1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
|
% DVIPLUS.WEB
%
% This program is not copyrighted and may be used freely.
%
% Written by Tor Lillqvist
% Technical Research Centre of Finland
% Lehtisaarentie 2 A
% SF-00340 HELSINKI
% FINLAND
%
% E-mail: tml@@fingate.bitnet, tml@@santra.uucp, ...!mcvax!santra!tml
% Phone: +358 0 4566132
% Telex: 122972 vttha sf
% Here is TeX material that gets inserted after \input webmac
\def\hang{\hangindent 3em\indent\ignorespaces}
\font\ninerm=cmr9
\let\mc=\ninerm % medium caps for names like SAIL
\def\PASCAL{Pascal}
\def\(#1){} % this is used to make section names sort themselves better
\def\9#1{} % this is used for sort keys in the index
\def\title{DVI$\,$\lowercase{plus}}
\def\contentspagenumber{1}
\def\topofcontents{\null
\def\titlepage{F} % include headline on the contents page
\def\rheader{\mainfont\hfil \contentspagenumber}
\vfill
\centerline{\titlefont The {\ttitlefont DVIplus} processor}
\vskip 10pt
\centerline{\titlefont for HP LaserJet+}
\vskip 15pt
\centerline{(Version 1.2, April 1986)}
\vfill}
\def\botofcontents{\vfill
\centerline{\baselineskip9pt
\vbox{\ninerm\noindent
`\TeX' is a
trademark of the American Mathematical Society.}}}
\pageno=\contentspagenumber \advance\pageno by 1
@* Introduction.
The \.{DVIplus} program reads binary device-independent (``\.{DVI}'')
files that are produced by document compilers such as \TeX,
and translates them for printing on a HP LaserJet+
page printer.
This program is written by Tor Lillqvist,
based on the DVItype program by Donald E.~Knuth.
This version is for the \PASCAL/1000 compiler on the RTE--A operating
system running on the HP1000 A--Series computers.
Programs for
typesetting need to be especially careful about how they do arithmetic; if
rounding errors accumulate, margins won't be straight, vertical rules
won't line up, and so on. But if rounding is done everywhere, even in the
midst of words, there will be uneven spacing between the letters, and that
looks bad. Human eyes notice differences of a thousandth of an inch in the
positioning of lines that are close together; on low resolution devices,
where rounding produces effects four times as great as this, the problem
is especially critical. Experience has shown that unusual care is needed
even on high-resolution equipment; for example, a mistake in the sixth
significant hexadecimal place of a constant once led to a difficult-to-find
bug in some software for the Alphatype CRS, which has a resolution of 5333
pixels per inch (make that 5333.33333333 pixels per inch). The document
compilers that generate \.{DVI} files make certain assumptions about the
arithmetic that will be used by \.{DVI}-reading software, and if these
assumptions are violated the results will be of inferior quality.
Therefore the present program is intended as a guide to proper procedure
in the critical places where a bit of subtlety is involved.
The |banner| string defined here should be changed whenever \.{DVIplus}
gets modified.
The editor of RTE--A automagically updates this timestamp when
the file is written.
@d banner=='This is DVIplus, RTE-A Version 1.2 <860605.2059>'
@ This program is not written in standard \PASCAL, but
the \PASCAL/1000 dialect used on HP1000 A--series computers
running the RTE--A operating system;
it should be easy to convert to other reasonable \PASCAL\
dialects.
Places where pecliarities depndent on the RTE--A implmentation have
been used are listed in the index under ``system dependencies''.
@!@^system dependencies@>
One of the extensions to standard \PASCAL\ that we shall deal with is the
ability to move to a random place in a binary file; another is to
determine the length of a binary file.
In fact, in RTE--A we cannot determine the logical length of a binary file,
so another approach is used: The first doubleword in \.{PXL} and \.{DVI}
files contains the size of the file (in doublewords = integers).
The records are numbered sequentially starting from 1. The internal pointers
in \.{DVI} and \.{PXL} files start the (byte) numbering from 0, so an offset
is added in the |seek| calls.
\PASCAL/1000 allows writing nonprinting characters to |text| files
using a notation with a number sign followed by the decimal
ordinal number of the character. For example, |write(f, #27'E')| writes
an escape followed by a capital `E'.
In \PASCAL/1000, output to |text| files is line buffered, and we cannot
keep |write|ing without using |writeln| every now and then.
This terminates the record, which
normally causes a newline, but the terminal drivers in RTE--A
leave the newline out if the last byte of a write request is underscore.
This is handled by the |write_lj| macro.
Another extension is to use a default |case| as in \.{TANGLE}, \.{WEAVE},
etc.
@d othercases == otherwise {default for cases not listed explicitly}
@d endcases == @+end {follows the default case in an extended |case| statement}
@f othercases == else
@f endcases == end
@ Before the program heading we have some compiler options.
These specify that code should be generated for the `CDS' mode,
i.e. Code-and-Data-Separation.
The binary input comes from |dvi_file| and the |pxl_file|s.
@^system dependencies@>
@p
@=$Standard_Level 'HP1000', CDS On, Debug, Range Off$@>@/
program DVIplus;
type @<Types in the outer block@>@/
var @<Globals in the outer block@>@/
@<External routine declarations@>@/
procedure initialize; {this procedure gets things started properly}
var i:0..255;
begin
@<Set initial values@>@/
end;
@ Here are some macros for common programming idioms.
@d do_nothing == {empty statement}
@d incr(#) == #:=#+1 {increase a variable by unity}
@d decr(#) == #:=#-1 {decrease a variable by unity}
@ We do our own error handling.
@^system dependencies@>
@d catch_errors==error_status:=true
@d dont_catch_errors==error_status:=false
@<Types...@>=
@!error_type=(err_run,err_ema,err_io,err_fmp,err_seg,err_wrn);
@!error_file_name=packed array [1..150] of char;
@ The |error_status| flag is set |true| when errors are to be catched.
If a file system related error occurs, |error_status| is set false.
@<Glob...@>=
@!error_status:boolean;
@ If an error that we are not prepared to catch occurs, we call
the standard error printing routine, and |halt|.
@p procedure errorprinter @=$Alias 'Pas.ErrorPrinter'$@>
(err_type: error_type; err_number, err_line: short;
var err_file: error_file_name; err_flen: short);
external;@t\2@>@/
@#
procedure errorcatcher @=$Alias 'Pas.ErrorCatcher'$@>
(err_type: error_type; err_number, err_line: short;
var err_file: error_file_name; err_flen: short);
begin
if err_type=err_wrn then
do_nothing
else if error_status and (err_type=err_fmp) then
error_status := false
else begin
errorprinter(err_type,err_number,err_line,err_file,err_flen);
halt(1); {an error we weren't prepared to catch}
end;
end;
@ External routines are declared here.
|parameters| retrieves a runstring parameter.
|LURQ| is used to lock the output device.
|dcb_address| returns a pointer to the DCB (a sort of file control
block for an open file.
|fmp_interactive| tells if a DCB corresponds to an interactive device,
and |fmp_lu| returns the `logical unit' number of a device.
@^system dependencies@>
@<External routine...@>=
function parameters @=$Alias 'Pas.Parameters'$@>
(pos:short; var par:file_name; len:short):short; external; @t\2@>@#
procedure LURQ(option:short; var lu:short; num: short; var key:short);
external; @t\2@>@#
procedure dcb_address @=$Alias 'Pas.DcbAddress1'$@>
(var p:dcb_ptr; var f:text_file); external; @t\2@>@#
function fmp_interactive @=$Alias 'FmpInteractive'$@>
(var d:dcb):short; external; @t\2@>@#
function fmp_lu @=$Alias 'FmpLU'$@> (var d:dcb):short; external; @t\2@>@#
@ Types related to system routines.
@d name_length=64 {a file name shouldn't be longer than this}
@<Types...@>=
@!short=-32768..32767;
@!file_name=packed array [1..name_length] of char;
@!dcb=array [1..144] of short;
@!dcb_ptr=^dcb;
@ @<Globals...@>=
@!laser_dcb:dcb_ptr;
@!lu,@!key:short;
@ We lock the printer after opening it if it is a device.
This prevents intermixed output.
The default output file name is given here.
@^system dependencies@>
@d default_out=='61'
@<Open and lock |laser_file|@>=
if parameters(arg_index,cur_name,name_length) <= 0 then
cur_name:=default_out;
rewrite(laser_file,cur_name,'NOCCTL,SHARED');
dcb_address(laser_dcb,laser_file);
if fmp_interactive(laser_dcb^) <> 0 then begin
lu:=fmp_lu(laser_dcb^);
LURQ(1,lu,1,key);
end
@ Labels (global and local).
@d done=30 {go here when finished with a subtask}
@d exit=999 {go here to leave a procedure}
@d return==goto exit
@ The following parameters can be changed to extend or
reduce \.{DVIplus}'s capacity.
@d max_fonts=75 {maximum number of distinct fonts per \.{DVI} file}
@d max_printer_fonts=20 {maximum number of fonts kept in printer}
@d max_fonts_on_page=16 {maximum number of fonts per page}
@d max_widths=9601 {|max_fonts * 128 + 1|}
{maximum number of different characters among all fonts}
@d line_length=79 {bracketed lines of output will be at most this long}
@d terminal_line_length=128 {maximum number of characters input in a single
line of input from the terminal}
@d stack_size=100 {\.{DVI} files shouldn't |push| beyond this depth}
@d name_size=1000 {total length of all font file names}
@d max_bops=1000 {maximum number of pages printed}
@ If the \.{DVI} file is badly malformed, the whole process must be aborted;
\.{DVIplus} will give up, after issuing an error message about the symptoms
that were noticed.
Such errors might be discovered inside of subroutines inside of subroutines,
so a procedure called |jump_out| has been introduced. This procedure simply
halts the program using the \PASCAL/1000 procedure |halt|.
@^system dependencies@>
@d print(#)==write(term_out,#)
@d print_ln(#)==write_ln(term_out,#)
@d print_nl==write_ln(term_out)
@d abort(#)==begin print('? ',#); jump_out;
end
@d bad_dvi(#)==abort('Bad DVI file: ',#,'!')
@.Bad DVI file@>
@d bad_pxl(#)==begin print_nl; abort('Bad PXL file: ',#,'!'); end
@.Bad PXL file@>
@p procedure jump_out;
begin halt(1)
end;
@ We fill output lines to |laser_file|, breaking the line when
|lj_threshold| characters have been written. An underscore character
is appended to the line before the newline (record boundary).
This prevents the RTE--A terminal driver from writing a {\tt CR~LF}
pair at the end of the line.
@^system dependencies@>
All output to |laser_file| goes through the macros |write_lj| or
|write_lj_f|. The latter doesn't test for line break before writing.
@d lj_threshold=70
@d write_lj(#)==begin if linepos(laser_file)>lj_threshold then
write_ln(laser_file,'_');
write(laser_file,#)
end
@d write_lj_f(#)==write(laser_file,#)
@* The character set.
Like all programs written with the \.{WEB} system, \.{DVIplus} can be
used with any character set. But it uses ASCII code internally, because
the programming for portable input-output is easier when a fixed internal
code is used, and because \.{DVI} files use ASCII code for file names
and certain other strings.
The next few sections of \.{DVIplus} have therefore been copied from the
analogous ones in the \.{WEB} system routines. They have been considerably
simplified, since \.{DVIplus} need not deal with the controversial
ASCII codes less than @'40. If such codes appear in the \.{DVI} file,
they will be printed as question marks.
@<Types...@>=
@!ASCII_code=" ".."~"; {a subrange of the integers}
@ The original \PASCAL\ compiler was designed in the late 60s, when six-bit
character sets were common, so it did not make provision for lower case
letters. Nowadays, of course, we need to deal with both upper and lower case
alphabets in a convenient way, especially in a program like \.{DVIplus}.
So we shall assume that the \PASCAL\ system being used for \.{DVIplus}
has a character set containing at least the standard visible characters
of ASCII code (|"!"| through |"~"|).
Some \PASCAL\ compilers use the original name |char| for the data type
associated with the characters in text files, while other \PASCAL s
consider |char| to be a 64-element subrange of a larger data type that has
some other name. In order to accommodate this difference, we shall use
the name |text_char| to stand for the data type of the characters in the
output file. We shall also assume that |text_char| consists of
the elements |chr(first_text_char)| through |chr(last_text_char)|,
inclusive. The following definitions should be adjusted if necessary.
@^system dependencies@>
@d text_char == char {the data type of characters in text files}
@d first_text_char=0 {ordinal number of the smallest element of |text_char|}
@d last_text_char=255 {ordinal number of the largest element of |text_char|}
@<Types...@>=
@!text_file=text_;
@ The \.{DVIplus} processor converts between ASCII code and
the user's external character set by means of arrays |xord| and |xchr|
that are analogous to \PASCAL's |ord| and |chr| functions.
@<Globals...@>=
@!xord: array [text_char] of ASCII_code;
{specifies conversion of input characters}
@!xchr: array [0..255] of text_char;
{specifies conversion of output characters}
@ Under our assumption that the visible characters of standard ASCII are
all present, the following assignment statements initialize the
|xchr| array properly, without needing any system-dependent changes.
@<Set init...@>=
for i:=0 to @'37 do xchr[i]:='?';
xchr[@'40]:=' ';
xchr[@'41]:='!';
xchr[@'42]:='"';
xchr[@'43]:='#';
xchr[@'44]:='$';
xchr[@'45]:='%';
xchr[@'46]:='&';
xchr[@'47]:='''';@/
xchr[@'50]:='(';
xchr[@'51]:=')';
xchr[@'52]:='*';
xchr[@'53]:='+';
xchr[@'54]:=',';
xchr[@'55]:='-';
xchr[@'56]:='.';
xchr[@'57]:='/';@/
xchr[@'60]:='0';
xchr[@'61]:='1';
xchr[@'62]:='2';
xchr[@'63]:='3';
xchr[@'64]:='4';
xchr[@'65]:='5';
xchr[@'66]:='6';
xchr[@'67]:='7';@/
xchr[@'70]:='8';
xchr[@'71]:='9';
xchr[@'72]:=':';
xchr[@'73]:=';';
xchr[@'74]:='<';
xchr[@'75]:='=';
xchr[@'76]:='>';
xchr[@'77]:='?';@/
xchr[@'100]:='@@';
xchr[@'101]:='A';
xchr[@'102]:='B';
xchr[@'103]:='C';
xchr[@'104]:='D';
xchr[@'105]:='E';
xchr[@'106]:='F';
xchr[@'107]:='G';@/
xchr[@'110]:='H';
xchr[@'111]:='I';
xchr[@'112]:='J';
xchr[@'113]:='K';
xchr[@'114]:='L';
xchr[@'115]:='M';
xchr[@'116]:='N';
xchr[@'117]:='O';@/
xchr[@'120]:='P';
xchr[@'121]:='Q';
xchr[@'122]:='R';
xchr[@'123]:='S';
xchr[@'124]:='T';
xchr[@'125]:='U';
xchr[@'126]:='V';
xchr[@'127]:='W';@/
xchr[@'130]:='X';
xchr[@'131]:='Y';
xchr[@'132]:='Z';
xchr[@'133]:='[';
xchr[@'134]:='\';
xchr[@'135]:=']';
xchr[@'136]:='^';
xchr[@'137]:='_';@/
xchr[@'140]:='`';
xchr[@'141]:='a';
xchr[@'142]:='b';
xchr[@'143]:='c';
xchr[@'144]:='d';
xchr[@'145]:='e';
xchr[@'146]:='f';
xchr[@'147]:='g';@/
xchr[@'150]:='h';
xchr[@'151]:='i';
xchr[@'152]:='j';
xchr[@'153]:='k';
xchr[@'154]:='l';
xchr[@'155]:='m';
xchr[@'156]:='n';
xchr[@'157]:='o';@/
xchr[@'160]:='p';
xchr[@'161]:='q';
xchr[@'162]:='r';
xchr[@'163]:='s';
xchr[@'164]:='t';
xchr[@'165]:='u';
xchr[@'166]:='v';
xchr[@'167]:='w';@/
xchr[@'170]:='x';
xchr[@'171]:='y';
xchr[@'172]:='z';
xchr[@'173]:='{';
xchr[@'174]:='|';
xchr[@'175]:='}';
xchr[@'176]:='~';
for i:=@'177 to 255 do xchr[i]:='?';
@ The following system-independent code makes the |xord| array contain a
suitable inverse to the information in |xchr|.
@<Set init...@>=
for i:=first_text_char to last_text_char do xord[chr(i)]:=@'40;
for i:=" " to "~" do xord[xchr[i]]:=i;
@ The LaserJet refuses to print other that `visible characters', that is
characters in the range @'41--@'177 or @'240--@'377.
@p function vis_chr(p : integer):char;
begin
if p < @'41 then
p:=p+@'240;
vis_chr:=chr(p);
end;
@* Device-independent file format.
Before we get into the details of \.{DVIplus}, we need to know exactly
what \.{DVI} files are. The form of such files was designed by David R.
@^Fuchs, David Raymond@>
Fuchs in 1979. Almost any reasonable typesetting device can be driven by
a program that takes \.{DVI} files as input, and dozens of such
\.{DVI}-to-whatever programs have been written. Thus, it is possible to
print the output of document compilers like \TeX\ on many different kinds
of equipment.
A \.{DVI} file is a stream of 8-bit bytes, which may be regarded as a
series of commands in a machine-like language. The first byte of each command
is the operation code, and this code is followed by zero or more bytes
that provide parameters to the command. The parameters themselves may consist
of several consecutive bytes; for example, the `|set_rule|' command has two
parameters, each of which is four bytes long. Parameters are usually
regarded as nonnegative integers; but four-byte-long parameters,
and shorter parameters that denote distances, can be
either positive or negative. Such parameters are given in two's complement
notation. For example, a two-byte-long distance parameter has a value between
$-2^{15}$ and $2^{15}-1$.
@.DVI {\rm files}@>
A \.{DVI} file consists of a ``preamble,'' followed by a sequence of one
or more ``pages,'' followed by a ``postamble.'' The preamble is simply a
|pre| command, with its parameters that define the dimensions used in the
file; this must come first. Each ``page'' consists of a |bop| command,
followed by any number of other commands that tell where characters are to
be placed on a physical page, followed by an |eop| command. The pages
appear in the order that they were generated, not in any particular
numerical order. If we ignore |nop| commands and \\{fnt\_def} commands
(which are allowed between any two commands in the file), each |eop|
command is immediately followed by a |bop| command, or by a |post|
command; in the latter case, there are no more pages in the file, and the
remaining bytes form the postamble. Further details about the postamble
will be explained later.
Some parameters in \.{DVI} commands are ``pointers.'' These are four-byte
quantities that give the location number of some other byte in the file;
the first byte is number~0, then comes number~1, and so on. For example,
one of the parameters of a |bop| command points to the previous |bop|;
this makes it feasible to read the pages in backwards order, in case the
results are being directed to a device that stacks its output face up.
Suppose the preamble of a \.{DVI} file occupies bytes 0 to 99. Now if the
first page occupies bytes 100 to 999, say, and if the second
page occupies bytes 1000 to 1999, then the |bop| that starts in byte 1000
points to 100 and the |bop| that starts in byte 2000 points to 1000. (The
very first |bop|, i.e., the one that starts in byte 100, has a pointer of $-1$.)
@ The \.{DVI} format is intended to be both compact and easily interpreted
by a machine. Compactness is achieved by making most of the information
implicit instead of explicit. When a \.{DVI}-reading program reads the
commands for a page, it keeps track of several quantities: (a)~The current
font |f| is an integer; this value is changed only
by \\{fnt} and \\{fnt\_num} commands. (b)~The current position on the page
is given by two numbers called the horizontal and vertical coordinates,
|h| and |v|. Both coordinates are zero at the upper left corner of the page;
moving to the right corresponds to increasing the horizontal coordinate, and
moving down corresponds to increasing the vertical coordinate. Thus, the
coordinates are essentially Cartesian, except that vertical directions are
flipped; the Cartesian version of |(h,v)| would be |(h,-v)|. (c)~The
current spacing amounts are given by four numbers |w|, |x|, |y|, and |z|,
where |w| and~|x| are used for horizontal spacing and where |y| and~|z|
are used for vertical spacing. (d)~There is a stack containing
|(h,v,w,x,y,z)| values; the \.{DVI} commands |push| and |pop| are used to
change the current level of operation. Note that the current font~|f| is
not pushed and popped; the stack contains only information about
positioning.
The values of |h|, |v|, |w|, |x|, |y|, and |z| are signed integers having up
to 32 bits, including the sign. Since they represent physical distances,
there is a small unit of measurement such that increasing |h| by~1 means
moving a certain tiny distance to the right. The actual unit of
measurement is variable, as explained below.
@ Here is a list of all the commands that may appear in a \.{DVI} file. Each
command is specified by its symbolic name (e.g., |bop|), its opcode byte
(e.g., 139), and its parameters (if any). The parameters are followed
by a bracketed number telling how many bytes they occupy; for example,
`|p[4]|' means that parameter |p| is four bytes long.
\yskip\hang|set_char_0| 0. Typeset character number~0 from font~|f|
such that the reference point of the character is at |(h,v)|. Then
increase |h| by the width of that character. Note that a character may
have zero or negative width, so one cannot be sure that |h| will advance
after this command; but |h| usually does increase.
\yskip\hang|set_char_1| through |set_char_127| (opcodes 1 to 127).
Do the operations of |set_char_0|; but use the character whose number
matches the opcode, instead of character~0.
\yskip\hang|set1| 128 |c[1]|. Same as |set_char_0|, except that character
number~|c| is typeset. \TeX82 uses this command for characters in the
range |128<=c<256|.
\yskip\hang|set2| 129 |c[2]|. Same as |set1|, except that |c|~is two
bytes long, so it is in the range |0<=c<65536|. \TeX82 never uses this
command, which is intended for processors that deal with oriental languages;
but \.{DVIplus} will allow character codes greater than 255, assuming that
they all have the same width as the character whose code is $c \bmod 256$.
@^oriental characters@>@^Chinese characters@>@^Japanese characters@>
\yskip\hang|set3| 130 |c[3]|. Same as |set1|, except that |c|~is three
bytes long, so it can be as large as $2^{24}-1$.
\yskip\hang|set4| 131 |c[4]|. Same as |set1|, except that |c|~is four
bytes long, possibly even negative. Imagine that.
\yskip\hang|set_rule| 132 |a[4]| |b[4]|. Typeset a solid black rectangle
of height |a| and width |b|, with its bottom left corner at |(h,v)|. Then
set |h:=h+b|. If either |a<=0| or |b<=0|, nothing should be typeset. Note
that if |b<0|, the value of |h| will decrease even though nothing else happens.
Programs that typeset from \.{DVI} files should be careful to make the rules
line up carefully with digitized characters, as explained in connection with
the |rule_pixels| subroutine below.
\yskip\hang|put1| 133 |c[1]|. Typeset character number~|c| from font~|f|
such that the reference point of the character is at |(h,v)|. (The `put'
commands are exactly like the `set' commands, except that they simply put out a
character or a rule without moving the reference point afterwards.)
\yskip\hang|put2| 134 |c[2]|. Same as |set2|, except that |h| is not changed.
\yskip\hang|put3| 135 |c[3]|. Same as |set3|, except that |h| is not changed.
\yskip\hang|put4| 136 |c[4]|. Same as |set4|, except that |h| is not changed.
\yskip\hang|put_rule| 137 |a[4]| |b[4]|. Same as |set_rule|, except that
|h| is not changed.
\yskip\hang|nop| 138. No operation, do nothing. Any number of |nop|'s
may occur between \.{DVI} commands, but a |nop| cannot be inserted between
a command and its parameters or between two parameters.
\yskip\hang|bop| 139 $c_0[4]$ $c_1[4]$ $\ldots$ $c_9[4]$ $p[4]$. Beginning
of a page: Set |(h,v,w,x,y,z):=(0,0,0,0,0,0)| and set the stack empty. Set
the current font |f| to an undefined value. The ten $c_i$ parameters can
be used to identify pages, if a user wants to print only part of a \.{DVI}
file; \TeX82 gives them the values of \.{\\count0} $\ldots$ \.{\\count9}
at the time \.{\\shipout} was invoked for this page. The parameter |p|
points to the previous |bop| command in the file, where the first |bop|
has $p=-1$.
\yskip\hang|eop| 140. End of page: Print what you have read since the
previous |bop|. At this point the stack should be empty. (The \.{DVI}-reading
programs that drive most output devices will have kept a buffer of the
material that appears on the page that has just ended. This material is
largely, but not entirely, in order by |v| coordinate and (for fixed |v|) by
|h|~coordinate; so it usually needs to be sorted into some order that is
appropriate for the device in question. \.{DVIplus} does not do such sorting.)
\yskip\hang|push| 141. Push the current values of |(h,v,w,x,y,z)| onto the
top of the stack; do not change any of these values. Note that |f| is
not pushed.
\yskip\hang|pop| 142. Pop the top six values off of the stack and assign
them to |(h,v,w,x,y,z)|. The number of pops should never exceed the number
of pushes, since it would be highly embarrassing if the stack were empty
at the time of a |pop| command.
\yskip\hang|right1| 143 |b[1]|. Set |h:=h+b|, i.e., move right |b| units.
The parameter is a signed number in two's complement notation, |-128<=b<128|;
if |b<0|, the reference point actually moves left.
\yskip\hang|right2| 144 |b[2]|. Same as |right1|, except that |b| is a
two-byte quantity in the range |-32768<=b<32768|.
\yskip\hang|right3| 145 |b[3]|. Same as |right1|, except that |b| is a
three-byte quantity in the range |@t$-2^{23}$@><=b<@t$2^{23}$@>|.
\yskip\hang|right4| 146 |b[4]|. Same as |right1|, except that |b| is a
four-byte quantity in the range |@t$-2^{31}$@><=b<@t$2^{31}$@>|.
\yskip\hang|w0| 147. Set |h:=h+w|; i.e., move right |w| units. With luck,
this parameterless command will usually suffice, because the same kind of motion
will occur several times in succession; the following commands explain how
|w| gets particular values.
\yskip\hang|w1| 148 |b[1]|. Set |w:=b| and |h:=h+b|. The value of |b| is a
signed quantity in two's complement notation, |-128<=b<128|. This command
changes the current |w|~spacing and moves right by |b|.
\yskip\hang|w2| 149 |b[2]|. Same as |w1|, but |b| is a two-byte-long
parameter, |-32768<=b<32768|.
\yskip\hang|w3| 150 |b[3]|. Same as |w1|, but |b| is a three-byte-long
parameter, |@t$-2^{23}$@><=b<@t$2^{23}$@>|.
\yskip\hang|w4| 151 |b[4]|. Same as |w1|, but |b| is a four-byte-long
parameter, |@t$-2^{31}$@><=b<@t$2^{31}$@>|.
\yskip\hang|x0| 152. Set |h:=h+x|; i.e., move right |x| units. The `|x|'
commands are like the `|w|' commands except that they involve |x| instead
of |w|.
\yskip\hang|x1| 153 |b[1]|. Set |x:=b| and |h:=h+b|. The value of |b| is a
signed quantity in two's complement notation, |-128<=b<128|. This command
changes the current |x|~spacing and moves right by |b|.
\yskip\hang|x2| 154 |b[2]|. Same as |x1|, but |b| is a two-byte-long
parameter, |-32768<=b<32768|.
\yskip\hang|x3| 155 |b[3]|. Same as |x1|, but |b| is a three-byte-long
parameter, |@t$-2^{23}$@><=b<@t$2^{23}$@>|.
\yskip\hang|x4| 156 |b[4]|. Same as |x1|, but |b| is a four-byte-long
parameter, |@t$-2^{31}$@><=b<@t$2^{31}$@>|.
\yskip\hang|down1| 157 |a[1]|. Set |v:=v+a|, i.e., move down |a| units.
The parameter is a signed number in two's complement notation, |-128<=a<128|;
if |a<0|, the reference point actually moves up.
\yskip\hang|down2| 158 |a[2]|. Same as |down1|, except that |a| is a
two-byte quantity in the range |-32768<=a<32768|.
\yskip\hang|down3| 159 |a[3]|. Same as |down1|, except that |a| is a
three-byte quantity in the range |@t$-2^{23}$@><=a<@t$2^{23}$@>|.
\yskip\hang|down4| 160 |a[4]|. Same as |down1|, except that |a| is a
four-byte quantity in the range |@t$-2^{31}$@><=a<@t$2^{31}$@>|.
\yskip\hang|y0| 161. Set |v:=v+y|; i.e., move down |y| units. With luck,
this parameterless command will usually suffice, because the same kind of motion
will occur several times in succession; the following commands explain how
|y| gets particular values.
\yskip\hang|y1| 162 |a[1]|. Set |y:=a| and |v:=v+a|. The value of |a| is a
signed quantity in two's complement notation, |-128<=a<128|. This command
changes the current |y|~spacing and moves down by |a|.
\yskip\hang|y2| 163 |a[2]|. Same as |y1|, but |a| is a two-byte-long
parameter, |-32768<=a<32768|.
\yskip\hang|y3| 164 |a[3]|. Same as |y1|, but |a| is a three-byte-long
parameter, |@t$-2^{23}$@><=a<@t$2^{23}$@>|.
\yskip\hang|y4| 165 |a[4]|. Same as |y1|, but |a| is a four-byte-long
parameter, |@t$-2^{31}$@><=a<@t$2^{31}$@>|.
\yskip\hang|z0| 166. Set |v:=v+z|; i.e., move down |z| units. The `|z|' commands
are like the `|y|' commands except that they involve |z| instead of |y|.
\yskip\hang|z1| 167 |a[1]|. Set |z:=a| and |v:=v+a|. The value of |a| is a
signed quantity in two's complement notation, |-128<=a<128|. This command
changes the current |z|~spacing and moves down by |a|.
\yskip\hang|z2| 168 |a[2]|. Same as |z1|, but |a| is a two-byte-long
parameter, |-32768<=a<32768|.
\yskip\hang|z3| 169 |a[3]|. Same as |z1|, but |a| is a three-byte-long
parameter, |@t$-2^{23}$@><=a<@t$2^{23}$@>|.
\yskip\hang|z4| 170 |a[4]|. Same as |z1|, but |a| is a four-byte-long
parameter, |@t$-2^{31}$@><=a<@t$2^{31}$@>|.
\yskip\hang|fnt_num_0| 171. Set |f:=0|. Font 0 must previously have been
defined by a \\{fnt\_def} instruction, as explained below.
\yskip\hang|fnt_num_1| through |fnt_num_63| (opcodes 172 to 234). Set
|f:=1|, \dots, |f:=63|, respectively.
\yskip\hang|fnt1| 235 |k[1]|. Set |f:=k|. \TeX82 uses this command for font
numbers in the range |64<=k<256|.
\yskip\hang|fnt2| 236 |k[2]|. Same as |fnt1|, except that |k|~is two
bytes long, so it is in the range |0<=k<65536|. \TeX82 never generates this
command, but large font numbers may prove useful for specifications of
color or texture, or they may be used for special fonts that have fixed
numbers in some external coding scheme.
\yskip\hang|fnt3| 237 |k[3]|. Same as |fnt1|, except that |k|~is three
bytes long, so it can be as large as $2^{24}-1$.
\yskip\hang|fnt4| 238 |k[4]|. Same as |fnt1|, except that |k|~is four
bytes long; this is for the really big font numbers (and for the negative ones).
\yskip\hang|xxx1| 239 |k[1]| |x[k]|. This command is undefined in
general; it functions as a $(k+2)$-byte |nop| unless special \.{DVI}-reading
programs are being used. \TeX82 generates |xxx1| when a short enough
\.{\\special} appears, setting |k| to the number of bytes being sent. It
is recommended that |x| be a string having the form of a keyword followed
by possible parameters relevant to that keyword.
\yskip\hang|xxx2| 240 |k[2]| |x[k]|. Like |xxx1|, but |0<=k<65536|.
\yskip\hang|xxx3| 241 |k[3]| |x[k]|. Like |xxx1|, but |0<=k<@t$2^{24}$@>|.
\yskip\hang|xxx4| 242 |k[4]| |x[k]|. Like |xxx1|, but |k| can be ridiculously
large. \TeX82 uses |xxx4| when |xxx1| would be incorrect.
\yskip\hang|fnt_def1| 243 |k[1]| |c[4]| |s[4]| |d[4]| |a[1]| |l[1]| |n[a+l]|.
Define font |k|, where |0<=k<256|; font definitions will be explained shortly.
\yskip\hang|fnt_def2| 244 |k[2]| |c[4]| |s[4]| |d[4]| |a[1]| |l[1]| |n[a+l]|.
Define font |k|, where |0<=k<65536|.
\yskip\hang|fnt_def3| 245 |k[3]| |c[4]| |s[4]| |d[4]| |a[1]| |l[1]| |n[a+l]|.
Define font |k|, where |0<=k<@t$2^{24}$@>|.
\yskip\hang|fnt_def4| 246 |k[4]| |c[4]| |s[4]| |d[4]| |a[1]| |l[1]| |n[a+l]|.
Define font |k|, where |@t$-2^{31}$@><=k<@t$2^{31}$@>|.
\yskip\hang|pre| 247 |i[1]| |num[4]| |den[4]| |mag[4]| |k[1]| |x[k]|.
Beginning of the preamble; this must come at the very beginning of the
file. Parameters |i|, |num|, |den|, |mag|, |k|, and |x| are explained below.
\yskip\hang|post| 248. Beginning of the postamble, see below.
\yskip\hang|post_post| 249. Ending of the postamble, see below.
\yskip\noindent Commands 250--255 are undefined at the present time.
@ @d set_char_0=0 {typeset character 0 and move right}
@d set1=128 {typeset a character and move right}
@d set_rule=132 {typeset a rule and move right}
@d put1=133 {typeset a character}
@d put_rule=137 {typeset a rule}
@d nop=138 {no operation}
@d bop=139 {beginning of page}
@d eop=140 {ending of page}
@d push=141 {save the current positions}
@d pop=142 {restore previous positions}
@d right1=143 {move right}
@d w0=147 {move right by |w|}
@d w1=148 {move right and set |w|}
@d x0=152 {move right by |x|}
@d x1=153 {move right and set |x|}
@d down1=157 {move down}
@d y0=161 {move down by |y|}
@d y1=162 {move down and set |y|}
@d z0=166 {move down by |z|}
@d z1=167 {move down and set |z|}
@d fnt_num_0=171 {set current font to 0}
@d fnt1=235 {set current font}
@d xxx1=239 {extension to \.{DVI} primitives}
@d xxx4=242 {potentially long extension to \.{DVI} primitives}
@d fnt_def1=243 {define the meaning of a font number}
@d pre=247 {preamble}
@d post=248 {postamble beginning}
@d post_post=249 {postamble ending}
@d undefined_commands==250,251,252,253,254,255
@ The preamble contains basic information about the file as a whole. As
stated above, there are six parameters:
$$\hbox{|@!i[1]| |@!num[4]| |@!den[4]| |@!mag[4]| |@!k[1]| |@!x[k]|.}$$
The |i| byte identifies \.{DVI} format; currently this byte is always set
to~2. (Some day we will set |i=3|, when \.{DVI} format makes another
incompatible change---perhaps in 1992.)
The next two parameters, |num| and |den|, are positive integers that define
the units of measurement; they are the numerator and denominator of a
fraction by which all dimensions in the \.{DVI} file could be multiplied
in order to get lengths in units of $10^{-7}$ meters. (For example, there are
exactly 7227 \TeX\ points in 254 centimeters, and \TeX82 works with scaled
points where there are $2^{16}$ sp in a point, so \TeX82 sets |num=25400000|
and $|den|=7227\cdot2^{16}=473628672$.)
@^sp@>
The |mag| parameter is what \TeX82 calls \.{\\mag}, i.e., 1000 times the
desired magnification. The actual fraction by which dimensions are
multiplied is therefore $mn/1000d$. Note that if a \TeX\ source document
does not call for any `\.{true}' dimensions, and if you change it only by
specifying a different \.{\\mag} setting, the \.{DVI} file that \TeX\
creates will be completely unchanged except for the value of |mag| in the
preamble and postamble. (Fancy \.{DVI}-reading programs allow users to
override the |mag|~setting when a \.{DVI} file is being printed.)
Finally, |k| and |x| allow the \.{DVI} writer to include a comment, which is not
interpreted further. The length of comment |x| is |k|, where |0<=k<256|.
@d dvi_id=2 {identifies the kind of \.{DVI} files described here}
@ Font definitions for a given font number |k| contain further parameters
$$\hbox{|c[4]| |s[4]| |d[4]| |a[1]| |l[1]| |n[a+l]|.}$$
The four-byte value |c| is the check sum that \TeX\ (or whatever program
generated the \.{DVI} file) found in the \.{TFM} file for this font;
|c| should match the check sum of the font found by programs that read
this \.{DVI} file.
@^check sum@>
Parameter |s| contains a fixed-point scale factor that is applied to the
character widths in font |k|; font dimensions in \.{TFM} files and other
font files are relative to this quantity, which is always positive and
less than $2^{27}$. It is given in the same units as the other dimensions
of the \.{DVI} file. Parameter |d| is similar to |s|; it is the ``design
size,'' and it is given in \.{DVI} units that have not been corrected for
the magnification~|mag| found in the preamble. Thus, font |k| is to be
used at $|mag|\cdot s/1000d$ times its normal size.
The remaining part of a font definition gives the external name of the font,
which is an ASCII string of length |a+l|. The number |a| is the length
of the ``area'' or directory, and |l| is the length of the font name itself;
the standard local system font area is supposed to be used when |a=0|.
The |n| field contains the area in its first |a| bytes.
Font definitions must appear before the first use of a particular font number.
Once font |k| is defined, it must not be defined again; however, we
shall see below that font definitions appear in the postamble as well as
in the pages, so in this sense each font number is defined exactly twice,
if at all. Like |nop| commands and \\{xxx} commands, font definitions can
appear before the first |bop|, or between an |eop| and a |bop|.
@ The last page in a \.{DVI} file is followed by `|post|'; this command
introduces the postamble, which summarizes important facts that \TeX\ has
accumulated about the file, making it possible to print subsets of the data
with reasonable efficiency. The postamble has the form
$$\vbox{\halign{\hbox{#\hfil}\cr
|post| |p[4]| |num[4]| |den[4]| |mag[4]| |l[4]| |u[4]| |s[2]| |t[2]|\cr
$\langle\,$font definitions$\,\rangle$\cr
|post_post| |q[4]| |i[1]| 223's$[{\G}4]$\cr}}$$
Here |p| is a pointer to the final |bop| in the file. The next three
parameters, |num|, |den|, and |mag|, are duplicates of the quantities that
appeared in the preamble.
Parameters |l| and |u| give respectively the height-plus-depth of the tallest
page and the width of the widest page, in the same units as other dimensions
of the file. These numbers might be used by a \.{DVI}-reading program to
position individual ``pages'' on large sheets of film or paper.
Parameter |s| is the maximum stack depth (i.e., the largest excess of
|push| commands over |pop| commands) needed to process this file. Then
comes |t|, the total number of pages (|bop| commands) present.
The postamble continues with font definitions, which are any number of
\\{fnt\_def} commands as described above, possibly interspersed with |nop|
commands. Each font number that is used in the \.{DVI} file must be defined
exactly twice: Once before it is first selected by a \\{fnt} command, and once
in the postamble.
@ The last part of the postamble, following the |post_post| byte that
signifies the end of the font definitions, contains |q|, a pointer to the
|post| command that started the postamble. An identification byte, |i|,
comes next; this currently equals~2, as in the preamble.
The |i| byte is followed by four or more bytes that are all equal to
the decimal number 223 (i.e., @'337 in octal). \TeX\ puts out four to seven of
these trailing bytes, until the total length of the file is a multiple of
four bytes, since this works out best on machines that pack four bytes per
word; but any number of 223's is allowed, as long as there are at least four
of them. In effect, 223 is a sort of signature that is added at the very end.
@^Fuchs, David Raymond@>
This curious way to finish off a \.{DVI} file makes it feasible for
\.{DVI}-reading programs to find the postamble first, on most computers,
even though \TeX\ wants to write the postamble last. Most operating
systems permit random access to individual words or bytes of a file, so
the \.{DVI} reader can start at the end and skip backwards over the 223's
until finding the identification byte. Then it can back up four bytes, read
|q|, and move to byte |q| of the file. This byte should, of course,
contain the value 248 (|post|); now the postamble can be read, so the
\.{DVI} reader discovers all the information needed for typesetting the
pages. Note that it is also possible to skip through the \.{DVI} file at
reasonably high speed to locate a particular page, if that proves
desirable. This saves a lot of time, since \.{DVI} files used in production
jobs tend to be large.
@* Input from binary files.
We have seen that a \.{DVI} file is a sequence of 8-bit bytes. The bytes
appear physically in what is called a `|packed file of 0..255|'
in \PASCAL\ lingo.
Packing is system dependent, and many \PASCAL\ systems fail to implement
such files in a sensible way (at least, from the viewpoint of producing
good production software). For example, some systems treat all
byte-oriented files as text, looking for end-of-line marks and such
things. Therefore some system-dependent code is often needed to deal with
binary files.
@^system dependencies@>
In the RTE--A implementation, \.{DVI} and \.{PXL} files are files of
|integer|s,
with the first |integer| containing the number of |integer|s to follow.
(It is impossible to know the logical size of a random-access file).
The bytes of the file are accessed through a variant record.
@d pxl_id=1001 {identifies the kind of \.{PXL} files handled}
@<Types...@>=
@!eight_bits=0..255; {unsigned one-byte quantity}
four=0..3;
@!i2c=packed record case four of 0: (i:integer);@/
1:(i0,i1:short);@/
2:(b:packed array[0..3] of eight_bits);
3:(c:packed array[0..3] of char) end;
@!int_file=file of integer;
@!byte_file=record {files that contain binary data}
x:i2c;i:0..3;m,s:integer;
f:int_file;
end;
@ The program deals with the binary file variables |dvi_file| which is the
main input file that we are printing, and |pxl_file| is an array of
font image files from which character images is downloaded
to the printer.
@<Glob...@>=
@!laser_file:text_file;
@!dvi_file:byte_file; {the stuff we are \.{DVI}typing}
@!pxl_file:array[0..max_fonts] of file of i2c; {font image files}
@!s_pxl_file:integer; {size of |pxl_file|}
@ To prepare these files for input, we |reset| them. An extension of
\PASCAL\ is needed in the case of |pxl_file|, since we want to associate
it with external files whose names are specified dynamically (i.e., not
known at compile time). The following code assumes that `|reset(f,s)|'
does this, when |f| is a file variable and |s| is a string variable that
specifies the file name.
The function result is false if the file couldn't be opened.
@^system dependencies@>
@p function open_dvi_file:boolean;
var i,j:short;
begin
i:=parameters(arg_index,cur_name,name_length);
incr(arg_index);
j:=1;
while (j<=i)and(cur_name[j]<>'.') do incr(j);
if j>i then begin
cur_name[j]:='.'; incr(j);
cur_name[j]:='d'; incr(j);
cur_name[j]:='v'; incr(j);
cur_name[j]:='i'; incr(j);
end;
catch_errors;
reset(dvi_file.f,cur_name,'SHARED');
open_dvi_file:=error_status;
if error_status then begin
dont_catch_errors;
close(dvi_file.f);
open(dvi_file.f,cur_name,'SHARED');
get(dvi_file.f);
dvi_file.s:=dvi_file.f^;
get(dvi_file.f);
dvi_file.x.i:=dvi_file.f^;
dvi_file.i:=0;
end;
cur_loc:=0;
end;
@#
function open_pxl_file(i:short):boolean;
begin
catch_errors;
reset(pxl_file[i],cur_name,'SHARED');
open_pxl_file:=error_status;
if error_status then begin
dont_catch_errors;
close(pxl_file[i]);
open(pxl_file[i],cur_name,'SHARED');
get(pxl_file[i]);
s_pxl_file:=pxl_file[i]^.i;
get(pxl_file[i]);
if pxl_file[i]^.i <> pxl_id then
bad_pxl('bad header id');
end;
end;
@ If you looked carefully at the preceding code, you probably asked,
``What are |cur_loc| and |cur_name|?'' Good question. They're global
variables: |cur_loc| is the number of the byte about to be read next from
|dvi_file|, and |cur_name| is a string variable that will be set to the
current pixel image file name before |open_pxl_file| is called.
@<Glob...@>=
@!cur_loc:integer; {where we are about to look, in |dvi_file|}
@!cur_name:file_name; {external name,
with no lower case letters}
@ It turns out to be convenient to read four bytes at a time, when we are
inputting from \.{PXL} files. The input goes into global variables
|b0|, |b1|, |b2|, and |b3|, with |b0| getting the first byte and |b3|
the fourth.
@<Glob...@>=
@!b0,@!b1,@!b2,@!b3: integer; {four bytes input at once}
@ The |read_pxl_word| procedure sets |b0| through |b3| to the next
four bytes in the current \.{TFM} file.
@^system dependencies@>
@p procedure read_pxl_word(i:short);
begin
b0:=pxl_file[i]^.b[0];b1:=pxl_file[i]^.b[1];
b2:=pxl_file[i]^.b[2];b3:=pxl_file[i]^.b[3];
get(pxl_file[i]);
end;
@ We shall use another set of simple functions to read the next byte or
bytes from |dvi_file|. There are seven possibilities, each of which is
treated as a separate function in order to minimize the overhead for
subroutine calls.
@^system dependencies@>
This is the best way to check ``eof'' in RTE--A, as the logical length of
the file is unknown (except from the first word).
@d eof_dvi_file==(cur_loc>dvi_file.s*4)
@p function get_byte:integer; {returns the next byte, unsigned}
var b:eight_bits;
begin if eof_dvi_file then get_byte:=0
else begin
get_byte:=dvi_file.x.b[dvi_file.i];
if dvi_file.i=3 then begin
get(dvi_file.f);
dvi_file.x.i:=dvi_file.f^;
dvi_file.i:=0; end
else
incr(dvi_file.i);
end;
incr(cur_loc);
end;
@#
function signed_byte:integer; {returns the next byte, signed}
var b:eight_bits;
begin b:=get_byte;
if b<128 then signed_byte:=b @+ else signed_byte:=b-256;
end;
@#
function get_two_bytes:integer; {returns the next two bytes, unsigned}
var a,@!b:integer;
begin a:=get_byte; b:=get_byte;
get_two_bytes:=a*256+b;
end;
@#
function signed_pair:integer; {returns the next two bytes, signed}
var a,@!b:integer;
begin a:=get_byte; b:=get_byte;
if a<128 then signed_pair:=a*256+b
else signed_pair:=(a-256)*256+b;
end;
@#
function get_three_bytes:integer; {returns the next three bytes, unsigned}
var a,@!b,@!c:eight_bits;
begin a:=get_byte; b:=get_byte; c:=get_byte;
get_three_bytes:=(a*256+b)*256+c;
end;
@#
function signed_trio:integer; {returns the next three bytes, signed}
var a,@!b,@!c:integer;
begin a:=get_byte; b:=get_byte; c:=get_byte;
if a<128 then signed_trio:=(a*256+b)*256+c
else signed_trio:=((a-256)*256+b)*256+c;
end;
@#
function signed_quad:integer; {returns the next four bytes, signed}
var a,@!b,@!c,@!d:integer;
begin a:=get_byte; b:=get_byte; c:=get_byte; d:=get_byte;
if a<128 then signed_quad:=((a*256+b)*256+c)*256+d
else signed_quad:=(((a-256)*256+b)*256+c)*256+d;
end;
@ Finally we come to the routines that are used to acces the |dvi_file|
randomly. The driver program below needs two such routines: |dvi_length|
should compute the total number of bytes in |dvi_file|, possibly also
causing |eof_dvi_file| to be true; and |move_to_byte(n)|
should position |dvi_file| so that the next |get_byte| will read byte |n|,
starting with |n=0| for the first byte in the file.
@^system dependencies@>
Such routines are, of course, highly system dependent.
@d dvi_length==(dvi_file.s*4)
@#
@d move_to_byte(#)==begin seek(dvi_file.f,((#) div 4)+2); get(dvi_file.f);
dvi_file.x.i:=dvi_file.f^; dvi_file.i:=(#) mod 4; cur_loc:=#; end
@
Font files
should contain exactly the same character width data that is
found in the corresponding \.{TFM}s; check sums are used to help
ensure this. In addition, font files also contain the widths of
characters in pixels, since the device-independent character widths of
\.{TFM} files are generally not perfect multiples of pixels.
The |pixel_width| array contains this information; when |width[k]| is the
device-independent width of some character in \.{DVI} units, |pixel_width[k]|
is the corresponding width of that character in an actual font.
The macro |char_pixel_width| is set up to be analogous to |char_width|.
The |status| array tells if a charater has been downloaded to the
laser printer, or if it is too large, and must be transferred as raster
graphics. It might also contain a positive value that indicates a shift
up of the reference point (because the ``baseline'' of the characters
is set at |baseline| pixels from the bottom, characters can't be deeper than
|baseline| pixels).
The large arrays are located in
EMA (Extended Memory Area) (outside the 32 page range addressable
with one-word addresses).
The \.{Ema\_Var} compiler options specify which variables are in EMA.
@^system dependencies@>
@d char_end_width(#)==#]
@d char_pixel_width(#)==pixel_width[width_base[#]+char_end_width
@d char_status(#)==status[width_base[#]+char_end_width
@d not_loaded=0
@d too_large=-1
@d loaded_ok=-2
@d baseline=55
@<Glob...@>=
@=$Ema_Var On$@>
@!pixel_width:array[0..max_widths] of short; {actual character widths,
in pixels}
@!status:array[0..max_widths] of short; {character statuses}
@=$Ema_Var Off$@>
@!conv:real; {converts \.{DVI} units to pixels}
@!true_conv:real; {converts unmagnified \.{DVI} units to pixels}
@!numerator,@!denominator:integer; {stated conversion ratio}
@!mag:integer; {magnification factor times 1000}
@!desired_mag:integer;
@* Reading the font information.
The current number of known fonts is |nf|. Each known font has
an internal number |f|, where |0<=f<nf|; the external number of this font,
i.e., its font identification number in the \.{DVI} file, is
|font_num[f]|, and the external name of this font is the string that
occupies positions |font_name[f]| through |font_name[f+1]-1| of the array
|names|. The latter array consists of |ASCII_code| characters, and
|font_name[nf]| is its first unoccupied position. A horizontal motion
in the range |-4*font_space[f]<h<font_space[f]|
will be treated as a `kern'.
A given character |c| is valid in font |f| if and only if
|char_width(f)(c)<>invalid_width|.
Finally, |char_width(f)(c)=width[width_base[f]+c]|, and |width_ptr| is the
first unused position of the |width| array.
@d char_width(#)==width[width_base[#]+char_end_width
@d invalid_width==@'17777777777
@<Glob...@>=
@!font_num:array [0..max_fonts] of integer; {external font numbers}
@!font_name:array [0..max_fonts] of 0..name_size; {starting positions
of external font names}
@!names:array [0..name_size] of ASCII_code; {characters of names}
@!font_check_sum:array [0..max_fonts] of integer; {check sums}
@!font_scaled_size:array [0..max_fonts] of integer; {scale factors}
@!font_design_size:array [0..max_fonts] of integer; {design sizes}
@!font_mag:array [0..max_fonts] of integer;
@!font_space:array [0..max_fonts] of integer; {boundary between ``small''
and ``large'' spaces}
@!font_used_on:array[0..max_fonts] of integer; {on which page last used}
@!width_base:array [0..max_fonts] of integer; {index into |width| table}
@=$Ema_Var On$@>
@!width:array [0..max_widths] of integer; {character widths, in \.{DVI} units}
@=$Ema_Var Off$@>
@!nf:0..max_fonts; {the number of known fonts}
@!width_ptr:0..max_widths; {the number of known character widths}
@ @<Set init...@>=
nf:=0; width_ptr:=0; font_name[0]:=0; font_space[0]:=0;
font_used_on[0]:=0;
@ It is, of course, a simple matter to print the name of a given font.
@p procedure print_font(@!f:integer); {|f| is an internal font number}
var k:0..name_size; {index into |names|}
begin if f=nf then print('UNDEFINED!')
@.UNDEFINED@>
else begin for k:=font_name[f] to font_name[f+1]-1 do
print(xchr[names[k]]);
end;
end;
@ The global variabls |pxl_check_sum|,
|pxl_design_size| are set from the \.{PXL} file.
@<Glob...@>=
@!pxl_check_sum:integer; {check sum found in |pxl_file|}
@!pxl_dptr:array [0..max_fonts] of integer; {directory pointers}
@!pxl_design_size:integer;
@ Here is a procedure that absorbs the necessary information from a
\.{PXL} file, assuming that the file has just been successfully opened.
(A complete description of
\.{PXL} file format appears elsewhere and will
not be repeated here.) The procedure does not check the \.{PXL} file
for validity, nor does it give explicit information about what is
wrong with a \.{PXL} file that proves to be invalid; \.{DVI}-reading
programs need not do this, since \.{PXL} files are almost always valid.
The procedure simply returns |false| if it
detects anything amiss in the \.{PXL} data.
There is a parameter, |z|, which represents the scaling factor being
used to compute the font dimensions; it must be in the range $0<z<2^{27}$.
@d read_pxl(#)==begin #:=pxl_file[nf]^.i; get(pxl_file[nf]); end
@p procedure in_PXL(@!z:integer); {input \.{PXL} data}
var i,j,k,n:short; {indices etc.}
@!wp:0..max_widths; {new value of |width_ptr| after successful input}
@!raster_address:integer;
@!alpha,@!beta:integer; {quantities used in the scaling computation}
begin
if width_ptr+128>max_widths then begin
print_nl;
abort('Need larger width table');
end;
width_base[nf]:=width_ptr;
wp:=width_ptr;
@<Check the header ID@>;
@<Read the trailer@>;
@<Read the font directory@>;
width_ptr:=wp;
end;
@ @<Check the header ID@>=
begin
seek_pxl(nf)(0);
get(pxl_file[nf]);
if pxl_file[nf]^.i <> pxl_id then
bad_pxl('bad header id');
end
@ @<Read the trailer@>=
begin
seek(pxl_file[nf],s_pxl_file+1);
get(pxl_file[nf]);
if pxl_file[nf]^.i <> pxl_id then
bad_pxl('bad trailer id');
seek(pxl_file[nf],s_pxl_file-3);
get(pxl_file[nf]);
read_pxl(pxl_check_sum);
read_pxl(font_mag[nf]);
read_pxl(pxl_design_size);
read_pxl(pxl_dptr[nf]);
end;
@ One important part of |in_PXL| is the width computation, which
involves multiplying the relative widths in the \.{PXL} file by the
scaling factor in the \.{DVI} file. This fixed-point multiplication
must be done with precisely the same accuracy by all \.{DVI}-reading programs,
in order to validate the assumptions made by \.{DVI}-writing programs
like \TeX82.
Let us therefore summarize what needs to be done. Each width in a \.{PXL}
file appears as a four-byte quantity called a |fix_word|. A |fix_word|
whose respective bytes are $(a,b,c,d)$ represents the number
$$x=\left\{\vcenter{\halign{$#$,\hfil\qquad&if $#$\hfil\cr
b\cdot2^{-4}+c\cdot2^{-12}+d\cdot2^{-20}&a=0;\cr
-16+b\cdot2^{-4}+c\cdot2^{-12}+d\cdot2^{-20}&a=255.\cr}}\right.$$
(No other choices of $a$ are allowed, since the magnitude of a \.{TFM}
dimension must be less than 16.) We want to multiply this quantity by the
integer~|z|, which is known to be less than $2^{27}$. Let $\alpha=16z$.
If $|z|<2^{23}$, the individual multiplications $b\cdot z$, $c\cdot z$,
$d\cdot z$ cannot overflow; otherwise we will divide |z| by 2, 4, 8, or
16, to obtain a multiplier less than $2^{23}$, and we can compensate for
this later. If |z| has thereby been replaced by $|z|^\prime=|z|/2^e$, let
$\beta=2^{4-e}$; we shall compute
$$\lfloor(b+c\cdot2^{-8}+d\cdot2^{-16})\,z^\prime/\beta\rfloor$$ if $a=0$,
or the same quantity minus $\alpha$ if $a=255$. This calculation must be
done exactly, for the reasons stated above; the following program does the
job in a system-independent way, assuming that arithmetic is exact on
numbers less than $2^{31}$ in magnitude.
The following code computes pixel widths by simply rounding the \.{PXL}
widths to the nearest integer number of pixels, based on the conversion factor
|conv| that converts \.{DVI} units to pixels. However, such a simple
formula will not be valid for all fonts, and it will often give results that
are off by $\pm1$ when a low-resolution font has been carefully
hand-fitted. For example, a font designer often wants to make the letter `m'
a pixel wider or narrower in order to make the font appear more consistent.
\.{DVI}-to-printer programs should therefore input the correct pixel width
information from font files whenever there is a chance that it may differ.
A warning message may also be desirable in the case that at least one character
is found whose pixel width differs from |conv*width| by more than a full pixel.
Those characters that are too large to be downloadable, are marked as such,
and will be transferred using raster graphics. We must be especially careful
in the y dimension, as the character must fit into the 255*255 box when
the reference point is placed on the baseline. The baseline was set to
$255-$|baseline| pixel rows down from the top.
@^system dependencies@>
@d pixel_round(#)==round(conv*(#))
@<Read the font dir...@>=
@<Replace |z| by $|z|^\prime$ and compute $\alpha,\beta$@>;
for k:=0 to 127 do begin
seek(pxl_file[nf],pxl_dptr[nf]+k*4+2);
get(pxl_file[nf]);
{is the charater too large ?}
if (pxl_file[nf]^.i0 >= 128) or (pxl_file[nf]^.i1 >= 128) then
status[wp]:=too_large
else
status[wp]:=not_loaded;
get(pxl_file[nf]);
get(pxl_file[nf]);
if pxl_file[nf]^.i=0 then begin
width[wp]:=invalid_width;
pixel_width[wp]:=0 end
else begin
get(pxl_file[nf]);
read_pxl_word(nf);
width[wp]:=(((((b3*z)div@'400)+(b2*z))div@'400)+(b1*z))div beta;
if b0>0 then if b0<255 then bad_pxl('strange width for char ', k:1)
else width[wp]:=width[wp]-alpha;
pixel_width[wp]:=pixel_round(width[wp]);
end;
incr(wp);
end
@ @<Replace |z|...@>=
begin alpha:=16*z; beta:=16;
while z>=@'40000000 do
begin z:=z div 2; beta:=beta div 2;
end;
end
@* Downloading information to the printer.
The procedure |update_pos| is used to update the printer cursor position.
This is the only place where the cursor is explicitely positioned.
@p procedure update_pos;
label done;
begin if (lj_h<>hh)or(lj_v<>vv) then begin
write_lj(@=#27'*p'@>);
if (lj_h<>hh) then begin
if abs(lj_h-hh) > hh div 10 then
write_lj_f(hh:1)
else if (lj_h<hh) then
write_lj_f('+', hh-lj_h:1)
else
write_lj_f('-', lj_h-hh:1);
if (lj_v<>vv) then
write_lj_f('x')
else begin
write_lj_f('X');
goto done;
end
end;
if abs(lj_v-vv) > vv div 10 then
write_lj_f(vv:1)
else if (lj_v<vv) then
write_lj_f('+', vv-lj_v:1)
else
write_lj_f('-', lj_v-vv:1);
write_lj_f('Y');
end;
done:
lj_h:=hh; lj_v:=vv;
end;
@ This procedure downloads a single character from a \.{PXL} file.
@^system dependencies@>
@p procedure download_char(p:integer);
var i,j:short;
@!pixel_wd,@!pixel_ht:integer;
@!offsets,char_wd,char_ht,delta_x:i2c;
@!raster_address:integer;
begin
seek(pxl_file[cur_font],pxl_dptr[cur_font]+p*4+2);
get(pxl_file[cur_font]);
pixel_wd:=pxl_file[cur_font]^.i0;
pixel_ht:=pxl_file[cur_font]^.i1;
get(pxl_file[cur_font]);
offsets:=pxl_file[cur_font]^;
get(pxl_file[cur_font]);
raster_address:=pxl_file[cur_font]^.i;
@<Download character header@>;
seek(pxl_file[cur_font],raster_address+2);
for j:=1 to pixel_ht do begin
for i:=1 to (pixel_wd-1) div 8 + 1 do begin
if (i-1) mod 4 = 0 then
get(pxl_file[cur_font]);
write_lj(pxl_file[cur_font]^.c[(i-1) mod 4]);
end;
end
end;
@ Download a character header.
@d data_bytes==(pixel_ht*(((pixel_wd-1) div 8)+1))
@<Download character header@>=
begin
if pixel_ht - offsets.i1 > baseline then begin
char_status(cur_font)(p):=pixel_ht-offsets.i1;
offsets.i1:=pixel_ht; end
else
char_status(cur_font)(p):=loaded_ok;
offsets.i0:=-offsets.i0;
char_wd.i0:=pixel_wd;
char_ht.i0:=pixel_ht;
delta_x.i0:=char_pixel_width(cur_font)(p)*4;
write_lj(@=#27'*c'@>,font_num[cur_font]:1,'d',
ord(vis_chr(p)):1,@='E'#27'(s'@>,
data_bytes+16:1,'W'+
@=#4#0#14#1#0#0@>,
offsets.c[0], offsets.c[1],
offsets.c[2], offsets.c[3],
char_wd.c[0], char_wd.c[1],
char_ht.c[0], char_ht.c[1],
delta_x.c[0], delta_x.c[1]);
end
@ This procedure transfers a character in raster form.
This is used for characters which are too large to be stored in
the font memory of the printer.
@^system dependencies@>
@p procedure raster_char(p:integer);
var
i,j,n:short;
@!pixel_ht,@!pixel_wd,@!x_offset,@!y_offset:short;
@!raster_address:integer;
begin
seek(pxl_file[cur_font],pxl_dptr[cur_font]+p*4+2);
get(pxl_file[cur_font]);
pixel_wd:=pxl_file[cur_font]^.i0;
pixel_ht:=pxl_file[cur_font]^.i1;
get(pxl_file[cur_font]);
x_offset:=pxl_file[cur_font]^.i0;
y_offset:=pxl_file[cur_font]^.i1;
get(pxl_file[cur_font]);
raster_address:=pxl_file[cur_font]^.i;
hh:=hh-x_offset; vv:=vv-y_offset;
update_pos;
write_lj(@=#27'*r1A'@>);
seek(pxl_file[cur_font],raster_address+2);
for j:=1 to pixel_ht do begin
write_lj(#27'*b',(pixel_wd-1) div 8 + 1:1, 'W');
for i:=1 to (pixel_wd-1) div 8 + 1 do begin
if (i-1) mod 4 = 0 then
get(pxl_file[cur_font]);
write_lj(pxl_file[cur_font]^.c[(i-1) mod 4]);
end;
end;
lj_v:=lj_v+pixel_ht;
hh:=hh+char_pixel_width(cur_font)(p); vv:=vv+y_offset;
write_lj(@=#27'*rB'@>);
end;
@* Optional modes of output.
The starting page is specified by giving a sequence of 1 to 10 numbers or
asterisks separated by dots. For example, the specification `\.{1.*.-5}'
can be used to refer to a page output by \TeX\ when $\.{\\count0}=1$
and $\.{\\count2}=-5$. (Recall that |bop| commands in a \.{DVI} file
are followed by ten `count' values.) An asterisk matches any number,
so the `\.*' in `\.{1.*.-5}' means that \.{\\count1} is ignored when
specifying the first page. If several pages match the given specification,
\.{DVIplus} will begin with the earliest such page in the file. The
default specification `\.*' (which matches all pages) therefore denotes
the page at the beginning of the file.
Another option is the page offset. That is the point on the physical
printer page where the point (0,0) in the DVI file is mapped.
Normally \.{DVIplus} uses default values for the options.
It can be started in such a way that it engages
the user in a brief dialog so that the
options will be specified.
@^system dependencies@>
@<Glob...@>=
@!max_pages:integer; {at most this many |bop..eop| pages will be printed}
@!resolution:real; {pixels per inch}
@!new_mag:integer; {if positive, overrides the postamble's magnification}
@!copies:integer;
@!h_offset,@!v_offset:integer; {offset where to put (0,0) on physical page}
@ The starting page specification is recorded in two global arrays called
|start_count| and |start_there|. For example, `\.{1.*.-5}' is represented
by |start_there[0]=true|, |start_count[0]=1|, |start_there[1]=false|,
|start_there[2]=true|, |start_count[2]=-5|.
We also set |start_vals=2|, to indicate that count 2 was the last one
mentioned. The other values of |start_count| and |start_there| are not
important, in this example.
@<Glob...@>=
@!start_count:array[0..9] of integer; {count values to select starting page}
@!start_there:array[0..9] of boolean; {is the |start_count| value relevant?}
@!start_vals:0..9; {the last count considered significant}
@!count:array[0..9] of integer; {the count values on the current page}
@ @<Set init...@>=
max_pages:=100; start_vals:=0; start_there[0]:=false; copies:=1;
resolution:=300.0; new_mag:=0;
h_offset:=210; v_offset:=100;
@ Here is a simple subroutine that tests if the current page might be the
starting page.
@p function start_match:boolean; {does |count| match the starting spec?}
var k:0..9; {loop index}
@!match:boolean; {does everything match so far?}
begin match:=true;
for k:=0 to start_vals do
if start_there[k]and(start_count[k]<>count[k]) then match:=false;
start_match:=match;
end;
@ The |input_ln| routine waits for the user to type a line at his or her
terminal; then it puts ASCII-code equivalents for the characters on that line
into the |buffer| array. The |term_in| file is used for terminal input,
and |term_out| for terminal output.
@^system dependencies@>
@<Glob...@>=
@!buffer:array[0..terminal_line_length] of ASCII_code;
@!term_in:text_file; {the terminal, considered as an input file}
@!term_out:text_file; {the terminal, considered as an output file}
@!arg_index:short; {which command line argument is being processed}
@!interactive:boolean;
@ Since the terminal is being used for both input and output, some systems
need a special routine to make sure that the user can see a prompt message
before waiting for input based on that message. (Otherwise the message
may just be sitting in a hidden buffer somewhere, and the user will have
no idea what the program is waiting for.) We shall call a system-dependent
subroutine |update_terminal| in order to avoid this problem.
@^system dependencies@>
@d update_terminal == prompt(term_out) {empty the terminal output buffer}
@ During the dialog, \.{DVIplus} will treat the first blank space in a
line as the end of that line. Therefore |input_ln| makes sure that there
is always at least one blank space in |buffer|.
@^system dependencies@>
@p procedure input_ln; {inputs a line from the terminal}
var k:0..terminal_line_length;
begin update_terminal;
k:=0;
if eoln(term_in) then read_ln(term_in)
else begin while (k<terminal_line_length)and not eoln(term_in) do
begin buffer[k]:=xord[term_in^]; incr(k); get(term_in);
end;
read_ln(term_in);
end;
buffer[k]:=" ";
end;
@ The global variable |buf_ptr| is used while scanning each line of input;
it points to the first unread character in |buffer|.
@<Glob...@>=
@!buf_ptr:0..terminal_line_length; {the number of characters read}
@ Here is a routine that scans a (possibly signed) integer and computes
the decimal value. If no decimal integer starts at |buf_ptr|, the
value 0 is returned. The integer should be less than $2^{31}$ in
absolute value.
@p function get_integer:integer;
var x:integer; {accumulates the value}
@!negative:boolean; {should the value be negated?}
begin if buffer[buf_ptr]="-" then
begin negative:=true; incr(buf_ptr);
end
else negative:=false;
x:=0;
while (buffer[buf_ptr]>="0")and(buffer[buf_ptr]<="9") do
begin x:=10*x+buffer[buf_ptr]-"0"; incr(buf_ptr);
end;
if negative then get_integer:=-x @+ else get_integer:=x;
end;
@ The selected options are put into global variables by the |dialog|
procedure, which is called just as \.{DVIplus} begins.
@^system dependencies@>
@p procedure dialog;
label 2,3,6,7,8,9,99;
var i,j,k:short;
begin rewrite(term_out, '1', 'NOCCTL'); {prepare the terminal for output}
reset(term_in, '1'); {and for input}
print_ln(banner);
@<Get flags, check if interactive@>;
@<Determine the desired |start_count| values@>;
@<Determine the desired |max_pages|@>;
@<Determine the number of copies@>;
@<Determine the page offset@>;
@<Print all the selected options@>;
end;
@ @<Get flags, check if interactive@>=
arg_index:=1; interactive:=false;
repeat
i:=parameters(arg_index,cur_name,name_length);
if cur_name[1]='-' then begin
incr(arg_index);
if i=1 then
interactive:=true
else case cur_name[2] of
'i','I':interactive:=true;
othercases begin end;
endcases;
end;
until cur_name[1]<>'-';
if not interactive then goto 99;
@ @<Determine the desired |start...@>=
2: print('Starting page (default=*): ');
input_ln; buf_ptr:=0; k:=0;
if buffer[0]<>" " then
repeat if buffer[buf_ptr]="*" then
begin start_there[k]:=false; incr(buf_ptr);
end
else begin start_there[k]:=true; start_count[k]:=get_integer;
end;
if (k<9)and(buffer[buf_ptr]=".") then
begin incr(k); incr(buf_ptr);
end
else if buffer[buf_ptr]=" " then start_vals:=k
else begin print('Type, e.g., 1.*.-5 to specify the ');
print_ln('first page with \count0=1, \count2=-5.');
goto 2;
end;
until start_vals=k
@ @<Determine the desired |max_pages|@>=
3: print('Maximum number of pages (default=100): ');
input_ln; buf_ptr:=0;
if buffer[0]<>" " then
begin max_pages:=get_integer;
if max_pages<=0 then
begin print_ln('Please type a positive number.');
goto 3;
end;
end
@ @<Determine the number of copies@>=
6: print('Number of copies (default=1): ');
input_ln; buf_ptr:=0;
if buffer[0]<>" " then
if (buffer[0]>="0")and(buffer[0]<="9") then copies:=get_integer
else begin print('Type a positive integer to specify ');
print_ln('the number of copies.');
goto 6;
end
@ @<Determine the page offset@>=
7: print('Page offset in dots (default=210,100): ');
input_ln; buf_ptr:=0;
if buffer[0]=" " then goto 9;
if ((buffer[0]>="0")and(buffer[0]<="9")) or (buffer[0]="-") then
h_offset:=get_integer
else goto 8;
if (buffer[buf_ptr]=",") then incr(buf_ptr);
if (buffer[buf_ptr]=" ") then incr(buf_ptr);
if ((buffer[buf_ptr]>="0")and(buffer[buf_ptr]<="9")) or
(buffer[buf_ptr]="-") then begin
v_offset:=get_integer;
goto 9; end
else goto 8;
8:print('Specify a dot coordinate pair where the (0,0) ');
print_ln('point will be placed.');
goto 7;
9:
@ After the dialog is over, we print the options so that the user
can see what \.{DVIplus} thought was specified.
@<Print all the selected options@>=
99:print_ln('Options selected:');
@.Options selected@>
print(' Starting page = ');
for k:=0 to start_vals do
begin if start_there[k] then print(start_count[k]:1)
else print('*');
if k<start_vals then print('.')
else print_nl;
end;
print_ln(' Maximum number of pages = ',max_pages:1);
print_ln(' Page offset = (', h_offset:1, ',', v_offset:1, ')');
@* Defining fonts.
\.{DVIplus} reads the postamble first and loads
all of the fonts defined there; then it processes the pages.
@ Approximate the desired magnification to an available one.
The ``magig numbers'' that the desired magnification
is compared to are calculated as
$1500*1.2^m$, where $m = 1/4,3/4,1.5,2.5,3.5,4.5$
@p function approx_mag(f:integer;d_mag:integer):integer;
begin
if d_mag < 1569 then
approx_mag := 1500
else if d_mag < 1720 then
approx_mag := 1643
else if d_mag < 1971 then
approx_mag := 1800
else if d_mag < 2366 then
approx_mag := 2160
else if d_mag < 2839 then
approx_mag := 2592
else if d_mag < 3407 then
approx_mag := 3110
else if d_mag < 4089 then
approx_mag := 3732
else
approx_mag:= 4479;
end;
@ The following subroutine does the necessary things when a \\{fnt\_def}
command is being processed.
@p procedure define_font(@!e:integer); {|e| is an external font number}
var f:0..max_fonts;
@!p:integer; {length of the area/directory spec}
@!n:integer; {length of the font name proper}
@!c,@!q,@!d:integer; {check sum, scaled size, and design size}
@!m:integer; {|mag| corrected for 300 pixels/inch}
@!r:0..name_length; {index into |cur_name|}
@!j,@!k:0..name_size; {indices into |names|}
@!mismatch:boolean; {do names disagree?}
begin if nf=max_fonts then abort('DVIplus capacity exceeded (max fonts=',
max_fonts:1,')!');
@.DVIplus capacity exceeded...@>
font_num[nf]:=e; f:=0;
while font_num[f]<>e do incr(f);
@<Read the font parameters into position for font |nf|, and
print the font name@>;
if f<nf then print_ln('---this font was already defined!');
@.this font was already defined@>
@<Load the new font, unless there are problems@>
end;
@ @<Read the font parameters into position for font |nf|...@>=
c:=signed_quad; font_check_sum[nf]:=c;@/
q:=signed_quad; font_scaled_size[nf]:=q;@/
d:=signed_quad; font_design_size[nf]:=d;@/
p:=get_byte; n:=get_byte;
if font_name[nf]+n+p>name_size then
abort('DVIplus capacity exceeded (name size=',name_size:1,')');
@.DVIplus capacity exceeded...@>
font_name[nf+1]:=font_name[nf]+n+p;
if n+p=0 then abort('Null font name')
@.Null font name@>
else for k:=font_name[nf] to font_name[nf+1]-1 do names[k]:=get_byte;
font_used_on[nf+1]:=0;
incr(nf);
if f=nf-1 then begin
print('Font ', e:1, ': '); print_font(nf-1);
update_terminal;
end;
decr(nf)
@ @<Load the new font, unless there are problems@>=
begin
@<Compute |desired_mag|@>;
@<Move font name into the |cur_name| string@>;
if not open_pxl_file(nf) then begin
print_nl;
abort('Cannot open PXL file ', cur_name); end
@.Cannot open PXL file@>
else begin if (q<=0)or(q>=@'1000000000) then begin
print_nl;
abort('PXL file not loaded, bad scale (',q:1,')!'); end
@.bad scale@>
else if (d<=0)or(d>=@'1000000000) then begin
print_nl;
abort('PXL file not loaded, bad design size (',d:1,')!'); end
@.bad design size@>
else begin
in_PXL(q);
@<Finish loading the new font info@>;
end
end
end
@ @<Compute |desired_mag|@>=
desired_mag:=round((mag * q * (300.0/200.0))/d+0.5);
@ @<Finish loading...@>=
begin font_space[nf]:=q div 6; {this is a 3-unit ``thin space''}
if (c<>0)and(pxl_check_sum<>0)and(c<>pxl_check_sum) then
begin print(' ---beware: check sums do not agree!');
@.beware: check sums do not agree@>
@.check sums do not agree@>
print(' (',c:1,' vs. ',pxl_check_sum:1,')');
end;
d:=round((100.0*conv*q)/(true_conv*d));
if d<>100 then
print(' (magnified ',d:1,'%)');
@.this font is magnified@>
incr(nf); {now the new font is officially present}
font_space[nf]:=0; {for |out_space| and |out_vmove|}
end
@ If |p=0|, i.e., if no font directory has been specified, \.{DVIplus}
uses the default font directory, which is a
system-dependent place where the standard fonts are kept.
In RTE--A, the \.{PXL} files are kept in directories called
\.{/TeX/Fonts/MagXXXX}, where \.{XXXX} is the magnification.
The string variable |default_prefix| contains the prefix of these names.
@^system dependencies@>
@d default_prefix_name=='/TeX/Fonts/Mag'
@d default_prefix_length=14 {change this to the correct length}
@<Glob...@>=
@!default_prefix:packed array[1..default_prefix_length] of char;
@ @<Set init...@>=
default_prefix:=default_prefix_name;
@ The string |cur_name| is set to the external name of the
\.{PXL} file for the current font and magnification.
@^system dependencies@>
@<Move font name into the |cur_name| string@>=
for k:=1 to name_length do cur_name[k]:=' ';
if p=0 then
begin for k:=1 to default_prefix_length do
cur_name[k]:=default_prefix[k];
r:=default_prefix_length;
incr(r);
best_mag:=approx_mag(font_name[nf],desired_mag);
m:=best_mag;
cur_name[r]:=xchr[ m div 1000 + xord['0']];
incr(r);
cur_name[r]:=xchr[ (m div 100) mod 10 + xord['0']];
incr(r);
cur_name[r]:=xchr[ (m div 10) mod 10 + xord['0']];
incr(r);
cur_name[r]:=xchr[ m mod 10 + xord['0']];
incr(r);
cur_name[r]:='/'; end
else
r:=0;
for k:=font_name[nf] to font_name[nf+1]-1 do
begin incr(r);
if r+4>name_length then
abort('DVIplus capacity exceeded (max font name length=',
name_length:1,')!');
@.DVIplus capacity exceeded...@>
cur_name[r]:=xchr[names[k]];
end;
cur_name[r+1]:='.'; cur_name[r+2]:='P'; cur_name[r+3]:='X'; cur_name[r+4]:='L'
@* Interpreting the {\tentex DVI} file.
The main work of \.{DVIplus} is accomplished by the |do_page| procedure,
which produces the output for an entire page, assuming that the |bop|
command for that page has already been processed. This procedure is
essentially an interpretive routine that reads and acts on the \.{DVI}
commands.
@ The definition of \.{DVI} files refers to six registers,
$(h,v,w,x,y,z)$, which hold integer values in \.{DVI} units. In practice,
we also need registers |hh| and |vv|, the pixel analogs of $h$ and $v$,
since it is not always true that |hh=pixel_round(h)| or
|vv=pixel_round(v)|.
The |lj_h| and |lj_v| registers hold the current actual cursor position
of the printer.
The stack of $(h,v,w,x,y,z)$ values is represented by eight arrays
called |hstack|, \dots, |zstack|, |hhstack|, and |vvstack|.
@<Glob...@>=
@!h,@!v,@!w,@!x,@!y,@!z,@!hh,@!vv:integer; {current state values}
@!lj_h,@!lj_v:integer; {current cursor position}
@!hstack,@!vstack,@!wstack,@!xstack,@!ystack,@!zstack:
array [0..stack_size] of integer; {pushed down values in \.{DVI} units}
@!hhstack,@!vvstack:
array [0..stack_size] of integer; {pushed down values in pixels}
@ Three characteristics of the pages (their |max_v|, |max_h|, and
|max_s|) are specified in the postamble, and a warning message
is printed if these limits are exceeded. Actually |max_v| is set to
the maximum height plus depth of a page, and |max_h| to the maximum width,
for purposes of page layout. Since characters can legally be set outside
of the page boundaries, it is not an error when |max_v| or |max_h| is
exceeded. But |max_s| should not be exceeded.
The postamble also specifies the total number of pages; \.{DVIplus}
checks to see if this total is accurate.
@<Glob...@>=
@!max_v:integer; {the value of |abs(v)| should probably not exceed this}
@!max_h:integer; {the value of |abs(h)| should probably not exceed this}
@!max_s:integer; {the stack depth should not exceed this}
@!max_v_so_far,@!max_h_so_far,@!max_s_so_far:integer; {the record high levels}
@!total_pages:integer; {the stated total number of pages}
@!page_count:integer; {the total number of pages seen so far}
@ @<Set init...@>=
max_v:=@'17777777777-99; max_h:=@'17777777777-99; max_s:=stack_size+1;@/
max_v_so_far:=0; max_h_so_far:=0; max_s_so_far:=0; page_count:=0;
@ Before we get into the details of |do_page|, it is convenient to
consider a simpler routine that computes the first parameter of each
opcode.
@d four_cases(#)==#,#+1,#+2,#+3
@d eight_cases(#)==four_cases(#),four_cases(#+4)
@d sixteen_cases(#)==eight_cases(#),eight_cases(#+8)
@d thirty_two_cases(#)==sixteen_cases(#),sixteen_cases(#+16)
@d sixty_four_cases(#)==thirty_two_cases(#),thirty_two_cases(#+32)
@p function first_par(o:eight_bits):integer;
begin case o of
sixty_four_cases(set_char_0),sixty_four_cases(set_char_0+64):
first_par:=o-set_char_0;
set1,put1,fnt1,xxx1,fnt_def1: first_par:=get_byte;
set1+1,put1+1,fnt1+1,xxx1+1,fnt_def1+1: first_par:=get_two_bytes;
set1+2,put1+2,fnt1+2,xxx1+2,fnt_def1+2: first_par:=get_three_bytes;
right1,w1,x1,down1,y1,z1: first_par:=signed_byte;
right1+1,w1+1,x1+1,down1+1,y1+1,z1+1: first_par:=signed_pair;
right1+2,w1+2,x1+2,down1+2,y1+2,z1+2: first_par:=signed_trio;
set1+3,set_rule,put1+3,put_rule,right1+3,w1+3,x1+3,down1+3,y1+3,z1+3,
fnt1+3,xxx1+3,fnt_def1+3: first_par:=signed_quad;
nop,bop,eop,push,pop,pre,post,post_post,undefined_commands: first_par:=0;
w0: first_par:=w;
x0: first_par:=x;
y0: first_par:=y;
z0: first_par:=z;
sixty_four_cases(fnt_num_0): first_par:=o-fnt_num_0;
end;
end;
@ Here is another subroutine that we need: It computes the number of
pixels in the height or width of a rule. Characters and rules will line up
properly if the sizes are computed precisely as specified here. (Since
|conv| is computed with some floating-point roundoff error, in a
machine-dependent way, format designers who are tailoring something for a
particular resolution should not plan their measurements to come out to an
exact integer number of pixels; they should compute things so that the
rule dimensions are a little less than an integer number of pixels, e.g.,
4.99 instead of 5.00.)
@p function rule_pixels(x:integer):integer;
{computes $\lceil|conv|\cdot x\rceil$}
var n:integer;
begin n:=trunc(conv*x);
if n<conv*x then rule_pixels:=n+1 @+ else rule_pixels:=n;
end;
@ Strictly speaking, the |do_page| procedure is really a function with
side effects, not a `\&{procedure}'; it returns the value |false| if
\.{DVIplus} should be aborted because of some unusual happening. The
subroutine is organized as a typical interpreter, with a multiway branch
on the command code followed by |goto| statements leading to routines that
finish up the activities common to different commands. We will use the
following labels:
@d fin_set=41 {label for commands that set or put a character}
@d fin_rule=42 {label for commands that set or put a rule}
@d move_right=43 {label for commands that change |h|}
@d move_down=44 {label for commands that change |v|}
@d change_font=46 {label for commands that change |cur_font|}
@ Some \PASCAL\ compilers severely restrict the length of procedure bodies,
so we shall split |do_page| into two parts, one of which is
called |special_cases|. The different parts communicate with each other
via the global variables mentioned above, together with the following ones:
@<Glob...@>=
@!s:integer; {current stack size}
@!ss:integer; {stack size to print}
@!cur_font:integer; {current internal font number}
@!prev_font:integer;
@!fonts_in_use:integer; {how many are currently loaded}
@!fonts_on_page:integer; {how many fonts used on current page}
@ @<Set init...@>=
fonts_in_use:=0;
@ Here is the overall setup.
@p @t\4@>@<Declare the function called |special_cases|@>@;
procedure do_page;
label fin_set,fin_rule,move_right,done,exit;
var o:eight_bits; {operation code of the current command}
@!p,@!q:integer; {parameters of the current command}
pp,qq:integer;
i,j,k:integer;
@!a:integer; {byte number of the current command}
@!hhh:integer; {|h|, rounded to the nearest pixel}
@!height,pitch:i2c;
begin cur_font:=nf; {set current font undefined}
prev_font:=-1;
s:=0; h:=round(h_offset/conv); v:=round(v_offset/conv);
w:=0; x:=0; y:=0; z:=0; hh:=pixel_round(h); vv:=pixel_round(v);
lj_h:=-10000; lj_v:=-10000;
{initialize the state variables}
while true do @<Translate the next command in the \.{DVI} file@>;
exit:
end;
@
@d error(#)==print_ln('% ',#)
@<Translate the next command...@>=
begin a:=cur_loc;
o:=get_byte; p:=first_par(o);
if eof_dvi_file then bad_dvi('file ended prematurely');
@.the file ended prematurely@>
@<Start translation of command |o| and |goto| the appropriate label to
finish the job@>;
fin_set: @<Finish a command that either sets or puts a character, then
|goto move_right| or |done|@>;
fin_rule: @<Finish a command that either sets or puts a rule, then
|goto move_right| or |done|@>;
move_right: @<Finish a command that sets |h:=h+q|, then |goto done|@>;
done:
end
@ The multiway switch in |first_par|, above, was organized by the length
of each command; the one in |do_page| is organized by the semantics.
@<Start translation...@>=
if o<set_char_0+128 then @<Translate a |set_char| command@>
else case o of
four_cases(set1),
four_cases(put1): bad_dvi('illegal character (', p:1, ')');
set_rule,
put_rule: goto fin_rule;
@t\4@>@<Cases for commands |nop|, |bop|, \dots, |pop|@>@;
@t\4@>@<Cases for horizontal motion@>@;
othercases if special_cases(o,p,a) then goto done
else bad_dvi(' ')
endcases
@ @<Declare the function called |special_cases|@>=
function special_cases(@!o:eight_bits;@!p,@!a:integer):boolean;
label change_font,move_down,done,9998;
var q:integer; {parameter of the current command}
q1,q2:integer; {dummies for |fnt_def|}
@!k:integer; {loop index}
@!bad_char:boolean; {has a non-ASCII character code appeared in this \\{xxx}?}
@!pure:boolean; {is the command error-free?}
@!vvv:integer; {|v|, rounded to the nearest pixel}
begin pure:=true;
case o of
@t\4@>@<Cases for vertical motion@>@;
@t\4@>@<Cases for fonts@>@;
four_cases(xxx1): @<Translate an |xxx| command and |goto done|@>;
pre: begin error('preamble command within a page!'); goto 9998;
end;
@.preamble command within a page@>
post,post_post: begin error('postamble command within a page!'); goto 9998;
@.postamble command within a page@>
end;
othercases begin error('undefined command ',o:1,'!');
goto done;
@.undefined command@>
end
endcases;
move_down: @<Finish a command that sets |v:=v+p|, then |goto done|@>;
change_font: @<Finish a command that changes the current font,
then |goto done|@>;
9998: pure:=false;
done: special_cases:=pure;
end;
@ @<Cases for commands |nop|, |bop|, \dots, |pop|@>=
nop: goto done;
bop: begin error('bop occurred before eop'); bad_dvi(' ');
@.bop occurred before eop@>
end;
eop: begin
write_lj(#12);
if s<>0 then error('stack not empty at end of page (level ',
s:1,')!');
@.stack not empty...@>
return;
end;
push: begin
if s=max_s_so_far then
begin max_s_so_far:=s+1;
if s=max_s then error('deeper than claimed in postamble!');
@.deeper than claimed...@>
@.push deeper than claimed...@>
if s=stack_size then
abort('DVIplus capacity exceeded (stack size=',
stack_size:1,')');
end;
hstack[s]:=h; vstack[s]:=v; wstack[s]:=w;
xstack[s]:=x; ystack[s]:=y; zstack[s]:=z;
hhstack[s]:=hh; vvstack[s]:=vv; incr(s); ss:=s-1; goto done;
end;
pop: begin
if s=0 then error('(illegal at level zero)!')
else begin decr(s); hh:=hhstack[s]; vv:=vvstack[s];
h:=hstack[s]; v:=vstack[s]; w:=wstack[s];
x:=xstack[s]; y:=ystack[s]; z:=zstack[s];
end;
ss:=s; goto done;
end;
@ Rounding to the nearest pixel is best done in the manner shown here, so as
to be inoffensive to the eye: When the horizontal motion is small, like a
kern, |hh| changes by rounding the kern; but when the motion is large, |hh|
changes by rounding the true position |h| so that accumulated rounding errors
disappear. We allow a larger space in the negative direction than in
the positive one, because \TeX\ makes comparatively
large backspaces when it positions accents.
@d out_space==begin
if (p>=font_space[cur_font])or(p<=-4*font_space[cur_font]) then
hh:=pixel_round(h+p)
else hh:=hh+pixel_round(p);
q:=p; goto move_right;
end
@<Cases for horizontal motion@>=
four_cases(right1):out_space;
w0,four_cases(w1):begin w:=p; out_space;
end;
x0,four_cases(x1):begin x:=p; out_space;
end;
@ Vertical motion is done similarly, but with the threshold between
``small'' and ``large'' increased by a factor of five. The idea is to make
fractions like ``$1\over2$'' round consistently, but to absorb accumulated
rounding errors in the baseline-skip moves.
@d out_vmove==begin
if abs(p)>=5*font_space[cur_font] then vv:=pixel_round(v+p)
else vv:=vv+pixel_round(p);
goto move_down;
end
@<Cases for vertical motion@>=
four_cases(down1):out_vmove;
y0,four_cases(y1):begin y:=p; out_vmove;
end;
z0,four_cases(z1):begin z:=p; out_vmove;
end;
@ @<Cases for fonts@>=
sixty_four_cases(fnt_num_0),
four_cases(fnt1):
goto change_font;
four_cases(fnt_def1): begin
@<Skip a |fnt_def| command@>;
goto done;
end;
@ @<Skip a |fnt_def| command@>=
q:=signed_quad; q:=signed_quad; q:=signed_quad;
q1:=get_byte; q2:=get_byte;
for k:=1 to q1+q2 do q:=get_byte;
@ @<Translate an |xxx| command and |goto done|@>=
begin bad_char:=false;
for k:=1 to p do
begin q:=get_byte;
if not ((q>=" ")and(q<="~")) then
bad_char:=true;
end;
if bad_char then error('non-ASCII character in xxx command!');
@.non-ASCII character...@>
goto done;
end
@ @<Translate a |set_char|...@>=
goto fin_set
@ This is the code that checks whether the next character to be
printed in |cur_font| has occurred previously.
If not, the character data is downloaded to the printer. If the character
is too large, the data is sent as a raster image.
If |cur_font| is also new, the font header is first downloaded.
The number of fonts stored in the printer is kept at |max_printer_fonts|
maximum. When more fonts are needed, the least recently used one is
deleted.
The value of |max_printer_fonts| was choosed by waving a magig rod;
it would be more appropriate to calculate exactly how many bytes of
the user-available memory in the LaserJet+ is in use, and base the
decisions whether we must delete some fonts on that.
(Why can't you ask the printer how much memory it has left?).
There should also be a test whether the number of fonts on a page
exceeds the maximum 16.
@<Finish a command that either sets or puts a character...@>=
if p<0 then p:=255-((-1-p) mod 256)
else if p>=256 then p:=p mod 256; {width computation for oriental fonts}
@^oriental characters@>@^Chinese characters@>@^Japanese characters@>
if (p>127) then q:=invalid_width
else q:=char_width(cur_font)(p);
if q=invalid_width then
begin error('character ',p:1,' invalid in font ');
@.character $c$ invalid...@>
print_font(cur_font);
if cur_font<>nf then print('!'); {font |nf| has `\.!' in its name}
end;
if font_used_on[cur_font]=0 then begin
if fonts_in_use=max_printer_fonts then
@<Delete least recently used font@>;
incr(fonts_on_page);
@<Download font header@> end
else if font_used_on[cur_font]<page_count then
incr(fonts_on_page);
if fonts_on_page>max_fonts_on_page then
error('too many fonts on this page');
font_used_on[cur_font]:=page_count;
if cur_font <> prev_font then
write_lj(@=#27'('@>,font_num[cur_font]:1,'X');
prev_font:=cur_font;
if char_status(cur_font)(p) = too_large then
raster_char(p)
else begin
if char_status(cur_font)(p) = not_loaded then
download_char(p);
if char_status(cur_font)(p) > 0 then begin
vv:=vv+char_status(cur_font)(p);
update_pos;
write_lj(vis_chr(p));
vv:=vv-char_status(cur_font)(p); end
else begin
update_pos;
write_lj(vis_chr(p));
end;
lj_h:=lj_h+char_pixel_width(cur_font)(p);
end;
if o>=put1 then begin
hh:=hh-char_pixel_width(cur_font)(p);
goto done;
end;
if q=invalid_width then q:=0
else hh:=hh+char_pixel_width(cur_font)(p);
goto move_right
@ @<Download font header@>=
begin
height.i0:=4*round(font_design_size[cur_font]*
font_mag[cur_font]/1000.0*conv);
if (height.i0 < 0) or (height.i0>10922) then
height.i0:= 10922;
pitch.i0:=height.i0-20; {is this value used for anything in the printer??}
write_lj(@=#27'*c'@>,font_num[cur_font]:1,
{char cell 255*255 pixels max}
{baseline distance set to $255-$|baseline| }
@='D'#27')s26W'#0#26#0#1#0#0#0@>, chr(255-baseline),
@=#0#255#0#255#0#1#1#21@>,
pitch.c[0], pitch.c[1], height.c[0], height.c[1],
@=#0#0#0#0#0#0#27'*c4F'@>);
incr(fonts_in_use);
end
@ @<Delete least recently...@>=
begin
j:=9999;
k:=nf;
for i:=0 to nf-1 do
if font_used_on[i] < j then begin
j:=font_used_on[i];
k:=i;
end;
write_lj(@=#27'*c'@>,font_num[k]:1,'d2F');
font_used_on[k]:=0;
for i:=0 to 127 do
if (char_status(k)(i) > 0) or (char_status(k)(i) = loaded_ok) then
char_status(k)(i):=not_loaded;
decr(fonts_in_use);
end
@ @<Finish a command that either sets or puts a rule...@>=
q:=signed_quad;
qq:=rule_pixels(q);
pp:=rule_pixels(p);
if (p>0) and (q>0) then begin
vv:=vv-pp;
update_pos;
write_lj(@=#27'*c'@>,qq:1,'a',pp:1,'b0P');
vv:=vv+pp;
end;
if o=put_rule then goto done;
hh:=hh+qq;
goto move_right
@ A sequence of consecutive rules, or consecutive characters in a fixed-width
font whose width is not an integer number of pixels, can cause |hh| to drift
far away from a correctly rounded value. \.{DVIplus} ensures that the
amount of drift will never exceed |max_drift| pixels.
Since \.{DVIplus} is intended to diagnose strange errors, it checks
carefully to make sure that |h| and |v| do not get out of range.
Normal \.{DVI}-reading programs need not do this.
@d infinity==@'17777777777 {$\infty$ (approximately)}
@d max_drift=2 {we insist that abs|(hh-pixel_round(h))<=max_drift|}
@<Finish a command that sets |h:=h+q|, then |goto done|@>=
if (h>0)and(q>0) then if h>infinity-q then
begin error('arithmetic overflow! parameter changed from ',
@.arithmetic overflow...@>
q:1,' to ',infinity-h:1);
q:=infinity-h;
end;
if (h<0)and(q<0) then if -h>q+infinity then
begin error('arithmetic overflow! parameter changed from ',
q:1, ' to ',(-h)-infinity:1);
q:=(-h)-infinity;
end;
hhh:=pixel_round(h+q);
if abs(hhh-hh)>max_drift then begin
if hhh>hh then hh:=hhh-max_drift
else hh:=hhh+max_drift;
end;
h:=h+q;
if abs(h)>max_h_so_far then
begin if abs(h)-round(h_offset/conv)>max_h+99 then
begin error('warning: h > ',max_h:1,'!');
@.warning: |h|...@>
max_h:=abs(h);
end;
max_h_so_far:=abs(h);
end;
goto done
@ @<Finish a command that sets |v:=v+p|, then |goto done|@>=
if (v>0)and(p>0) then if v>infinity-p then
begin error('arithmetic overflow! parameter changed from ',
@.arithmetic overflow...@>
p:1,' to ',infinity-v:1);
p:=infinity-v;
end;
if (v<0)and(p<0) then if -v>p+infinity then
begin error('arithmetic overflow! parameter changed from ',
p:1, ' to ',(-v)-infinity:1);
p:=(-v)-infinity;
end;
vvv:=pixel_round(v+p);
if abs(vvv-vv)>max_drift then begin
if vvv>vv then vv:=vvv-max_drift
else vv:=vvv+max_drift;
end;
v:=v+p;
if abs(v)>max_v_so_far then
begin if abs(v)-round(v_offset/conv)>max_v+99 then
begin error('warning: v > ',max_v:1,'!');
@.warning: |v|...@>
max_v:=abs(v);
end;
max_v_so_far:=abs(v);
end;
goto done
@ @<Finish a command that changes the current font...@>=
begin
font_num[nf]:=p; cur_font:=0;
while font_num[cur_font]<>p do incr(cur_font);
goto done
end
@* Using the backpointers.
First comes a routine that illustrates how to find the postamble quickly.
@<Find the postamble, working back from the end@>=
n:=dvi_length;
if n<53 then bad_dvi('only ',n:1,' bytes long');
@.only n bytes long@>
m:=n-4;
repeat if m=0 then bad_dvi('all 223s');
@.all 223s@>
move_to_byte(m); k:=get_byte; decr(m);
until k<>223;
if k<>dvi_id then bad_dvi('ID byte is ',k:1);
@.ID byte is wrong@>
move_to_byte(m-3); q:=signed_quad;
if (q<0)or(q>m-33) then bad_dvi('post pointer ',q:1,' at byte ',m-3:1);
@.post pointer is wrong@>
move_to_byte(q); k:=get_byte;
if k<>post then bad_dvi('byte ',q:1,' is not post');
@.byte n is not post@>
post_loc:=q; first_backpointer:=signed_quad
@ Note that the last steps of the above code save the locations of the
the |post| byte and the final |bop|. We had better declare these global
variables, together with another one that we will need shortly.
@<Glob...@>=
@!post_loc:integer; {byte location where the postamble begins}
@!first_backpointer:integer; {the pointer following |post|}
@!start_loc:integer; {byte location of the first page to process}
@!start_inx:integer; {index into |page_start| for first page}
@!last_loc:integer; {byte localtion of last page to process}
@!page_start:array[1..max_bops] of integer; {pointers to |bop|s}
@ The next routines follow the backpointers
to move through a \.{DVI} file in reverse order. \.{DVIplus} does this because
it wants to print the pages backwards as the LaserJet stacks
them with the printed side up.
First we search for the starting page and the last page.
@<Scan for page range to print@>=
q:=post_loc; p:=first_backpointer; start_loc:=-1;
repeat
{now |q| points to a |post| or |bop| command; |p>=0| is prev pointer}
if p>q-46 then
bad_dvi('page link ',p:1,' after byte ',q:1);
@.page link wrong...@>
q:=p; move_to_byte(q);
k:=get_byte;
if k=bop then incr(page_count)
else bad_dvi('byte ',q:1,' is not bop');
@.byte n is not bop@>
if page_count>max_bops then bad_dvi('there are too many pages');
@.there are too many pages@>
page_start[page_count]:=q;
for k:=0 to 9 do count[k]:=signed_quad;
if start_match then begin start_loc:=q; start_inx:=page_count; end;
p:=signed_quad;
until p<0;
if start_loc<0 then abort('starting page number could not be found!');
@.starting page number...@>
if (start_inx > max_pages) then
last_loc:=page_start[start_inx-max_pages+1]
else
last_loc:=page_start[1];
if page_count<>total_pages then
print_ln('there are really ',page_count:1,
' pages, not ',total_pages:1,'!');
@.there are really n pages@>
@ This is the code that really goes through the pages to be printed
(in reverse order). It starts from the page pointed to by |last_loc| and
proceeds up to |start_loc|.
The code shown here uses a convention that has proved to be useful:
If the starting page was specified as, e.g., `\.{1.*.-5}', then
all page numbers in the file are displayed by showing the values of
counts 0, 1, and~2, separated by dots. Such numbers can, for example,
be displayed on the console of a printer when it is working on that
page.
@<Translate the page range in reverse order@>=
page_count:=0;
q:=last_loc;
repeat
move_to_byte(q); k:=get_byte;
incr(page_count);
fonts_on_page:=0;
for k:=0 to 9 do count[k]:=signed_quad;
q:=signed_quad;
print('[');
for k:=0 to start_vals do
begin print(count[k]:1);
if k<start_vals then print('.');
end;
update_terminal;
do_page;
print('] ');
update_terminal;
until q<start_loc;
@* Reading the postamble.
Now imagine that we are reading the \.{DVI} file and positioned just
four bytes after the |post| command. That, in fact, is the situation,
when the following part of \.{DVIplus} is called upon to read, translate,
and check the rest of the postamble.
@p procedure read_postamble;
var k:integer; {loop index}
@!p,@!q,@!m:integer; {general purpose registers}
begin post_loc:=cur_loc-5;
@.Postamble starts at byte n@>
if signed_quad<>numerator then
print_ln('numerator doesn''t match the preamble!');
@.numerator doesn't match@>
if signed_quad<>denominator then
print_ln('denominator doesn''t match the preamble!');
@.denominator doesn't match@>
if signed_quad<>mag then if new_mag=0 then
print_ln('magnification doesn''t match the preamble!');
@.magnification doesn't match@>
max_v:=signed_quad; max_h:=signed_quad;@/
max_s:=get_two_bytes; total_pages:=get_two_bytes;@/
if total_pages>max_bops then
bad_dvi('enormous number of pages (', total_pages:1, ')');
@.enormous number of pages@>
@<Process the font definitions of the postamble@>;
@<Make sure that the end of the file is well-formed@>;
end;
@ No warning is given when |max_h_so_far| exceeds |max_h| by less than~100,
since 100 units is invisibly small; it's approximately the wavelength of
visible light, in the case of \TeX\ output. Rounding errors can be expected
to make |h| and |v| slightly more than |max_h| and |max_v|, every once in
a~while; hence small discrepancies are not cause for alarm.
@ When we get to the present code, the |post_post| command has
just been read.
@<Make sure that the end of the file is well-formed@>=
q:=signed_quad;
if q<>post_loc then
print_ln('bad postamble pointer in byte ',cur_loc-4:1,'!');
@.bad postamble pointer@>
m:=get_byte;
if m<>dvi_id then print_ln('identification in byte ',cur_loc-1:1,
@.identification...should be n@>
' should be ',dvi_id:1,'!');
k:=cur_loc; m:=223;
while (m=223)and not eof_dvi_file do m:=get_byte;
if not eof_dvi_file then bad_dvi('signature in byte ',cur_loc-1:1,
@.signature...should be...@>
' should be 223')
else if cur_loc<k+4 then
print_ln('not enough signature bytes at end of file (',
@.not enough signature bytes...@>
cur_loc-k:1,')');
@ @<Process the font definitions...@>=
repeat k:=get_byte;
if (k>=fnt_def1)and(k<fnt_def1+4) then
begin p:=first_par(k); define_font(p); print_nl; k:=nop;
end;
until k<>nop;
if k<>post_post then
print_ln('byte ',cur_loc-1:1,' is not postpost!')
@.byte n is not postpost@>
@* The main program.
Now we are ready to put it all together. This is where \.{DVIplus} starts,
and where it ends.
@p begin dont_catch_errors; initialize; {get all variables initialized}
dialog; {set up all the options}
@<Process the preamble@>;
@<Find the postamble, working back from the end@>;
read_postamble;
print_ln('Total of ', nf:1, ' fonts.');
@<Scan for page range to print@>;
write_lj(@=#27'E'#27'&l'@>, copies:1, @='X'#27'*t300R'@>);
@<Translate the page range...@>;
write_lj(@=#27'&l1X'@>);
write_ln(laser_file,'_');
print_nl
end.
@ The main program needs a few global variables in order to do its work.
@<Glob...@>=
@!k,@!m,@!n,@!p,@!q:integer; {general purpose registers}
@ A \.{DVI}-reading program that reads the postamble first need not look at the
preamble; but \.{DVIplus} looks at the preamble in order to do error
checking, and to display the introductory comment.
@<Process the preamble@>=
if not open_dvi_file then
bad_dvi('cannot open file');
@<Open and lock |laser_file|@>;
p:=get_byte; {fetch the first byte}
if p<>pre then bad_dvi('first byte isn''t start of preamble!');
@.First byte isn't...@>
p:=get_byte; {fetch the identification byte}
if p<>dvi_id then
print_ln('identification in byte 1 should be ',dvi_id:1,'!');
@.identification...should be n@>
@<Compute the conversion factor@>;
p:=get_byte; {fetch the length of the introductory comment}
print('''');
while p>0 do
begin decr(p); print(xchr[get_byte]);
end;
print_ln('''')
@ The conversion factor |conv| is figured as follows: There are exactly
|n/d| \.{DVI} units per decimicron, and 254000 decimicrons per inch,
and |resolution| pixels per inch. Then we have to adjust this
by the stated amount of magnification.
@<Compute the conversion factor@>=
numerator:=signed_quad; denominator:=signed_quad;
if numerator<=0 then bad_dvi('numerator is ',numerator:1);
@.numerator is wrong@>
if denominator<=0 then bad_dvi('denominator is ',denominator:1);
@.denominator is wrong@>
conv:=(numerator/254000.0)*(resolution/denominator);
mag:=signed_quad;
if new_mag>0 then mag:=new_mag
else if mag<=0 then bad_dvi('magnification is ',mag:1);
@.magnification is wrong@>
true_conv:=conv; conv:=true_conv*(mag/1000.0);
@* System-dependent changes.
This section sho
|