summaryrefslogtreecommitdiff
path: root/dviware/dvisvgm/libs/xxHash/xxh3.h
blob: b3a8295845ecf9741507c5971ecf64f6758bba57 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
/*
   xxHash - Extremely Fast Hash algorithm
   Development source file for `xxh3`
   Copyright (C) 2019-present, Yann Collet.

   BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)

   Redistribution and use in source and binary forms, with or without
   modification, are permitted provided that the following conditions are
   met:

       * Redistributions of source code must retain the above copyright
   notice, this list of conditions and the following disclaimer.
       * Redistributions in binary form must reproduce the above
   copyright notice, this list of conditions and the following disclaimer
   in the documentation and/or other materials provided with the
   distribution.

   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

   You can contact the author at :
   - xxHash source repository : https://github.com/Cyan4973/xxHash
*/

/* Note :
   This file is separated for development purposes.
   It will be integrated into `xxhash.c` when development phase is complete.
*/

#ifndef XXH3_H
#define XXH3_H


/* ===   Dependencies   === */

#undef XXH_INLINE_ALL   /* in case it's already defined */
#define XXH_INLINE_ALL
#include "xxhash.h"


/* ===   Compiler specifics   === */

#if defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L   /* >= C99 */
#  define XXH_RESTRICT   restrict
#else
/* note : it might be useful to define __restrict or __restrict__ for some C++ compilers */
#  define XXH_RESTRICT   /* disable */
#endif

#if defined(__GNUC__)
#  if defined(__AVX2__)
#    include <immintrin.h>
#  elif defined(__SSE2__)
#    include <emmintrin.h>
#  elif defined(__ARM_NEON__) || defined(__ARM_NEON)
#    define inline __inline__  /* clang bug */
#    include <arm_neon.h>
#    undef inline
#  endif
#elif defined(_MSC_VER)
#  include <intrin.h>
#endif

/*
 * Sanity check.
 *
 * XXH3 only requires these features to be efficient:
 *
 *  - Usable unaligned access
 *  - A 32-bit or 64-bit ALU
 *      - If 32-bit, a decent ADC instruction
 *  - A 32 or 64-bit multiply with a 64-bit result
 *
 * Almost all 32-bit and 64-bit targets meet this, except for Thumb-1, the
 * classic 16-bit only subset of ARM's instruction set.
 *
 * First of all, Thumb-1 lacks support for the UMULL instruction which
 * performs the important long multiply. This means numerous __aeabi_lmul
 * calls.
 *
 * Second of all, the 8 functional registers are just not enough.
 * Setup for __aeabi_lmul, byteshift loads, pointers, and all arithmetic need
 * Lo registers, and this shuffling results in thousands more MOVs than A32.
 *
 * A32 and T32 don't have this limitation. They can access all 14 registers,
 * do a 32->64 multiply with UMULL, and the flexible operand is helpful too.
 *
 * If compiling Thumb-1 for a target which supports ARM instructions, we
 * will give a warning.
 *
 * Usually, if this happens, it is because of an accident and you probably
 * need to specify -march, as you probably meant to compileh for a newer
 * architecture.
 */
#if defined(__thumb__) && !defined(__thumb2__) && defined(__ARM_ARCH_ISA_ARM)
#   warning "XXH3 is highly inefficient without ARM or Thumb-2."
#endif

/* ==========================================
 * Vectorization detection
 * ========================================== */
#define XXH_SCALAR 0
#define XXH_SSE2   1
#define XXH_AVX2   2
#define XXH_NEON   3
#define XXH_VSX    4

#ifndef XXH_VECTOR    /* can be defined on command line */
#  if defined(__AVX2__)
#    define XXH_VECTOR XXH_AVX2
#  elif defined(__SSE2__) || defined(_M_AMD64) || defined(_M_X64) || (defined(_M_IX86_FP) && (_M_IX86_FP == 2))
#    define XXH_VECTOR XXH_SSE2
#  elif defined(__GNUC__) /* msvc support maybe later */ \
  && (defined(__ARM_NEON__) || defined(__ARM_NEON)) \
  && (defined(__LITTLE_ENDIAN__) /* We only support little endian NEON */ \
    || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__))
#    define XXH_VECTOR XXH_NEON
#  elif defined(__PPC64__) && defined(__POWER8_VECTOR__) && defined(__GNUC__)
#    define XXH_VECTOR XXH_VSX
#  else
#    define XXH_VECTOR XXH_SCALAR
#  endif
#endif

/* control alignment of accumulator,
 * for compatibility with fast vector loads */
#ifndef XXH_ACC_ALIGN
#  if XXH_VECTOR == 0   /* scalar */
#     define XXH_ACC_ALIGN 8
#  elif XXH_VECTOR == 1  /* sse2 */
#     define XXH_ACC_ALIGN 16
#  elif XXH_VECTOR == 2  /* avx2 */
#     define XXH_ACC_ALIGN 32
#  elif XXH_VECTOR == 3  /* neon */
#     define XXH_ACC_ALIGN 16
#  elif XXH_VECTOR == 4  /* vsx */
#     define XXH_ACC_ALIGN 16
#  endif
#endif

/* xxh_u64 XXH_mult32to64(xxh_u32 a, xxh_u64 b) { return (xxh_u64)a * (xxh_u64)b; } */
#if defined(_MSC_VER) && defined(_M_IX86)
#    include <intrin.h>
#    define XXH_mult32to64(x, y) __emulu(x, y)
#else
#    define XXH_mult32to64(x, y) ((xxh_u64)((x) & 0xFFFFFFFF) * (xxh_u64)((y) & 0xFFFFFFFF))
#endif

/* VSX stuff. It's a lot because VSX support is mediocre across compilers and
 * there is a lot of mischief with endianness. */
#if XXH_VECTOR == XXH_VSX
#  include <altivec.h>
#  undef vector
typedef __vector unsigned long long U64x2;
typedef __vector unsigned char U8x16;
typedef __vector unsigned U32x4;

#ifndef XXH_VSX_BE
#  if defined(__BIG_ENDIAN__) \
  || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
#    define XXH_VSX_BE 1
#  elif defined(__VEC_ELEMENT_REG_ORDER__) && __VEC_ELEMENT_REG_ORDER__ == __ORDER_BIG_ENDIAN__
#    warning "-maltivec=be is not recommended. Please use native endianness."
#    define XXH_VSX_BE 1
#  else
#    define XXH_VSX_BE 0
#  endif
#endif

/* We need some helpers for big endian mode. */
#if XXH_VSX_BE
/* A wrapper for POWER9's vec_revb. */
#  ifdef __POWER9_VECTOR__
#    define XXH_vec_revb vec_revb
#  else
XXH_FORCE_INLINE U64x2 XXH_vec_revb(U64x2 val)
{
    U8x16 const vByteSwap = { 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,
                              0x0F, 0x0E, 0x0D, 0x0C, 0x0B, 0x0A, 0x09, 0x08 };
    return vec_perm(val, val, vByteSwap);
}
#  endif

/* Power8 Crypto gives us vpermxor which is very handy for
 * PPC64EB.
 *
 * U8x16 vpermxor(U8x16 a, U8x16 b, U8x16 mask)
 * {
 *     U8x16 ret;
 *     for (int i = 0; i < 16; i++) {
 *         ret[i] = a[mask[i] & 0xF] ^ b[mask[i] >> 4];
 *     }
 *     return ret;
 * }
 *
 * Because both of the main loops load the key, swap, and xor it with input,
 * we can combine the key swap into this instruction.
 */
#  ifdef vec_permxor
#    define XXH_vec_permxor vec_permxor
#  else
#    define XXH_vec_permxor __builtin_crypto_vpermxor
#  endif
#endif
/*
 * Because we reinterpret the multiply, there are endian memes: vec_mulo actually becomes
 * vec_mule.
 *
 * Additionally, the intrinsic wasn't added until GCC 8, despite existing for a while.
 * Clang has an easy way to control this, we can just use the builtin which doesn't swap.
 * GCC needs inline assembly. */
#if __has_builtin(__builtin_altivec_vmuleuw)
#  define XXH_vec_mulo __builtin_altivec_vmulouw
#  define XXH_vec_mule __builtin_altivec_vmuleuw
#else
/* Adapted from https://github.com/google/highwayhash/blob/master/highwayhash/hh_vsx.h. */
XXH_FORCE_INLINE U64x2 XXH_vec_mulo(U32x4 a, U32x4 b) {
    U64x2 result;
    __asm__("vmulouw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b));
    return result;
}
XXH_FORCE_INLINE U64x2 XXH_vec_mule(U32x4 a, U32x4 b) {
    U64x2 result;
    __asm__("vmuleuw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b));
    return result;
}
#endif
#endif


/* ==========================================
 * XXH3 default settings
 * ========================================== */

#define XXH_SECRET_DEFAULT_SIZE 192   /* minimum XXH3_SECRET_SIZE_MIN */

#if (XXH_SECRET_DEFAULT_SIZE < XXH3_SECRET_SIZE_MIN)
#  error "default keyset is not large enough"
#endif

XXH_ALIGN(64) static const xxh_u8 kSecret[XXH_SECRET_DEFAULT_SIZE] = {
    0xb8, 0xfe, 0x6c, 0x39, 0x23, 0xa4, 0x4b, 0xbe, 0x7c, 0x01, 0x81, 0x2c, 0xf7, 0x21, 0xad, 0x1c,
    0xde, 0xd4, 0x6d, 0xe9, 0x83, 0x90, 0x97, 0xdb, 0x72, 0x40, 0xa4, 0xa4, 0xb7, 0xb3, 0x67, 0x1f,
    0xcb, 0x79, 0xe6, 0x4e, 0xcc, 0xc0, 0xe5, 0x78, 0x82, 0x5a, 0xd0, 0x7d, 0xcc, 0xff, 0x72, 0x21,
    0xb8, 0x08, 0x46, 0x74, 0xf7, 0x43, 0x24, 0x8e, 0xe0, 0x35, 0x90, 0xe6, 0x81, 0x3a, 0x26, 0x4c,
    0x3c, 0x28, 0x52, 0xbb, 0x91, 0xc3, 0x00, 0xcb, 0x88, 0xd0, 0x65, 0x8b, 0x1b, 0x53, 0x2e, 0xa3,
    0x71, 0x64, 0x48, 0x97, 0xa2, 0x0d, 0xf9, 0x4e, 0x38, 0x19, 0xef, 0x46, 0xa9, 0xde, 0xac, 0xd8,
    0xa8, 0xfa, 0x76, 0x3f, 0xe3, 0x9c, 0x34, 0x3f, 0xf9, 0xdc, 0xbb, 0xc7, 0xc7, 0x0b, 0x4f, 0x1d,
    0x8a, 0x51, 0xe0, 0x4b, 0xcd, 0xb4, 0x59, 0x31, 0xc8, 0x9f, 0x7e, 0xc9, 0xd9, 0x78, 0x73, 0x64,

    0xea, 0xc5, 0xac, 0x83, 0x34, 0xd3, 0xeb, 0xc3, 0xc5, 0x81, 0xa0, 0xff, 0xfa, 0x13, 0x63, 0xeb,
    0x17, 0x0d, 0xdd, 0x51, 0xb7, 0xf0, 0xda, 0x49, 0xd3, 0x16, 0x55, 0x26, 0x29, 0xd4, 0x68, 0x9e,
    0x2b, 0x16, 0xbe, 0x58, 0x7d, 0x47, 0xa1, 0xfc, 0x8f, 0xf8, 0xb8, 0xd1, 0x7a, 0xd0, 0x31, 0xce,
    0x45, 0xcb, 0x3a, 0x8f, 0x95, 0x16, 0x04, 0x28, 0xaf, 0xd7, 0xfb, 0xca, 0xbb, 0x4b, 0x40, 0x7e,
};

/*
 * GCC for x86 has a tendency to use SSE in this loop. While it
 * successfully avoids swapping (as MUL overwrites EAX and EDX), it
 * slows it down because instead of free register swap shifts, it
 * must use pshufd and punpckl/hd.
 *
 * To prevent this, we use this attribute to shut off SSE.
 */
#if defined(__GNUC__) && !defined(__clang__) && defined(__i386__)
__attribute__((__target__("no-sse")))
#endif
static XXH128_hash_t
XXH_mult64to128(xxh_u64 lhs, xxh_u64 rhs)
{
    /*
     * GCC/Clang __uint128_t method.
     *
     * On most 64-bit targets, GCC and Clang define a __uint128_t type.
     * This is usually the best way as it usually uses a native long 64-bit
     * multiply, such as MULQ on x86_64 or MUL + UMULH on aarch64.
     *
     * Usually.
     *
     * Despite being a 32-bit platform, Clang (and emscripten) define this
     * type despite not having the arithmetic for it. This results in a
     * laggy compiler builtin call which calculates a full 128-bit multiply.
     * In that case it is best to use the portable one.
     * https://github.com/Cyan4973/xxHash/issues/211#issuecomment-515575677
     */
#if defined(__GNUC__) && !defined(__wasm__) \
    && defined(__SIZEOF_INT128__) \
    || (defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128)

    __uint128_t product = (__uint128_t)lhs * (__uint128_t)rhs;
    XXH128_hash_t const r128 = { (xxh_u64)(product), (xxh_u64)(product >> 64) };
    return r128;

    /*
     * MSVC for x64's _umul128 method.
     *
     * xxh_u64 _umul128(xxh_u64 Multiplier, xxh_u64 Multiplicand, xxh_u64 *HighProduct);
     *
     * This compiles to single operand MUL on x64.
     */
#elif defined(_M_X64) || defined(_M_IA64)

#ifndef _MSC_VER
#   pragma intrinsic(_umul128)
#endif
    xxh_u64 product_high;
    xxh_u64 const product_low = _umul128(lhs, rhs, &product_high);
    XXH128_hash_t const r128 = { product_low, product_high };
    return r128;

#else
    /*
     * Portable scalar method. Optimized for 32-bit and 64-bit ALUs.
     *
     * This is a fast and simple grade school multiply, which is shown
     * below with base 10 arithmetic instead of base 0x100000000.
     *
     *           9 3 // D2 lhs = 93
     *         x 7 5 // D2 rhs = 75
     *     ----------
     *           1 5 // D2 lo_lo = (93 % 10) * (75 % 10)
     *         4 5 | // D2 hi_lo = (93 / 10) * (75 % 10)
     *         2 1 | // D2 lo_hi = (93 % 10) * (75 / 10)
     *     + 6 3 | | // D2 hi_hi = (93 / 10) * (75 / 10)
     *     ---------
     *         2 7 | // D2 cross  = (15 / 10) + (45 % 10) + 21
     *     + 6 7 | | // D2 upper  = (27 / 10) + (45 / 10) + 63
     *     ---------
     *       6 9 7 5
     *
     * The reasons for adding the products like this are:
     *  1. It avoids manual carry tracking. Just like how
     *     (9 * 9) + 9 + 9 = 99, the same applies with this for
     *     UINT64_MAX. This avoids a lot of complexity.
     *
     *  2. It hints for, and on Clang, compiles to, the powerful UMAAL
     *     instruction available in ARMv6+ A32/T32, which is shown below:
     *
     *         void UMAAL(xxh_u32 *RdLo, xxh_u32 *RdHi, xxh_u32 Rn, xxh_u32 Rm)
     *         {
     *             xxh_u64 product = (xxh_u64)*RdLo * (xxh_u64)*RdHi + Rn + Rm;
     *             *RdLo = (xxh_u32)(product & 0xFFFFFFFF);
     *             *RdHi = (xxh_u32)(product >> 32);
     *         }
     *
     *     This instruction was designed for efficient long multiplication,
     *     and allows this to be calculated in only 4 instructions which
     *     is comparable to some 64-bit ALUs.
     *
     *  3. It isn't terrible on other platforms. Usually this will be
     *     a couple of 32-bit ADD/ADCs.
     */

    /* First calculate all of the cross products. */
    xxh_u64 const lo_lo = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs & 0xFFFFFFFF);
    xxh_u64 const hi_lo = XXH_mult32to64(lhs >> 32,        rhs & 0xFFFFFFFF);
    xxh_u64 const lo_hi = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs >> 32);
    xxh_u64 const hi_hi = XXH_mult32to64(lhs >> 32,        rhs >> 32);

    /* Now add the products together. These will never overflow. */
    xxh_u64 const cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi;
    xxh_u64 const upper = (hi_lo >> 32) + (cross >> 32)        + hi_hi;
    xxh_u64 const lower = (cross << 32) | (lo_lo & 0xFFFFFFFF);

    XXH128_hash_t r128 = { lower, upper };
    return r128;
#endif
}

/*
 * We want to keep the attribute here because a target switch
 * disables inlining.
 *
 * Does a 64-bit to 128-bit multiply, then XOR folds it.
 * The reason for the separate function is to prevent passing
 * too many structs around by value. This will hopefully inline
 * the multiply, but we don't force it.
 */
#if defined(__GNUC__) && !defined(__clang__) && defined(__i386__)
__attribute__((__target__("no-sse")))
#endif
static xxh_u64
XXH3_mul128_fold64(xxh_u64 lhs, xxh_u64 rhs)
{
    XXH128_hash_t product = XXH_mult64to128(lhs, rhs);
    return product.low64 ^ product.high64;
}


static XXH64_hash_t XXH3_avalanche(xxh_u64 h64)
{
    h64 ^= h64 >> 37;
    h64 *= PRIME64_3;
    h64 ^= h64 >> 32;
    return h64;
}


/* ==========================================
 * Short keys
 * ========================================== */

XXH_FORCE_INLINE XXH64_hash_t
XXH3_len_1to3_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
{
    XXH_ASSERT(input != NULL);
    XXH_ASSERT(1 <= len && len <= 3);
    XXH_ASSERT(secret != NULL);
    {   xxh_u8 const c1 = input[0];
        xxh_u8 const c2 = input[len >> 1];
        xxh_u8 const c3 = input[len - 1];
        xxh_u32  const combined = ((xxh_u32)c1) | (((xxh_u32)c2) << 8) | (((xxh_u32)c3) << 16) | (((xxh_u32)len) << 24);
        xxh_u64  const keyed = (xxh_u64)combined ^ (XXH_readLE32(secret) + seed);
        xxh_u64  const mixed = keyed * PRIME64_1;
        return XXH3_avalanche(mixed);
    }
}

XXH_FORCE_INLINE XXH64_hash_t
XXH3_len_4to8_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
{
    XXH_ASSERT(input != NULL);
    XXH_ASSERT(secret != NULL);
    XXH_ASSERT(4 <= len && len <= 8);
    {   xxh_u32 const input_lo = XXH_readLE32(input);
        xxh_u32 const input_hi = XXH_readLE32(input + len - 4);
        xxh_u64 const input_64 = input_lo | ((xxh_u64)input_hi << 32);
        xxh_u64 const keyed = input_64 ^ (XXH_readLE64(secret) + seed);
        xxh_u64 const mix64 = len + ((keyed ^ (keyed >> 51)) * PRIME32_1);
        return XXH3_avalanche((mix64 ^ (mix64 >> 47)) * PRIME64_2);
    }
}

XXH_FORCE_INLINE XXH64_hash_t
XXH3_len_9to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
{
    XXH_ASSERT(input != NULL);
    XXH_ASSERT(secret != NULL);
    XXH_ASSERT(9 <= len && len <= 16);
    {   xxh_u64 const input_lo = XXH_readLE64(input)           ^ (XXH_readLE64(secret)     + seed);
        xxh_u64 const input_hi = XXH_readLE64(input + len - 8) ^ (XXH_readLE64(secret + 8) - seed);
        xxh_u64 const acc = len + (input_lo + input_hi) + XXH3_mul128_fold64(input_lo, input_hi);
        return XXH3_avalanche(acc);
    }
}

XXH_FORCE_INLINE XXH64_hash_t
XXH3_len_0to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
{
    XXH_ASSERT(len <= 16);
    {   if (len > 8) return XXH3_len_9to16_64b(input, len, secret, seed);
        if (len >= 4) return XXH3_len_4to8_64b(input, len, secret, seed);
        if (len) return XXH3_len_1to3_64b(input, len, secret, seed);
        return 0;
    }
}


/* ===    Long Keys    === */

#define STRIPE_LEN 64
#define XXH_SECRET_CONSUME_RATE 8   /* nb of secret bytes consumed at each accumulation */
#define ACC_NB (STRIPE_LEN / sizeof(xxh_u64))

typedef enum { XXH3_acc_64bits, XXH3_acc_128bits } XXH3_accWidth_e;

XXH_FORCE_INLINE void
XXH3_accumulate_512(      void* XXH_RESTRICT acc,
                    const void* XXH_RESTRICT input,
                    const void* XXH_RESTRICT secret,
                    XXH3_accWidth_e accWidth)
{
#if (XXH_VECTOR == XXH_AVX2)

    XXH_ASSERT((((size_t)acc) & 31) == 0);
    {   XXH_ALIGN(32) __m256i* const xacc  =       (__m256i *) acc;
        const         __m256i* const xinput = (const __m256i *) input;  /* not really aligned, just for ptr arithmetic, and because _mm256_loadu_si256() requires this type */
        const         __m256i* const xsecret = (const __m256i *) secret;   /* not really aligned, just for ptr arithmetic, and because _mm256_loadu_si256() requires this type */

        size_t i;
        for (i=0; i < STRIPE_LEN/sizeof(__m256i); i++) {
            __m256i const data_vec = _mm256_loadu_si256 (xinput+i);
            __m256i const key_vec = _mm256_loadu_si256 (xsecret+i);
            __m256i const data_key = _mm256_xor_si256 (data_vec, key_vec);                                  /* uint32 dk[8]  = {d0+k0, d1+k1, d2+k2, d3+k3, ...} */
            __m256i const product = _mm256_mul_epu32 (data_key, _mm256_shuffle_epi32 (data_key, 0x31));  /* uint64 mul[4] = {dk0*dk1, dk2*dk3, ...} */
            if (accWidth == XXH3_acc_128bits) {
                __m256i const data_swap = _mm256_shuffle_epi32(data_vec, _MM_SHUFFLE(1,0,3,2));
                __m256i const sum = _mm256_add_epi64(xacc[i], data_swap);
                xacc[i]  = _mm256_add_epi64(product, sum);
            } else {  /* XXH3_acc_64bits */
                __m256i const sum = _mm256_add_epi64(xacc[i], data_vec);
                xacc[i]  = _mm256_add_epi64(product, sum);
            }
    }   }

#elif (XXH_VECTOR == XXH_SSE2)

    XXH_ASSERT((((size_t)acc) & 15) == 0);
    {   XXH_ALIGN(16) __m128i* const xacc  =       (__m128i *) acc;
        const         __m128i* const xinput = (const __m128i *) input;  /* not really aligned, just for ptr arithmetic, and because _mm_loadu_si128() requires this type */
        const         __m128i* const xsecret = (const __m128i *) secret;   /* not really aligned, just for ptr arithmetic, and because _mm_loadu_si128() requires this type */

        size_t i;
        for (i=0; i < STRIPE_LEN/sizeof(__m128i); i++) {
            __m128i const data_vec = _mm_loadu_si128 (xinput+i);
            __m128i const key_vec = _mm_loadu_si128 (xsecret+i);
            __m128i const data_key = _mm_xor_si128 (data_vec, key_vec);                                  /* uint32 dk[8]  = {d0+k0, d1+k1, d2+k2, d3+k3, ...} */
            __m128i const product = _mm_mul_epu32 (data_key, _mm_shuffle_epi32 (data_key, 0x31));  /* uint64 mul[4] = {dk0*dk1, dk2*dk3, ...} */
            if (accWidth == XXH3_acc_128bits) {
                __m128i const data_swap = _mm_shuffle_epi32(data_vec, _MM_SHUFFLE(1,0,3,2));
                __m128i const sum = _mm_add_epi64(xacc[i], data_swap);
                xacc[i]  = _mm_add_epi64(product, sum);
            } else {  /* XXH3_acc_64bits */
                __m128i const sum = _mm_add_epi64(xacc[i], data_vec);
                xacc[i]  = _mm_add_epi64(product, sum);
            }
    }   }

#elif (XXH_VECTOR == XXH_NEON)

    XXH_ASSERT((((size_t)acc) & 15) == 0);
    {
        XXH_ALIGN(16) uint64x2_t* const xacc = (uint64x2_t *) acc;
        /* We don't use a uint32x4_t pointer because it causes bus errors on ARMv7. */
        uint8_t const* const xinput = (const uint8_t *) input;
        uint8_t const* const xsecret  = (const uint8_t *) secret;

        size_t i;
        for (i=0; i < STRIPE_LEN / sizeof(uint64x2_t); i++) {
#if !defined(__aarch64__) && !defined(__arm64__) && defined(__GNUC__) /* ARM32-specific hack */
            /* vzip on ARMv7 Clang generates a lot of vmovs (technically vorrs) without this.
             * vzip on 32-bit ARM NEON will overwrite the original register, and I think that Clang
             * assumes I don't want to destroy it and tries to make a copy. This slows down the code
             * a lot.
             * aarch64 not only uses an entirely different syntax, but it requires three
             * instructions...
             *    ext    v1.16B, v0.16B, #8    // select high bits because aarch64 can't address them directly
             *    zip1   v3.2s, v0.2s, v1.2s   // first zip
             *    zip2   v2.2s, v0.2s, v1.2s   // second zip
             * ...to do what ARM does in one:
             *    vzip.32 d0, d1               // Interleave high and low bits and overwrite. */

            /* data_vec = xsecret[i]; */
            uint8x16_t const data_vec    = vld1q_u8(xinput + (i * 16));
            /* key_vec  = xsecret[i];  */
            uint8x16_t const key_vec     = vld1q_u8(xsecret  + (i * 16));
            /* data_key = data_vec ^ key_vec; */
            uint32x4_t       data_key;

            if (accWidth == XXH3_acc_64bits) {
                /* Add first to prevent register swaps */
                /* xacc[i] += data_vec; */
                xacc[i] = vaddq_u64 (xacc[i], vreinterpretq_u64_u8(data_vec));
            } else {  /* XXH3_acc_128bits */
                /* xacc[i] += swap(data_vec); */
                /* can probably be optimized better */
                uint64x2_t const data64 = vreinterpretq_u64_u8(data_vec);
                uint64x2_t const swapped= vextq_u64(data64, data64, 1);
                xacc[i] = vaddq_u64 (xacc[i], swapped);
            }

            data_key = vreinterpretq_u32_u8(veorq_u8(data_vec, key_vec));

            /* Here's the magic. We use the quirkiness of vzip to shuffle data_key in place.
             * shuffle: data_key[0, 1, 2, 3] = data_key[0, 2, 1, 3] */
            __asm__("vzip.32 %e0, %f0" : "+w" (data_key));
            /* xacc[i] += (uint64x2_t) data_key[0, 1] * (uint64x2_t) data_key[2, 3]; */
            xacc[i] = vmlal_u32(xacc[i], vget_low_u32(data_key), vget_high_u32(data_key));

#else
            /* On aarch64, vshrn/vmovn seems to be equivalent to, if not faster than, the vzip method. */

            /* data_vec = xsecret[i]; */
            uint8x16_t const data_vec    = vld1q_u8(xinput + (i * 16));
            /* key_vec  = xsecret[i];  */
            uint8x16_t const key_vec     = vld1q_u8(xsecret  + (i * 16));
            /* data_key = data_vec ^ key_vec; */
            uint64x2_t const data_key    = vreinterpretq_u64_u8(veorq_u8(data_vec, key_vec));
            /* data_key_lo = (uint32x2_t) (data_key & 0xFFFFFFFF); */
            uint32x2_t const data_key_lo = vmovn_u64  (data_key);
            /* data_key_hi = (uint32x2_t) (data_key >> 32); */
            uint32x2_t const data_key_hi = vshrn_n_u64 (data_key, 32);
            if (accWidth == XXH3_acc_64bits) {
                /* xacc[i] += data_vec; */
                xacc[i] = vaddq_u64 (xacc[i], vreinterpretq_u64_u8(data_vec));
            } else {  /* XXH3_acc_128bits */
                /* xacc[i] += swap(data_vec); */
                uint64x2_t const data64 = vreinterpretq_u64_u8(data_vec);
                uint64x2_t const swapped= vextq_u64(data64, data64, 1);
                xacc[i] = vaddq_u64 (xacc[i], swapped);
            }
            /* xacc[i] += (uint64x2_t) data_key_lo * (uint64x2_t) data_key_hi; */
            xacc[i] = vmlal_u32 (xacc[i], data_key_lo, data_key_hi);

#endif
        }
    }

#elif (XXH_VECTOR == XXH_VSX)
          U64x2* const xacc =        (U64x2*) acc;    /* presumed aligned */
    U64x2 const* const xinput = (U64x2 const*) input;   /* no alignment restriction */
    U64x2 const* const xsecret  = (U64x2 const*) secret;    /* no alignment restriction */
    U64x2 const v32 = { 32,  32 };
#if XXH_VSX_BE
    U8x16 const vXorSwap  = { 0x07, 0x16, 0x25, 0x34, 0x43, 0x52, 0x61, 0x70,
                              0x8F, 0x9E, 0xAD, 0xBC, 0xCB, 0xDA, 0xE9, 0xF8 };
#endif
    size_t i;
    for (i = 0; i < STRIPE_LEN / sizeof(U64x2); i++) {
        /* data_vec = xinput[i]; */
        /* key_vec = xsecret[i]; */
#if XXH_VSX_BE
        /* byteswap */
        U64x2 const data_vec = XXH_vec_revb(vec_vsx_ld(0, xinput + i));
        U64x2 const key_raw = vec_vsx_ld(0, xsecret + i);
        /* See comment above. data_key = data_vec ^ swap(xsecret[i]); */
        U64x2 const data_key = (U64x2)XXH_vec_permxor((U8x16)data_vec, (U8x16)key_raw, vXorSwap);
#else
        U64x2 const data_vec = vec_vsx_ld(0, xinput + i);
        U64x2 const key_vec = vec_vsx_ld(0, xsecret + i);
        U64x2 const data_key = data_vec ^ key_vec;
#endif
        /* shuffled = (data_key << 32) | (data_key >> 32); */
        U32x4 const shuffled = (U32x4)vec_rl(data_key, v32);
        /* product = ((U64x2)data_key & 0xFFFFFFFF) * ((U64x2)shuffled & 0xFFFFFFFF); */
        U64x2 const product = XXH_vec_mulo((U32x4)data_key, shuffled);
        xacc[i] += product;

        if (accWidth == XXH3_acc_64bits) {
            xacc[i] += data_vec;
        } else {  /* XXH3_acc_128bits */
            /* swap high and low halves */
            U64x2 const data_swapped = vec_xxpermdi(data_vec, data_vec, 2);
            xacc[i] += data_swapped;
        }
    }

#else   /* scalar variant of Accumulator - universal */

    XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64* const xacc = (xxh_u64*) acc;    /* presumed aligned on 32-bytes boundaries, little hint for the auto-vectorizer */
    const xxh_u8* const xinput = (const xxh_u8*) input;  /* no alignment restriction */
    const xxh_u8* const xsecret  = (const xxh_u8*) secret;   /* no alignment restriction */
    size_t i;
    XXH_ASSERT(((size_t)acc & (XXH_ACC_ALIGN-1)) == 0);
    for (i=0; i < ACC_NB; i++) {
        xxh_u64 const data_val = XXH_readLE64(xinput + 8*i);
        xxh_u64 const data_key = data_val ^ XXH_readLE64(xsecret + i*8);

        if (accWidth == XXH3_acc_64bits) {
            xacc[i] += data_val;
        } else {
            xacc[i ^ 1] += data_val; /* swap adjacent lanes */
        }
        xacc[i] += XXH_mult32to64(data_key & 0xFFFFFFFF, data_key >> 32);
    }
#endif
}

XXH_FORCE_INLINE void
XXH3_scrambleAcc(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
{
#if (XXH_VECTOR == XXH_AVX2)

    XXH_ASSERT((((size_t)acc) & 31) == 0);
    {   XXH_ALIGN(32) __m256i* const xacc = (__m256i*) acc;
        const         __m256i* const xsecret = (const __m256i *) secret;   /* not really aligned, just for ptr arithmetic, and because _mm256_loadu_si256() requires this argument type */
        const __m256i prime32 = _mm256_set1_epi32((int)PRIME32_1);

        size_t i;
        for (i=0; i < STRIPE_LEN/sizeof(__m256i); i++) {
            /* xacc[i] ^= (xacc[i] >> 47) */
            __m256i const acc_vec     = xacc[i];
            __m256i const shifted     = _mm256_srli_epi64    (acc_vec, 47);
            __m256i const data_vec    = _mm256_xor_si256     (acc_vec, shifted);
            /* xacc[i] ^= xsecret; */
            __m256i const key_vec     = _mm256_loadu_si256   (xsecret+i);
            __m256i const data_key    = _mm256_xor_si256     (data_vec, key_vec);

            /* xacc[i] *= PRIME32_1; */
            __m256i const data_key_hi = _mm256_shuffle_epi32 (data_key, 0x31);
            __m256i const prod_lo     = _mm256_mul_epu32     (data_key, prime32);
            __m256i const prod_hi     = _mm256_mul_epu32     (data_key_hi, prime32);
            xacc[i] = _mm256_add_epi64(prod_lo, _mm256_slli_epi64(prod_hi, 32));
        }
    }

#elif (XXH_VECTOR == XXH_SSE2)

    XXH_ASSERT((((size_t)acc) & 15) == 0);
    {   XXH_ALIGN(16) __m128i* const xacc = (__m128i*) acc;
        const         __m128i* const xsecret = (const __m128i *) secret;   /* not really aligned, just for ptr arithmetic, and because _mm_loadu_si128() requires this argument type */
        const __m128i prime32 = _mm_set1_epi32((int)PRIME32_1);

        size_t i;
        for (i=0; i < STRIPE_LEN/sizeof(__m128i); i++) {
            /* xacc[i] ^= (xacc[i] >> 47) */
            __m128i const acc_vec     = xacc[i];
            __m128i const shifted     = _mm_srli_epi64    (acc_vec, 47);
            __m128i const data_vec    = _mm_xor_si128     (acc_vec, shifted);
            /* xacc[i] ^= xsecret; */
            __m128i const key_vec     = _mm_loadu_si128   (xsecret+i);
            __m128i const data_key    = _mm_xor_si128     (data_vec, key_vec);

            /* xacc[i] *= PRIME32_1; */
            __m128i const data_key_hi = _mm_shuffle_epi32 (data_key, 0x31);
            __m128i const prod_lo     = _mm_mul_epu32     (data_key, prime32);
            __m128i const prod_hi     = _mm_mul_epu32     (data_key_hi, prime32);
            xacc[i] = _mm_add_epi64(prod_lo, _mm_slli_epi64(prod_hi, 32));
        }
    }

#elif (XXH_VECTOR == XXH_NEON)

    XXH_ASSERT((((size_t)acc) & 15) == 0);

    {   uint64x2_t* const xacc =     (uint64x2_t*) acc;
        uint8_t const* const xsecret = (uint8_t const*) secret;
        uint32x2_t const prime     = vdup_n_u32 (PRIME32_1);

        size_t i;
        for (i=0; i < STRIPE_LEN/sizeof(uint64x2_t); i++) {
            /* data_vec = xacc[i] ^ (xacc[i] >> 47); */
            uint64x2_t const   acc_vec  = xacc[i];
            uint64x2_t const   shifted  = vshrq_n_u64 (acc_vec, 47);
            uint64x2_t const   data_vec = veorq_u64   (acc_vec, shifted);

            /* key_vec  = xsecret[i]; */
            uint32x4_t const   key_vec  = vreinterpretq_u32_u8(vld1q_u8(xsecret + (i * 16)));
            /* data_key = data_vec ^ key_vec; */
            uint32x4_t const   data_key = veorq_u32   (vreinterpretq_u32_u64(data_vec), key_vec);
            /* shuffled = { data_key[0, 2], data_key[1, 3] }; */
            uint32x2x2_t const shuffled = vzip_u32    (vget_low_u32(data_key), vget_high_u32(data_key));

            /* data_key *= PRIME32_1 */

            /* prod_hi = (data_key >> 32) * PRIME32_1; */
            uint64x2_t const   prod_hi = vmull_u32    (shuffled.val[1], prime);
            /* xacc[i] = prod_hi << 32; */
            xacc[i] = vshlq_n_u64(prod_hi, 32);
            /* xacc[i] += (prod_hi & 0xFFFFFFFF) * PRIME32_1; */
            xacc[i] = vmlal_u32(xacc[i], shuffled.val[0], prime);
    }   }

#elif (XXH_VECTOR == XXH_VSX)

          U64x2* const xacc =       (U64x2*) acc;
    const U64x2* const xsecret = (const U64x2*) secret;
    /* constants */
    U64x2 const v32  = { 32, 32 };
    U64x2 const v47 = { 47, 47 };
    U32x4 const prime = { PRIME32_1, PRIME32_1, PRIME32_1, PRIME32_1 };
    size_t i;
#if XXH_VSX_BE
    /* endian swap */
    U8x16 const vXorSwap  = { 0x07, 0x16, 0x25, 0x34, 0x43, 0x52, 0x61, 0x70,
                              0x8F, 0x9E, 0xAD, 0xBC, 0xCB, 0xDA, 0xE9, 0xF8 };
#endif
    for (i = 0; i < STRIPE_LEN / sizeof(U64x2); i++) {
        U64x2 const acc_vec  = xacc[i];
        U64x2 const data_vec = acc_vec ^ (acc_vec >> v47);
        /* key_vec = xsecret[i]; */
#if XXH_VSX_BE
        /* swap bytes words */
        U64x2 const key_raw  = vec_vsx_ld(0, xsecret + i);
        U64x2 const data_key = (U64x2)XXH_vec_permxor((U8x16)data_vec, (U8x16)key_raw, vXorSwap);
#else
        U64x2 const key_vec  = vec_vsx_ld(0, xsecret + i);
        U64x2 const data_key = data_vec ^ key_vec;
#endif

        /* data_key *= PRIME32_1 */

        /* prod_lo = ((U64x2)data_key & 0xFFFFFFFF) * ((U64x2)prime & 0xFFFFFFFF);  */
        U64x2 const prod_even  = XXH_vec_mule((U32x4)data_key, prime);
        /* prod_hi = ((U64x2)data_key >> 32) * ((U64x2)prime >> 32);  */
        U64x2 const prod_odd  = XXH_vec_mulo((U32x4)data_key, prime);
        xacc[i] = prod_odd + (prod_even << v32);
    }

#else   /* scalar variant of Scrambler - universal */

    XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64* const xacc = (xxh_u64*) acc;   /* presumed aligned on 32-bytes boundaries, little hint for the auto-vectorizer */
    const xxh_u8* const xsecret = (const xxh_u8*) secret;   /* no alignment restriction */
    size_t i;
    XXH_ASSERT((((size_t)acc) & (XXH_ACC_ALIGN-1)) == 0);
    for (i=0; i < ACC_NB; i++) {
        xxh_u64 const key64 = XXH_readLE64(xsecret + 8*i);
        xxh_u64 acc64 = xacc[i];
        acc64 ^= acc64 >> 47;
        acc64 ^= key64;
        acc64 *= PRIME32_1;
        xacc[i] = acc64;
    }

#endif
}

/* assumption : nbStripes will not overflow secret size */
XXH_FORCE_INLINE void
XXH3_accumulate(       xxh_u64* XXH_RESTRICT acc,
                const xxh_u8* XXH_RESTRICT input,
                const xxh_u8* XXH_RESTRICT secret,
                      size_t nbStripes,
                      XXH3_accWidth_e accWidth)
{
    size_t n;
    for (n = 0; n < nbStripes; n++ ) {
        XXH3_accumulate_512(acc,
                            input  + n*STRIPE_LEN,
                            secret + n*XXH_SECRET_CONSUME_RATE,
                            accWidth);
    }
}

/* note : clang auto-vectorizes well in SS2 mode _if_ this function is `static`,
 *        and doesn't auto-vectorize it at all if it is `FORCE_INLINE`.
 *        However, it auto-vectorizes better AVX2 if it is `FORCE_INLINE`
 *        Pretty much every other modes and compilers prefer `FORCE_INLINE`.
 */

#if defined(__clang__) && (XXH_VECTOR==0) && !defined(__AVX2__) && !defined(__arm__) && !defined(__thumb__)
static void
#else
XXH_FORCE_INLINE void
#endif
XXH3_hashLong_internal_loop( xxh_u64* XXH_RESTRICT acc,
                      const xxh_u8* XXH_RESTRICT input, size_t len,
                      const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
                            XXH3_accWidth_e accWidth)
{
    size_t const nb_rounds = (secretSize - STRIPE_LEN) / XXH_SECRET_CONSUME_RATE;
    size_t const block_len = STRIPE_LEN * nb_rounds;
    size_t const nb_blocks = len / block_len;

    size_t n;

    XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);

    for (n = 0; n < nb_blocks; n++) {
        XXH3_accumulate(acc, input + n*block_len, secret, nb_rounds, accWidth);
        XXH3_scrambleAcc(acc, secret + secretSize - STRIPE_LEN);
    }

    /* last partial block */
    XXH_ASSERT(len > STRIPE_LEN);
    {   size_t const nbStripes = (len - (block_len * nb_blocks)) / STRIPE_LEN;
        XXH_ASSERT(nbStripes <= (secretSize / XXH_SECRET_CONSUME_RATE));
        XXH3_accumulate(acc, input + nb_blocks*block_len, secret, nbStripes, accWidth);

        /* last stripe */
        if (len & (STRIPE_LEN - 1)) {
            const xxh_u8* const p = input + len - STRIPE_LEN;
#define XXH_SECRET_LASTACC_START 7  /* do not align on 8, so that secret is different from scrambler */
            XXH3_accumulate_512(acc, p, secret + secretSize - STRIPE_LEN - XXH_SECRET_LASTACC_START, accWidth);
    }   }
}

XXH_FORCE_INLINE xxh_u64
XXH3_mix2Accs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret)
{
    return XXH3_mul128_fold64(
               acc[0] ^ XXH_readLE64(secret),
               acc[1] ^ XXH_readLE64(secret+8) );
}

static XXH64_hash_t
XXH3_mergeAccs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret, xxh_u64 start)
{
    xxh_u64 result64 = start;

    result64 += XXH3_mix2Accs(acc+0, secret +  0);
    result64 += XXH3_mix2Accs(acc+2, secret + 16);
    result64 += XXH3_mix2Accs(acc+4, secret + 32);
    result64 += XXH3_mix2Accs(acc+6, secret + 48);

    return XXH3_avalanche(result64);
}

#define XXH3_INIT_ACC { PRIME32_3, PRIME64_1, PRIME64_2, PRIME64_3, \
                        PRIME64_4, PRIME32_2, PRIME64_5, PRIME32_1 };

XXH_FORCE_INLINE XXH64_hash_t
XXH3_hashLong_internal(const xxh_u8* XXH_RESTRICT input, size_t len,
                       const xxh_u8* XXH_RESTRICT secret, size_t secretSize)
{
    XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[ACC_NB] = XXH3_INIT_ACC;

    XXH3_hashLong_internal_loop(acc, input, len, secret, secretSize, XXH3_acc_64bits);

    /* converge into final hash */
    XXH_STATIC_ASSERT(sizeof(acc) == 64);
#define XXH_SECRET_MERGEACCS_START 11  /* do not align on 8, so that secret is different from accumulator */
    XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
    return XXH3_mergeAccs(acc, secret + XXH_SECRET_MERGEACCS_START, (xxh_u64)len * PRIME64_1);
}


XXH_NO_INLINE XXH64_hash_t    /* It's important for performance that XXH3_hashLong is not inlined. Not sure why (uop cache maybe ?), but difference is large and easily measurable */
XXH3_hashLong_64b_defaultSecret(const xxh_u8* XXH_RESTRICT input, size_t len)
{
    return XXH3_hashLong_internal(input, len, kSecret, sizeof(kSecret));
}

XXH_NO_INLINE XXH64_hash_t    /* It's important for performance that XXH3_hashLong is not inlined. Not sure why (uop cache maybe ?), but difference is large and easily measurable */
XXH3_hashLong_64b_withSecret(const xxh_u8* XXH_RESTRICT input, size_t len,
                             const xxh_u8* XXH_RESTRICT secret, size_t secretSize)
{
    return XXH3_hashLong_internal(input, len, secret, secretSize);
}


XXH_FORCE_INLINE void XXH_writeLE64(void* dst, xxh_u64 v64)
{
    if (!XXH_CPU_LITTLE_ENDIAN) v64 = XXH_swap64(v64);
    memcpy(dst, &v64, sizeof(v64));
}

/* XXH3_initCustomSecret() :
 * destination `customSecret` is presumed allocated and same size as `kSecret`.
 */
XXH_FORCE_INLINE void XXH3_initCustomSecret(xxh_u8* customSecret, xxh_u64 seed64)
{
    int const nbRounds = XXH_SECRET_DEFAULT_SIZE / 16;
    int i;

    XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0);

    for (i=0; i < nbRounds; i++) {
        XXH_writeLE64(customSecret + 16*i,     XXH_readLE64(kSecret + 16*i)     + seed64);
        XXH_writeLE64(customSecret + 16*i + 8, XXH_readLE64(kSecret + 16*i + 8) - seed64);
    }
}


/* XXH3_hashLong_64b_withSeed() :
 * Generate a custom key,
 * based on alteration of default kSecret with the seed,
 * and then use this key for long mode hashing.
 * This operation is decently fast but nonetheless costs a little bit of time.
 * Try to avoid it whenever possible (typically when seed==0).
 */
XXH_NO_INLINE XXH64_hash_t    /* It's important for performance that XXH3_hashLong is not inlined. Not sure why (uop cache maybe ?), but difference is large and easily measurable */
XXH3_hashLong_64b_withSeed(const xxh_u8* input, size_t len, XXH64_hash_t seed)
{
    XXH_ALIGN(8) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
    if (seed==0) return XXH3_hashLong_64b_defaultSecret(input, len);
    XXH3_initCustomSecret(secret, seed);
    return XXH3_hashLong_internal(input, len, secret, sizeof(secret));
}


XXH_FORCE_INLINE xxh_u64 XXH3_mix16B(const xxh_u8* XXH_RESTRICT input,
                                 const xxh_u8* XXH_RESTRICT secret, xxh_u64 seed64)
{
    xxh_u64 const input_lo = XXH_readLE64(input);
    xxh_u64 const input_hi = XXH_readLE64(input+8);
    return XXH3_mul128_fold64(
               input_lo ^ (XXH_readLE64(secret)   + seed64),
               input_hi ^ (XXH_readLE64(secret+8) - seed64) );
}


XXH_FORCE_INLINE XXH64_hash_t
XXH3_len_17to128_64b(const xxh_u8* XXH_RESTRICT input, size_t len,
                     const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
                     XXH64_hash_t seed)
{
    XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
    XXH_ASSERT(16 < len && len <= 128);

    {   xxh_u64 acc = len * PRIME64_1;
        if (len > 32) {
            if (len > 64) {
                if (len > 96) {
                    acc += XXH3_mix16B(input+48, secret+96, seed);
                    acc += XXH3_mix16B(input+len-64, secret+112, seed);
                }
                acc += XXH3_mix16B(input+32, secret+64, seed);
                acc += XXH3_mix16B(input+len-48, secret+80, seed);
            }
            acc += XXH3_mix16B(input+16, secret+32, seed);
            acc += XXH3_mix16B(input+len-32, secret+48, seed);
        }
        acc += XXH3_mix16B(input+0, secret+0, seed);
        acc += XXH3_mix16B(input+len-16, secret+16, seed);

        return XXH3_avalanche(acc);
    }
}

#define XXH3_MIDSIZE_MAX 240

XXH_NO_INLINE XXH64_hash_t
XXH3_len_129to240_64b(const xxh_u8* XXH_RESTRICT input, size_t len,
                      const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
                      XXH64_hash_t seed)
{
    XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
    XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);

    #define XXH3_MIDSIZE_STARTOFFSET 3
    #define XXH3_MIDSIZE_LASTOFFSET  17

    {   xxh_u64 acc = len * PRIME64_1;
        int const nbRounds = (int)len / 16;
        int i;
        for (i=0; i<8; i++) {
            acc += XXH3_mix16B(input+(16*i), secret+(16*i), seed);
        }
        acc = XXH3_avalanche(acc);
        XXH_ASSERT(nbRounds >= 8);
        for (i=8 ; i < nbRounds; i++) {
            acc += XXH3_mix16B(input+(16*i), secret+(16*(i-8)) + XXH3_MIDSIZE_STARTOFFSET, seed);
        }
        /* last bytes */
        acc += XXH3_mix16B(input + len - 16, secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET, seed);
        return XXH3_avalanche(acc);
    }
}

/* ===   Public entry point   === */

XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(const void* input, size_t len)
{
    if (len <= 16) return XXH3_len_0to16_64b((const xxh_u8*)input, len, kSecret, 0);
    if (len <= 128) return XXH3_len_17to128_64b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), 0);
    if (len <= XXH3_MIDSIZE_MAX) return XXH3_len_129to240_64b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), 0);
    return XXH3_hashLong_64b_defaultSecret((const xxh_u8*)input, len);
}

XXH_PUBLIC_API XXH64_hash_t
XXH3_64bits_withSecret(const void* input, size_t len, const void* secret, size_t secretSize)
{
    XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
    /* if an action must be taken should `secret` conditions not be respected,
     * it should be done here.
     * For now, it's a contract pre-condition.
     * Adding a check and a branch here would cost performance at every hash */
     if (len <= 16) return XXH3_len_0to16_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, 0);
     if (len <= 128) return XXH3_len_17to128_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, 0);
     if (len <= XXH3_MIDSIZE_MAX) return XXH3_len_129to240_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, 0);
     return XXH3_hashLong_64b_withSecret((const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize);
}

XXH_PUBLIC_API XXH64_hash_t
XXH3_64bits_withSeed(const void* input, size_t len, XXH64_hash_t seed)
{
    if (len <= 16) return XXH3_len_0to16_64b((const xxh_u8*)input, len, kSecret, seed);
    if (len <= 128) return XXH3_len_17to128_64b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), seed);
    if (len <= XXH3_MIDSIZE_MAX) return XXH3_len_129to240_64b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), seed);
    return XXH3_hashLong_64b_withSeed((const xxh_u8*)input, len, seed);
}

/* ===   XXH3 streaming   === */

XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void)
{
    return (XXH3_state_t*)XXH_malloc(sizeof(XXH3_state_t));
}

XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr)
{
    XXH_free(statePtr);
    return XXH_OK;
}

XXH_PUBLIC_API void
XXH3_copyState(XXH3_state_t* dst_state, const XXH3_state_t* src_state)
{
    memcpy(dst_state, src_state, sizeof(*dst_state));
}

static void
XXH3_64bits_reset_internal(XXH3_state_t* statePtr,
                           XXH64_hash_t seed,
                           const xxh_u8* secret, size_t secretSize)
{
    XXH_ASSERT(statePtr != NULL);
    memset(statePtr, 0, sizeof(*statePtr));
    statePtr->acc[0] = PRIME32_3;
    statePtr->acc[1] = PRIME64_1;
    statePtr->acc[2] = PRIME64_2;
    statePtr->acc[3] = PRIME64_3;
    statePtr->acc[4] = PRIME64_4;
    statePtr->acc[5] = PRIME32_2;
    statePtr->acc[6] = PRIME64_5;
    statePtr->acc[7] = PRIME32_1;
    statePtr->seed = seed;
    XXH_ASSERT(secret != NULL);
    statePtr->secret = secret;
    XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
    statePtr->secretLimit = (XXH32_hash_t)(secretSize - STRIPE_LEN);
    statePtr->nbStripesPerBlock = statePtr->secretLimit / XXH_SECRET_CONSUME_RATE;
}

XXH_PUBLIC_API XXH_errorcode
XXH3_64bits_reset(XXH3_state_t* statePtr)
{
    if (statePtr == NULL) return XXH_ERROR;
    XXH3_64bits_reset_internal(statePtr, 0, kSecret, XXH_SECRET_DEFAULT_SIZE);
    return XXH_OK;
}

XXH_PUBLIC_API XXH_errorcode
XXH3_64bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize)
{
    if (statePtr == NULL) return XXH_ERROR;
    XXH3_64bits_reset_internal(statePtr, 0, (const xxh_u8*)secret, secretSize);
    if (secret == NULL) return XXH_ERROR;
    if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
    return XXH_OK;
}

XXH_PUBLIC_API XXH_errorcode
XXH3_64bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed)
{
    if (statePtr == NULL) return XXH_ERROR;
    XXH3_64bits_reset_internal(statePtr, seed, kSecret, XXH_SECRET_DEFAULT_SIZE);
    XXH3_initCustomSecret(statePtr->customSecret, seed);
    statePtr->secret = statePtr->customSecret;
    return XXH_OK;
}

XXH_FORCE_INLINE void
XXH3_consumeStripes( xxh_u64* acc,
                    XXH32_hash_t* nbStripesSoFarPtr, XXH32_hash_t nbStripesPerBlock,
                    const xxh_u8* input, size_t totalStripes,
                    const xxh_u8* secret, size_t secretLimit,
                    XXH3_accWidth_e accWidth)
{
    XXH_ASSERT(*nbStripesSoFarPtr < nbStripesPerBlock);
    if (nbStripesPerBlock - *nbStripesSoFarPtr <= totalStripes) {
        /* need a scrambling operation */
        size_t const nbStripes = nbStripesPerBlock - *nbStripesSoFarPtr;
        XXH3_accumulate(acc, input, secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, nbStripes, accWidth);
        XXH3_scrambleAcc(acc, secret + secretLimit);
        XXH3_accumulate(acc, input + nbStripes * STRIPE_LEN, secret, totalStripes - nbStripes, accWidth);
        *nbStripesSoFarPtr = (XXH32_hash_t)(totalStripes - nbStripes);
    } else {
        XXH3_accumulate(acc, input, secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, totalStripes, accWidth);
        *nbStripesSoFarPtr += (XXH32_hash_t)totalStripes;
    }
}

XXH_FORCE_INLINE XXH_errorcode
XXH3_update(XXH3_state_t* state, const xxh_u8* input, size_t len, XXH3_accWidth_e accWidth)
{
    if (input==NULL)
#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)
        return XXH_OK;
#else
        return XXH_ERROR;
#endif

    {   const xxh_u8* const bEnd = input + len;

        state->totalLen += len;

        if (state->bufferedSize + len <= XXH3_INTERNALBUFFER_SIZE) {  /* fill in tmp buffer */
            XXH_memcpy(state->buffer + state->bufferedSize, input, len);
            state->bufferedSize += (XXH32_hash_t)len;
            return XXH_OK;
        }
        /* input now > XXH3_INTERNALBUFFER_SIZE */

        #define XXH3_INTERNALBUFFER_STRIPES (XXH3_INTERNALBUFFER_SIZE / STRIPE_LEN)
        XXH_STATIC_ASSERT(XXH3_INTERNALBUFFER_SIZE % STRIPE_LEN == 0);   /* clean multiple */

        if (state->bufferedSize) {   /* some input within internal buffer: fill then consume it */
            size_t const loadSize = XXH3_INTERNALBUFFER_SIZE - state->bufferedSize;
            XXH_memcpy(state->buffer + state->bufferedSize, input, loadSize);
            input += loadSize;
            XXH3_consumeStripes(state->acc,
                               &state->nbStripesSoFar, state->nbStripesPerBlock,
                                state->buffer, XXH3_INTERNALBUFFER_STRIPES,
                                state->secret, state->secretLimit,
                                accWidth);
            state->bufferedSize = 0;
        }

        /* consume input by full buffer quantities */
        if (input+XXH3_INTERNALBUFFER_SIZE <= bEnd) {
            const xxh_u8* const limit = bEnd - XXH3_INTERNALBUFFER_SIZE;
            do {
                XXH3_consumeStripes(state->acc,
                                   &state->nbStripesSoFar, state->nbStripesPerBlock,
                                    input, XXH3_INTERNALBUFFER_STRIPES,
                                    state->secret, state->secretLimit,
                                    accWidth);
                input += XXH3_INTERNALBUFFER_SIZE;
            } while (input<=limit);
        }

        if (input < bEnd) { /* some remaining input input : buffer it */
            XXH_memcpy(state->buffer, input, (size_t)(bEnd-input));
            state->bufferedSize = (XXH32_hash_t)(bEnd-input);
        }
    }

    return XXH_OK;
}

XXH_PUBLIC_API XXH_errorcode
XXH3_64bits_update(XXH3_state_t* state, const void* input, size_t len)
{
    return XXH3_update(state, (const xxh_u8*)input, len, XXH3_acc_64bits);
}


XXH_FORCE_INLINE void
XXH3_digest_long (XXH64_hash_t* acc, const XXH3_state_t* state, XXH3_accWidth_e accWidth)
{
    memcpy(acc, state->acc, sizeof(state->acc));  /* digest locally, state remains unaltered, and can continue ingesting more input afterwards */
    if (state->bufferedSize >= STRIPE_LEN) {
        size_t const totalNbStripes = state->bufferedSize / STRIPE_LEN;
        XXH32_hash_t nbStripesSoFar = state->nbStripesSoFar;
        XXH3_consumeStripes(acc,
                           &nbStripesSoFar, state->nbStripesPerBlock,
                            state->buffer, totalNbStripes,
                            state->secret, state->secretLimit,
                            accWidth);
        if (state->bufferedSize % STRIPE_LEN) {  /* one last partial stripe */
            XXH3_accumulate_512(acc,
                                state->buffer + state->bufferedSize - STRIPE_LEN,
                                state->secret + state->secretLimit - XXH_SECRET_LASTACC_START,
                                accWidth);
        }
    } else {  /* bufferedSize < STRIPE_LEN */
        if (state->bufferedSize) { /* one last stripe */
            xxh_u8 lastStripe[STRIPE_LEN];
            size_t const catchupSize = STRIPE_LEN - state->bufferedSize;
            memcpy(lastStripe, state->buffer + sizeof(state->buffer) - catchupSize, catchupSize);
            memcpy(lastStripe + catchupSize, state->buffer, state->bufferedSize);
            XXH3_accumulate_512(acc,
                                lastStripe,
                                state->secret + state->secretLimit - XXH_SECRET_LASTACC_START,
                                accWidth);
    }   }
}

XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (const XXH3_state_t* state)
{
    if (state->totalLen > XXH3_MIDSIZE_MAX) {
        XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[ACC_NB];
        XXH3_digest_long(acc, state, XXH3_acc_64bits);
        return XXH3_mergeAccs(acc, state->secret + XXH_SECRET_MERGEACCS_START, (xxh_u64)state->totalLen * PRIME64_1);
    }
    /* len <= XXH3_MIDSIZE_MAX : short code */
    if (state->seed)
        return XXH3_64bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed);
    return XXH3_64bits_withSecret(state->buffer, (size_t)(state->totalLen), state->secret, state->secretLimit + STRIPE_LEN);
}

/* ==========================================
 * XXH3 128 bits (=> XXH128)
 * ========================================== */

XXH_FORCE_INLINE XXH128_hash_t
XXH3_len_1to3_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
{
    XXH_ASSERT(input != NULL);
    XXH_ASSERT(1 <= len && len <= 3);
    XXH_ASSERT(secret != NULL);
    {   xxh_u8 const c1 = input[0];
        xxh_u8 const c2 = input[len >> 1];
        xxh_u8 const c3 = input[len - 1];
        xxh_u32  const combinedl = ((xxh_u32)c1) + (((xxh_u32)c2) << 8) + (((xxh_u32)c3) << 16) + (((xxh_u32)len) << 24);
        xxh_u32  const combinedh = XXH_swap32(combinedl);
        xxh_u64  const keyed_lo = (xxh_u64)combinedl ^ (XXH_readLE32(secret)   + seed);
        xxh_u64  const keyed_hi = (xxh_u64)combinedh ^ (XXH_readLE32(secret+4) - seed);
        xxh_u64  const mixedl = keyed_lo * PRIME64_1;
        xxh_u64  const mixedh = keyed_hi * PRIME64_5;
        XXH128_hash_t const h128 = { XXH3_avalanche(mixedl) /*low64*/, XXH3_avalanche(mixedh) /*high64*/ };
        return h128;
    }
}


XXH_FORCE_INLINE XXH128_hash_t
XXH3_len_4to8_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
{
    XXH_ASSERT(input != NULL);
    XXH_ASSERT(secret != NULL);
    XXH_ASSERT(4 <= len && len <= 8);
    {   xxh_u32 const input_lo = XXH_readLE32(input);
        xxh_u32 const input_hi = XXH_readLE32(input + len - 4);
        xxh_u64 const input_64_lo = input_lo + ((xxh_u64)input_hi << 32);
        xxh_u64 const input_64_hi = XXH_swap64(input_64_lo);
        xxh_u64 const keyed_lo = input_64_lo ^ (XXH_readLE64(secret) + seed);
        xxh_u64 const keyed_hi = input_64_hi ^ (XXH_readLE64(secret + 8) - seed);
        xxh_u64 const mix64l1 = len + ((keyed_lo ^ (keyed_lo >> 51)) * PRIME32_1);
        xxh_u64 const mix64l2 = (mix64l1 ^ (mix64l1 >> 47)) * PRIME64_2;
        xxh_u64 const mix64h1 = ((keyed_hi ^ (keyed_hi >> 47)) * PRIME64_1) - len;
        xxh_u64 const mix64h2 = (mix64h1 ^ (mix64h1 >> 43)) * PRIME64_4;
        {   XXH128_hash_t const h128 = { XXH3_avalanche(mix64l2) /*low64*/, XXH3_avalanche(mix64h2) /*high64*/ };
            return h128;
    }   }
}

XXH_FORCE_INLINE XXH128_hash_t
XXH3_len_9to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
{
    XXH_ASSERT(input != NULL);
    XXH_ASSERT(secret != NULL);
    XXH_ASSERT(9 <= len && len <= 16);
    {   xxh_u64 const input_lo = XXH_readLE64(input) ^ (XXH_readLE64(secret) + seed);
        xxh_u64 const input_hi = XXH_readLE64(input + len - 8) ^ (XXH_readLE64(secret+8) - seed);
        XXH128_hash_t m128 = XXH_mult64to128(input_lo ^ input_hi, PRIME64_1);
        xxh_u64 const lenContrib = XXH_mult32to64(len, PRIME32_5);
        m128.low64 += lenContrib;
        m128.high64 += input_hi * PRIME64_1;
        m128.low64  ^= (m128.high64 >> 32);
        {   XXH128_hash_t h128 = XXH_mult64to128(m128.low64, PRIME64_2);
            h128.high64 += m128.high64 * PRIME64_2;
            h128.low64   = XXH3_avalanche(h128.low64);
            h128.high64  = XXH3_avalanche(h128.high64);
            return h128;
    }   }
}

/* Assumption : `secret` size is >= 16
 * Note : it should be >= XXH3_SECRET_SIZE_MIN anyway */
XXH_FORCE_INLINE XXH128_hash_t
XXH3_len_0to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
{
    XXH_ASSERT(len <= 16);
    {   if (len > 8) return XXH3_len_9to16_128b(input, len, secret, seed);
        if (len >= 4) return XXH3_len_4to8_128b(input, len, secret, seed);
        if (len) return XXH3_len_1to3_128b(input, len, secret, seed);
        {   XXH128_hash_t const h128 = { 0, 0 };
            return h128;
    }   }
}

XXH_FORCE_INLINE XXH128_hash_t
XXH3_hashLong_128b_internal(const xxh_u8* XXH_RESTRICT input, size_t len,
                            const xxh_u8* XXH_RESTRICT secret, size_t secretSize)
{
    XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[ACC_NB] = XXH3_INIT_ACC;

    XXH3_hashLong_internal_loop(acc, input, len, secret, secretSize, XXH3_acc_128bits);

    /* converge into final hash */
    XXH_STATIC_ASSERT(sizeof(acc) == 64);
    XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
    {   xxh_u64 const low64 = XXH3_mergeAccs(acc, secret + XXH_SECRET_MERGEACCS_START, (xxh_u64)len * PRIME64_1);
        xxh_u64 const high64 = XXH3_mergeAccs(acc, secret + secretSize - sizeof(acc) - XXH_SECRET_MERGEACCS_START, ~((xxh_u64)len * PRIME64_2));
        XXH128_hash_t const h128 = { low64, high64 };
        return h128;
    }
}

XXH_NO_INLINE XXH128_hash_t    /* It's important for performance that XXH3_hashLong is not inlined. Not sure why (uop cache maybe ?), but difference is large and easily measurable */
XXH3_hashLong_128b_defaultSecret(const xxh_u8* input, size_t len)
{
    return XXH3_hashLong_128b_internal(input, len, kSecret, sizeof(kSecret));
}

XXH_NO_INLINE XXH128_hash_t    /* It's important for performance that XXH3_hashLong is not inlined. Not sure why (uop cache maybe ?), but difference is large and easily measurable */
XXH3_hashLong_128b_withSecret(const xxh_u8* input, size_t len,
                              const xxh_u8* secret, size_t secretSize)
{
    return XXH3_hashLong_128b_internal(input, len, secret, secretSize);
}

XXH_NO_INLINE XXH128_hash_t    /* It's important for performance that XXH3_hashLong is not inlined. Not sure why (uop cache maybe ?), but difference is large and easily measurable */
XXH3_hashLong_128b_withSeed(const xxh_u8* input, size_t len, XXH64_hash_t seed)
{
    XXH_ALIGN(8) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
    if (seed == 0) return XXH3_hashLong_128b_defaultSecret(input, len);
    XXH3_initCustomSecret(secret, seed);
    return XXH3_hashLong_128b_internal(input, len, secret, sizeof(secret));
}


XXH_FORCE_INLINE XXH128_hash_t
XXH128_mix32B(XXH128_hash_t acc, const xxh_u8* input_1, const xxh_u8* input_2, const xxh_u8* secret, XXH64_hash_t seed)
{
    acc.low64  += XXH3_mix16B (input_1, secret+0, seed);
    acc.low64  ^= XXH_readLE64(input_2) + XXH_readLE64(input_2 + 8);
    acc.high64 += XXH3_mix16B (input_2, secret+16, seed);
    acc.high64 ^= XXH_readLE64(input_1) + XXH_readLE64(input_1 + 8);
    return acc;
}

XXH_NO_INLINE XXH128_hash_t
XXH3_len_129to240_128b(const xxh_u8* XXH_RESTRICT input, size_t len,
                       const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
                       XXH64_hash_t seed)
{
    XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
    XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);

    {   XXH128_hash_t acc;
        int const nbRounds = (int)len / 32;
        int i;
        acc.low64 = len * PRIME64_1;
        acc.high64 = 0;
        for (i=0; i<4; i++) {
            acc = XXH128_mix32B(acc, input+(32*i), input+(32*i)+16, secret+(32*i), seed);
        }
        acc.low64 = XXH3_avalanche(acc.low64);
        acc.high64 = XXH3_avalanche(acc.high64);
        XXH_ASSERT(nbRounds >= 4);
        for (i=4 ; i < nbRounds; i++) {
            acc = XXH128_mix32B(acc, input+(32*i), input+(32*i)+16, secret+XXH3_MIDSIZE_STARTOFFSET+(32*(i-4)), seed);
        }
        /* last bytes */
        acc = XXH128_mix32B(acc, input + len - 16, input + len - 32, secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET - 16, 0ULL - seed);

        {   xxh_u64 const low64 = acc.low64 + acc.high64;
            xxh_u64 const high64 = (acc.low64 * PRIME64_1) + (acc.high64 * PRIME64_4) + ((len - seed) * PRIME64_2);
            XXH128_hash_t const h128 = { XXH3_avalanche(low64), (XXH64_hash_t)0 - XXH3_avalanche(high64) };
            return h128;
        }
    }
}


XXH_FORCE_INLINE XXH128_hash_t
XXH3_len_17to128_128b(const xxh_u8* XXH_RESTRICT input, size_t len,
                      const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
                      XXH64_hash_t seed)
{
    XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
    XXH_ASSERT(16 < len && len <= 128);

    {   XXH128_hash_t acc;
        acc.low64 = len * PRIME64_1;
        acc.high64 = 0;
        if (len > 32) {
            if (len > 64) {
                if (len > 96) {
                    acc = XXH128_mix32B(acc, input+48, input+len-64, secret+96, seed);
                }
                acc = XXH128_mix32B(acc, input+32, input+len-48, secret+64, seed);
            }
            acc = XXH128_mix32B(acc, input+16, input+len-32, secret+32, seed);
        }
        acc = XXH128_mix32B(acc, input, input+len-16, secret, seed);
        {   xxh_u64 const low64 = acc.low64 + acc.high64;
            xxh_u64 const high64 = (acc.low64 * PRIME64_1) + (acc.high64 * PRIME64_4) + ((len - seed) * PRIME64_2);
            XXH128_hash_t const h128 = { XXH3_avalanche(low64), (XXH64_hash_t)0 - XXH3_avalanche(high64) };
            return h128;
        }
    }
}

XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void* input, size_t len)
{
    if (len <= 16) return XXH3_len_0to16_128b((const xxh_u8*)input, len, kSecret, 0);
    if (len <= 128) return XXH3_len_17to128_128b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), 0);
    if (len <= XXH3_MIDSIZE_MAX) return XXH3_len_129to240_128b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), 0);
    return XXH3_hashLong_128b_defaultSecret((const xxh_u8*)input, len);
}

XXH_PUBLIC_API XXH128_hash_t
XXH3_128bits_withSecret(const void* input, size_t len, const void* secret, size_t secretSize)
{
    XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
    /* if an action must be taken should `secret` conditions not be respected,
     * it should be done here.
     * For now, it's a contract pre-condition.
     * Adding a check and a branch here would cost performance at every hash */
     if (len <= 16) return XXH3_len_0to16_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, 0);
     if (len <= 128) return XXH3_len_17to128_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, 0);
     if (len <= XXH3_MIDSIZE_MAX) return XXH3_len_129to240_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, 0);
     return XXH3_hashLong_128b_withSecret((const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize);
}

XXH_PUBLIC_API XXH128_hash_t
XXH3_128bits_withSeed(const void* input, size_t len, XXH64_hash_t seed)
{
    if (len <= 16) return XXH3_len_0to16_128b((const xxh_u8*)input, len, kSecret, seed);
    if (len <= 128) return XXH3_len_17to128_128b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), seed);
    if (len <= XXH3_MIDSIZE_MAX) return XXH3_len_129to240_128b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), seed);
    return XXH3_hashLong_128b_withSeed((const xxh_u8*)input, len, seed);
}

XXH_PUBLIC_API XXH128_hash_t
XXH128(const void* input, size_t len, XXH64_hash_t seed)
{
    return XXH3_128bits_withSeed(input, len, seed);
}


/* ===   XXH3 128-bit streaming   === */

/* all the functions are actually the same as for 64-bit streaming variant,
   just the reset one is different (different initial acc values for 0,5,6,7),
   and near the end of the digest function */

static void
XXH3_128bits_reset_internal(XXH3_state_t* statePtr,
                           XXH64_hash_t seed,
                           const xxh_u8* secret, size_t secretSize)
{
    XXH3_64bits_reset_internal(statePtr, seed, secret, secretSize);
}

XXH_PUBLIC_API XXH_errorcode
XXH3_128bits_reset(XXH3_state_t* statePtr)
{
    if (statePtr == NULL) return XXH_ERROR;
    XXH3_128bits_reset_internal(statePtr, 0, kSecret, XXH_SECRET_DEFAULT_SIZE);
    return XXH_OK;
}

XXH_PUBLIC_API XXH_errorcode
XXH3_128bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize)
{
    if (statePtr == NULL) return XXH_ERROR;
    XXH3_128bits_reset_internal(statePtr, 0, (const xxh_u8*)secret, secretSize);
    if (secret == NULL) return XXH_ERROR;
    if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
    return XXH_OK;
}

XXH_PUBLIC_API XXH_errorcode
XXH3_128bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed)
{
    if (statePtr == NULL) return XXH_ERROR;
    XXH3_128bits_reset_internal(statePtr, seed, kSecret, XXH_SECRET_DEFAULT_SIZE);
    XXH3_initCustomSecret(statePtr->customSecret, seed);
    statePtr->secret = statePtr->customSecret;
    return XXH_OK;
}

XXH_PUBLIC_API XXH_errorcode
XXH3_128bits_update(XXH3_state_t* state, const void* input, size_t len)
{
    return XXH3_update(state, (const xxh_u8*)input, len, XXH3_acc_128bits);
}

XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (const XXH3_state_t* state)
{
    if (state->totalLen > XXH3_MIDSIZE_MAX) {
        XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[ACC_NB];
        XXH3_digest_long(acc, state, XXH3_acc_128bits);
        XXH_ASSERT(state->secretLimit + STRIPE_LEN >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
        {   xxh_u64 const low64 = XXH3_mergeAccs(acc, state->secret + XXH_SECRET_MERGEACCS_START, (xxh_u64)state->totalLen * PRIME64_1);
            xxh_u64 const high64 = XXH3_mergeAccs(acc, state->secret + state->secretLimit + STRIPE_LEN - sizeof(acc) - XXH_SECRET_MERGEACCS_START, ~((xxh_u64)state->totalLen * PRIME64_2));
            XXH128_hash_t const h128 = { low64, high64 };
            return h128;
        }
    }
    /* len <= XXH3_MIDSIZE_MAX : short code */
    if (state->seed)
        return XXH3_128bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed);
    return XXH3_128bits_withSecret(state->buffer, (size_t)(state->totalLen), state->secret, state->secretLimit + STRIPE_LEN);
}

/* 128-bit utility functions */

#include <string.h>   /* memcmp */

/* return : 1 is equal, 0 if different */
XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2)
{
    /* note : XXH128_hash_t is compact, it has no padding byte */
    return !(memcmp(&h1, &h2, sizeof(h1)));
}

/* This prototype is compatible with stdlib's qsort().
 * return : >0 if *h128_1  > *h128_2
 *          <0 if *h128_1  < *h128_2
 *          =0 if *h128_1 == *h128_2  */
XXH_PUBLIC_API int XXH128_cmp(const void* h128_1, const void* h128_2)
{
    XXH128_hash_t const h1 = *(const XXH128_hash_t*)h128_1;
    XXH128_hash_t const h2 = *(const XXH128_hash_t*)h128_2;
    int const hcmp = (h1.high64 > h2.high64) - (h2.high64 > h1.high64);
    /* note : bets that, in most cases, hash values are different */
    if (hcmp) return hcmp;
    return (h1.low64 > h2.low64) - (h2.low64 > h1.low64);
}


/*======   Canonical representation   ======*/
XXH_PUBLIC_API void
XXH128_canonicalFromHash(XXH128_canonical_t* dst, XXH128_hash_t hash)
{
    XXH_STATIC_ASSERT(sizeof(XXH128_canonical_t) == sizeof(XXH128_hash_t));
    if (XXH_CPU_LITTLE_ENDIAN) {
        hash.high64 = XXH_swap64(hash.high64);
        hash.low64  = XXH_swap64(hash.low64);
    }
    memcpy(dst, &hash.high64, sizeof(hash.high64));
    memcpy((char*)dst + sizeof(hash.high64), &hash.low64, sizeof(hash.low64));
}

XXH_PUBLIC_API XXH128_hash_t
XXH128_hashFromCanonical(const XXH128_canonical_t* src)
{
    XXH128_hash_t h;
    h.high64 = XXH_readBE64(src);
    h.low64  = XXH_readBE64(src->digest + 8);
    return h;
}



#endif  /* XXH3_H */