisticSet 7 $\rightarrow$ a variant with inversion symmetry)}
\[\oint_{\partial\Sigma}\vec E\cdot \dd{\vec{l}}=-\frac{1}{c}\frac{\dd}{\dd t}\iint_{\Sigma}\vec B \cdot \dd{\vec{S}}\]
\begingroup\mathversion{GaramondMathVII}\[\oint_{\partial\Sigma}\vec E\cdot \dd{\vec{l}}=-\frac{1}{c}\frac{\dd}{\dd t}\iint_{\Sigma}\vec B \cdot \dd{\vec{S}}\]\endgroup
\subsubsection*{Binany Operators: (StylisticSet 11 $\rightarrow$ larger ones)}
\[s=A+b\times 1\div x^3\]
\begingroup\mathversion{GaramondMathXI}\[s=A+b\times 1\div x^3\]\endgroup
\subsubsection*{Extensible Arrow Hack}
The font contains the math table for constructing extensible arrow. However \texttt{unicode-math} does not privode an interface to that. In \LuaTeX ~one can use \texttt{\textbackslash Uhextensible}\footnote{https://tex.stackexchange.com/questions/423893/}. A more general solution is to add the following code in preamble.
\begin{verbatim}
\usepackage{extarrow} %or mathtools
\makeatletter
\renewcommand{\relbar}{\symbol{"E010}\mkern-.2mu\symbol{"E010}\mkern1.8mu}
\renewcommand{\Relbar}{\symbol{"E011}\mkern-.2mu\symbol{"E011}\mkern1.8mu}
\makeatother
\end{verbatim}
Then \texttt{\textbackslash xleftarrow} and other commands will work:
\[\mathrm{CH}_3\mathrm{COO}\mathrm{H}+\mathrm{C}_2\mathrm{H}_5\mathrm{OH}\xrightarrow[{\triangle}]{\mathrm{H}_2\mathrm{SO}_4}\mathrm{CH}_3\mathrm{COOC}_2\mathrm{H}_5+\mathrm{H}_2\mathrm{O}.\]
\section{Known Issue}
\begin{itemize}
\item Various spacing problems. Though math fonts technically should not be kerned, some pairs looks very ugly (Ex. $VA$); sometimes sub/superscript may also have same problem. However, do note that due to the mechanism in math mode, making all spacing look perfect is amlost impossible (as far as I can do, and low x-height and large italic angle only make things even worse), in many cases, adjusting manually (i.e. using \texttt{\textbackslash,} or \texttt{\textbackslash!}) is required.
\item Fake optical size. EB Garamond does not contain a complete set of glyphs (normal + bold + optical size of both weights). The ``optical size \texttt{ssty}'' is made by interpolating different weights at the present (without this, the double script is too thin to be readable).
\end{itemize}
\section{Equation Samples}
\[ 1 + 2 - 3 \times 4 \div 5 \pm 6 \mp 7 \dotplus 8 = -a \oplus b \otimes c -\{z\}\]
\[\forall \epsilon, \exists \delta : x \in A \cup B \subset S \cap T \ntrianglerighteq U\]
\[R_{\nu\kappa\lambda}^\mu=\partial_\kappa\Gamma_{\lambda\nu}^\mu-\partial_\lambda\Gamma_{\kappa\nu}^\mu+\Gamma_{\kappa\sigma}^\mu\Gamma_{\lambda\nu}^\sigma-\Gamma_{\lambda\sigma}^\mu\Gamma_{\kappa\nu}^\sigma\]
\[T_{\alpha_1\cdots\alpha_k}'^{\beta_1\cdots\beta_l}=T_{i_1\cdots i_k}^{j_1\cdots j_l}
\frac{\partial x^{i_1}}{\partial x'^{\alpha_1}}\cdots
\frac{\partial x^{i_k}}{\partial x'^{\alpha_k}}
\frac{\partial x'^{\beta_1}}{\partial x^{j_1}}\cdots
\frac{\partial x'^{\beta_l}}{\partial x^{j_l}}
\]
\[\int_{\sqrt{\frac{1-m u+m\Delta/k^2}{2mu/k}}}^{X_p}\widehat{1+2+3+4}+\widetilde{5+6+7+8}\]
\[ x \leftarrow y \leftrightarrow w \Rightarrow b \Leftrightarrow c
\uparrow y \updownarrow w \Downarrow b \Updownarrow c
\Searrow p \Swarrow p
x \leftharpoonup x \upharpoonleft
X \mapsfrom Y \mapsto Z \mapsup
f \rightleftarrows f \updownarrows f
h \rightthreearrows h \leftthreearrows
p
\]
\[\int_0^1\frac{\ln (x+1)}{x}\dd{x}=\int_0^1\sum_{i=1}^{\infty}\frac{(-x)^{i-1}}{i}\dd{x}=\sum_{i=1}^{\infty}\int_0^1\frac{(-x)^{i-1}}{i}\dd{x}=\sum_{i=1}^{\infty}\frac{(-1)^{i+1}}{i^2}=\frac{\uppi^2}{12}\]
\[
\int\limits_0^\infty \int_0^\infty
\sum_{i=1}^\infty \prod_{j=i}^\infty \coprod_{k=i}^\infty
\oiiint \varointclockwise \ointctrclockwise \awint \intclockwise
\]
\[
\Biggl( \biggl( \Bigl( \bigl( (x) \bigr) \Bigr) \biggr) \Biggr) \quad
\Biggl[ \biggl[ \Bigl[ \bigl[ [x] \bigr] \Bigr] \biggr] \Biggr] \quad
\Biggl\{ \biggl\{ \Bigl\{ \bigl\{ \{x\} \bigr\} \Bigr\} \biggr\} \Biggr\}\quad
\Biggl\lvert \biggl\lvert \Bigl\lvert \bigl\lvert \lvert x\rvert \bigr\rvert \Bigr\rvert\biggr\rvert \Biggr\rvert\quad
\Biggl\lVert \biggl\lVert \Bigl\lVert \bigl\lVert \lVert x\rVert \bigr\rVert \Bigr\rVert\biggr\rVert \Biggr\rVert\quad
\Biggl\langle \biggl\langle \Bigl\langle \bigl\langle \langle x\rangle \bigr\rangle \Bigr\rangle\biggr\rangle \Biggr\rangle\quad
\]
\[
\Biggl\lgroup \biggl\lgroup \Bigl\lgroup \bigl\lgroup \lgroup x\rgroup \bigr\rgroup \Bigr\rgroup\biggr\rgroup \Biggr\rgroup\quad
\Biggl\lfloor \biggl\lfloor \Bigl\lfloor \bigl\lfloor \lfloor x\rfloor \bigr\rfloor \Bigr\rfloor\biggr\rfloor \Biggr\rfloor\quad
\Biggl\lceil \biggl\lceil \Bigl\lceil \bigl\lceil \lceil x\rceil \bigr\rceil \Bigr\rceil\biggr\rceil \Biggr\rceil\quad\]
\[
\bra{x} + \ket{x} + \ip{\alpha}{\beta} + \op{\alpha}{\beta}
+ \bra{\frac{1}{2}} + \ket{\frac{1}{2}}
+ \ip{\frac{1}{2}}{\frac{1}{2}} + \op{\frac{1}{2}}{\frac{1}{2}}
+ \bra{\frac{a^2}{b^2}}
+ \Biggl\vert \frac{\ee^{x^2}}{\ee^{y^2}} \Biggr\rangle
\]
\[
\CIRCLEDNUMB +
ABC^{\CIRCLEDNUMA}
\]
\[\left( \begin{matrix}
{{u}_{0}} \\
{{u}_{1}} \\
\vdots \\
{{u}_{N-1}} \\
\end{matrix} \right)=\sum\limits_{k>0}{\left[ \left( \begin{matrix}
1 \\
\cos ka \\
\vdots \\
\cos k\left( N-1 \right)a \\
\end{matrix} \right)\underbrace{{{C}_{k+}}\cos ( {{\omega }_{k}}t+{{\varphi }_{k+}} )}_{\frac{2}{\sqrt{N}}{{q}_{k+}}}+\left( \begin{matrix}
0 \\
\sin ka \\
\vdots \\
\sin k\left( N-1 \right)a \\
\end{matrix} \right)\underbrace{{{C}_{k-}}\cos ( {{\omega }_{k}}t+{{\varphi }_{k-}} )}_{\frac{2}{\sqrt{N}}{{q}_{k-}}} \right]}\]
\[
\begin{split}
\mathcal{F}^{-1}(\kets{j})
&{}=\frac{1}{\sqrt{2^n}}\sum_{k=0}^{2^n-1}\exp\left(-2\uppi \ii \frac{jk}{2^n}\right)\kets{k}.\\
&{}=\frac{1}{\sqrt{2^n}}\sum_{k_{n-1}=0}^1\cdots\sum_{k_{0}=0}^1\exp\left(-2\uppi \ii j\sum_{l=0}^{n-1}\frac{2^l k_l}{2^n}\right)\kets{k_{n-1}\cdots k_0}\\
&{}=\frac{1}{\sqrt{2^n}}\sum_{k_{n-1}=0}^1\cdots\sum_{k_{0}=0}^1\bigotimes_{l=1}^n\left[\exp\left(-2\uppi \ii j\frac{k_{n-l}}{2^l}\right)\kets{k_{n-l}}\right]\\
&{}=\frac{1}{\sqrt{2^n}}\bigotimes_{l=1}^n\left[\sum_{k_{n-l}=0}^1\exp\left(-2\uppi \ii j\frac{k_{n-l}}{2^l}\right)\kets{k_{n-l}}\right]\\
&{}=\frac{1}{\sqrt{2^n}}\bigotimes_{l=1}^n\left[\kets{0}_{n-l}+\ee^{-2\uppi \ii j /2^l}\kets{1}_{n-l}\right]\\
&{}=\frac{1}{\sqrt{2^n}}\bigotimes_{l=1}^n\left[\kets{0}_{n-l}+\ee^{-2\uppi \ii (\overline{0.j_{l-1}\ldots j_0})}\kets{1}_{n-l}\right].
\end{split}
\]
\newcommand{\lb}{\left(}
\newcommand{\rb}{\right)}
\newcommand{\piup}{\uppi}
\newcommand{\ndd}{\,\mathrm{d}}
\[\begin{split}S&{}=\frac{m}{2}\int_0^{t_{\text f}}\left[\lb-\omega x_{\text i}\sin\omega t+\omega \frac{x_{\text f}-x_{\text i}\cos\omega t_{\text f}}{\sin\omega t_{\text f}}\cos\omega t\rb^2+\sum_{n=1}^\infty\lb\frac{a_n n \piup}{t_{\text f}}\rb^2\cos^2\frac{n \piup t}{t_{\text f}}\right]\ndd t\\%
&\quad{}-\frac{m\omega^2}{2}\int_0^{t_{\text f}}\left[\lb x_{\text i}\cos\omega t+ \frac{x_{\text f}-x_{\text i}\cos\omega t_{\text f}}{\sin\omega t_{\text f}}\sin\omega t\rb^2+\sum_{n=1}^\infty {a_n}^2\sin^2\frac{n \piup t}{t_{\text f}}\right]\ndd t\\%
&{}=\sum_{n=1}^\infty\int_0^{t_{\text f}}\left[\frac{m}{2}\lb\frac{a_n n \piup}{t_{\text f}}\rb^2\cos^2\frac{n \piup t}{t_{\text f}}-\frac{m\omega^2}{2}{a_n}^2\sin^2\frac{n \piup t}{t_{\text f}}\right]\ndd t\\%
&\quad{}+\frac{m\omega^2}{2}\int_0^{t_{\text f}}\left[ {x_{\text i}}^2-\lb\frac{x_{\text f}-x_{\text i}\cos\omega t_{\text f}}{\sin\omega t_{\text f}}\rb^2\right]\lb\sin^2\omega t-\cos^2\omega t\rb\ndd t\\%
&\quad{}-\frac{m\omega^2}{2}\int_0^{t_{\text f}}4 {x_{\text i}}\lb\frac{x_{\text f}-x_{\text i}\cos\omega t_{\text f}}{\sin\omega t_{\text f}}\rb\lb\sin\omega t\cos\omega t\rb\ndd t.\end{split}\]
\[\begin{split}U\lb x_{\text f},t_{\text f};x_{\text i},t_{\text i}\rb=&\sqrt{\frac{m\omega}{2\piup \ii \hbar\sin\left[\omega\lb t_{\text f}-t_{\text i}\rb\right]}}\\&{}\times\exp\left\{\frac{\ii m\omega}{2\hbar\sin\left[\omega \lb t_{\text f}-t_{\text i}\rb\right]}\left[\lb {x_{\text i}}^2+{x_{\text f}}^2\rb\cos\left[\omega\lb t_{\text f}-t_{\text i}\rb\right]-2 x_{\text i} x_{\text f}\right]\right\}.\end{split}\]
\end{document}
|