summaryrefslogtreecommitdiff
path: root/fonts/eulerpx/doc/sample.tex
blob: 5505c02a57d69fc9b67a3a39df0a46d30d67ac7f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

\newcommand*\mat[1]{\bm{#1}}
%\newcommand*\mat[1]{\textsf{#1}}

%The following snippets mostly originated with the \TeX Book and were adapted for \LaTeX{} from Karl~Berry's torture test for plain \TeX{} math fonts.

$x + y - z$, \quad $x + y * z$, \quad $z * y / z$, \quad
$(x+y)(x-y) = x^2 - y^2$,

$x \times y \cdot z = [x\, y\, z]$, \quad $x\circ y \bullet z$, \quad
$x\cup y \cap z$, \quad $x\sqcup y \sqcap z$, \quad

$x \vee y \wedge z$, \quad $x\pm y\mp z$, \quad
$x=y/z$, \quad $x \coloneq y$, \quad $x\le y \ne z$, \quad $x \sim y \simeq z$
$x \equiv y \nequiv z$, \quad $x\subset y \subseteq z$

$\sin2\theta=2\sin\theta\cos\theta$, \quad
$\hbox{O}(n\log n\log n)$, \quad
$\Pr(X>x)=\exp(-x/\mu)$,

$\bigl(x\in A(n)\bigm|x\in B(n)\bigr)$, \quad
$\bigcup_n X_n\bigm\|\bigcap_n Y_n$

% page 178

In text matrices $\binom{1\,1}{0\,1}$ and $\bigl(\genfrac{}{}{0pt}{}{a}{1}\genfrac{}{}{0pt}{}{b}{m}\genfrac{}{}{0pt}{}{c}{n}\bigr)$

% page 142

\[a_0+\frac1{\displaystyle a_1 +
{\strut \frac1{\displaystyle a_2 +
{\strut \frac1{\displaystyle a_3 +
{\strut \frac1{\displaystyle a_4}}}}}}}\]

% page 143

\[\binom{p}{2}x^2y^{p-2} - \frac1{1 - x}\frac{1}{1 - x^2}
=
\frac{a+1}{b}\bigg/\frac{c+1}{d}.\]

%% page 145

\[\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+x}}}}}\]

%% page 147

\[\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)
\bigl|\varphi(x+iy)\bigr|^2=0\]

%% page 149

% \[\pi(n)=\sum_{m=2}^n\left\lfloor\biggl(\sum_{k=1}^{m-1}\bigl
% \lfloor(m/k)\big/\lceil m/k\rceil\bigr\rfloor\biggr)^{-1}\right\rfloor.\]

\[\pi(n)=\sum_{m=2}^n\left\lfloor\Biggl(\sum_{k=1}^{m-1}\bigl
\lfloor(m/k)\big/\lceil m/k\rceil\bigr\rfloor\Biggr)^{-1}\right\rfloor.\]

% page 168

\[\int_0^\infty \frac{t - i b}{t^2 + b^2}e^{iat}\,dt=e^{ab}E_1(ab), \quad
a,b > 0.\]

% page 176

\[\mat{A} \coloneq \begin{pmatrix}x-\lambda&1&0\\
0&x-\lambda&1\\
0&0&x-\lambda\end{pmatrix}.\]

\[\left\lgroup\begin{matrix}a&b&c\\ d&e&f\\\end{matrix}\right\rgroup
\left\lgroup\begin{matrix}u&x\cr v&y\cr w&z\end{matrix}\right\rgroup\]

% page 177

\[\mat{A} = \begin{pmatrix}a_{11}&a_{12}&\ldots&a_{1n}\\
a_{21}&a_{22}&\ldots&a_{2n}\\
\vdots&\vdots&\ddots&\vdots\\
a_{m1}&a_{m2}&\ldots&a_{mn}\end{pmatrix}\]

\[\mat{M}=\bordermatrix{&C&I&C'\cr
C&1&0&0\cr I&b&1-b&0\cr C'&0&a&1-a}\]

%% page 186

\[\sum_{n=0}^\infty a_nz^n\qquad\hbox{converges if}\qquad
|z|<\Bigl(\limsup_{n\to\infty}\root n\of{|a_n|}\,\Bigr)^{-1}.\]

\[\frac{f(x+\Delta x)-f(x)}{\Delta x}\to f'(x)
\qquad \hbox{as $\Delta x\to0$.}\]

\[\|u_i\|=1,\qquad u_i\cdot u_j=0\quad\hbox{if $i\ne j$.}\]

%% page 191

\[\it\hbox{The confluent image of}\quad
\begin{Bmatrix}\hbox{an arc}\hfill\\\hbox{a circle}\hfill\\
\hbox{a fan}\hfill\\\end{Bmatrix}
\quad\hbox{is}\quad
\begin{Bmatrix}\hbox{an arc}\hfill\\
\hbox{an arc or a circle}\hfill\\
\hbox{a fan or an arc}\hfill\end{Bmatrix}.\]

%% page 191

\begin{align*}
T(n)\le T(2^{\lceil\lg n\rceil})
&\le c(3^{\lceil\lg n\rceil}-2^{\lceil\lg n\rceil})\\
&<3c\cdot3^{\lg n}\\
&=3c\,n^{\lg3}.
\end{align*}

%\begin{align*}
%\left\{%
%\begin{gathered}\alpha&=f(z)\\ \beta&=f(z^2)\\ \gamma&=f(z^3)
%\end{gathered}
%\right\}
%\qquad
%\left\{%
%\begin{gathered}
%x&=\alpha^2-\beta\\ y&=2\gamma
%\end{gathered}
%\right\}%
%\end{align*}

%\[\left\{
%\begin{align}
%\alpha&=f(z)\cr \beta&=f(z^2)\cr \gamma&=f(z^3)\\
%%\end{align}
%\right\}
%\qquad
%\left\{
%%\begin{align}
%x&=\alpha^2-\beta\cr y&=2\gamma\\
%\end{align}
%\right\}.\]
%%% page 192

\begin{align*}
\begin{aligned}
(x+y)(x-y)&=x^2-xy+yx-y^2\\
&=x^2-y^2\\
(x+y)^2&=x^2+2xy+y^2.
\end{aligned}
\end{align*}

%% page 192

\begin{align*}
\begin{aligned}
\biggl(\int_{-\infty}^\infty e^{-x^2}\,dx\biggr)^2
&=\int_{-\infty}^\infty\int_{-\infty}^\infty e^{-(x^2+y^2)}\,dx\,dy\\
&=\int_0^{2\pi}\int_0^\infty e^{-r^2}\,dr\,d\theta\\
&=\int_0^{2\pi}\biggl(e^{-\frac{r^2}{2}}
\biggl|_{r=0}^{r=\infty}\,\biggr)\,d\theta\\
&=\pi.
\end{aligned}
\end{align*}

%% page 197

\[\prod_{k\ge0}\frac{1}{(1-q^kz)}=
\sum_{n\ge0}z^n\bigg/\!\!\prod_{1\le k\le n}(1-q^k).\]

\[\sum_{\substack{\scriptstyle 0< i\le m\\\scriptstyle0<j\le n}}p(i,j) \,\ne
%
% \[\sum_{i=1}^p \sum_{j=1}^q \sum_{k=1}^r a_{ij} b_{jk} c_{ki}\]
%
\sum_{i=1}^p \sum_{j=1}^q \sum_{k=1}^r a_{ij} b_{jk} c_{ki} \,\ne
%
\sum_{\substack{\scriptstyle 1\le i\le p \\ \scriptstyle 1\le j\le q\\
\scriptstyle 1\le k\le r}} a_{ij} b_{jk} c_{ki}\]

\[\max_{1\le n\le m}\log_2P_n \quad \hbox{and} \quad
\lim_{x\to0}\frac{\sin x}{x}=1\]

\[p_1(n)=\lim_{m\to\infty}\sum_{\nu=0}^\infty\bigl(1-\cos^{2m}(\nu!^n\pi/n)\bigr)\]