summaryrefslogtreecommitdiff
path: root/dviware/dvisvgm/libs/brotli/enc/compound_dictionary.c
blob: a3b5e6933dd1c7ee8f651b1f8d667207aa71a084 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
/* Copyright 2017 Google Inc. All Rights Reserved.

   Distributed under MIT license.
   See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
*/

#include "compound_dictionary.h"

#include <brotli/types.h>

#include "../common/platform.h"
#include "memory.h"
#include "quality.h"

static PreparedDictionary* CreatePreparedDictionaryWithParams(MemoryManager* m,
    const uint8_t* source, size_t source_size, uint32_t bucket_bits,
    uint32_t slot_bits, uint32_t hash_bits, uint16_t bucket_limit) {
  /* Step 1: create "bloated" hasher. */
  uint32_t num_slots = 1u << slot_bits;
  uint32_t num_buckets = 1u << bucket_bits;
  uint32_t hash_shift = 64u - bucket_bits;
  uint64_t hash_mask = (~((uint64_t)0U)) >> (64 - hash_bits);
  uint32_t slot_mask = num_slots - 1;
  size_t alloc_size = (sizeof(uint32_t) << slot_bits) +
      (sizeof(uint32_t) << slot_bits) +
      (sizeof(uint16_t) << bucket_bits) +
      (sizeof(uint32_t) << bucket_bits) +
      (sizeof(uint32_t) * source_size);
  uint8_t* flat = NULL;
  PreparedDictionary* result = NULL;
  uint16_t* num = NULL;
  uint32_t* bucket_heads = NULL;
  uint32_t* next_bucket = NULL;
  uint32_t* slot_offsets = NULL;
  uint16_t* heads = NULL;
  uint32_t* items = NULL;
  uint8_t** source_ref = NULL;
  uint32_t i;
  uint32_t* slot_size = NULL;
  uint32_t* slot_limit = NULL;
  uint32_t total_items = 0;
  if (slot_bits > 16) return NULL;
  if (slot_bits > bucket_bits) return NULL;
  if (bucket_bits - slot_bits >= 16) return NULL;

  flat = BROTLI_ALLOC(m, uint8_t, alloc_size);
  if (BROTLI_IS_OOM(m) || BROTLI_IS_NULL(flat)) return NULL;

  slot_size = (uint32_t*)flat;
  slot_limit = (uint32_t*)(&slot_size[num_slots]);
  num = (uint16_t*)(&slot_limit[num_slots]);
  bucket_heads = (uint32_t*)(&num[num_buckets]);
  next_bucket = (uint32_t*)(&bucket_heads[num_buckets]);
  memset(num, 0, num_buckets * sizeof(num[0]));

  /* TODO(eustas): apply custom "store" order. */
  for (i = 0; i + 7 < source_size; ++i) {
    const uint64_t h = (BROTLI_UNALIGNED_LOAD64LE(&source[i]) & hash_mask) *
        kPreparedDictionaryHashMul64Long;
    const uint32_t key = (uint32_t)(h >> hash_shift);
    uint16_t count = num[key];
    next_bucket[i] = (count == 0) ? ((uint32_t)(-1)) : bucket_heads[key];
    bucket_heads[key] = i;
    count++;
    if (count > bucket_limit) count = bucket_limit;
    num[key] = count;
  }

  /* Step 2: find slot limits. */
  for (i = 0; i < num_slots; ++i) {
    BROTLI_BOOL overflow = BROTLI_FALSE;
    slot_limit[i] = bucket_limit;
    while (BROTLI_TRUE) {
      uint32_t limit = slot_limit[i];
      size_t j;
      uint32_t count = 0;
      overflow = BROTLI_FALSE;
      for (j = i; j < num_buckets; j += num_slots) {
        uint32_t size = num[j];
        /* Last chain may span behind 64K limit; overflow happens only if
           we are about to use 0xFFFF+ as item offset. */
        if (count >= 0xFFFF) {
          overflow = BROTLI_TRUE;
          break;
        }
        if (size > limit) size = limit;
        count += size;
      }
      if (!overflow) {
        slot_size[i] = count;
        total_items += count;
        break;
      }
      slot_limit[i]--;
    }
  }

  /* Step 3: transfer data to "slim" hasher. */
  alloc_size = sizeof(PreparedDictionary) + (sizeof(uint32_t) << slot_bits) +
      (sizeof(uint16_t) << bucket_bits) + (sizeof(uint32_t) * total_items) +
      sizeof(uint8_t*);

  result = (PreparedDictionary*)BROTLI_ALLOC(m, uint8_t, alloc_size);
  if (BROTLI_IS_OOM(m) || BROTLI_IS_NULL(result)) {
    BROTLI_FREE(m, flat);
    return NULL;
  }
  slot_offsets = (uint32_t*)(&result[1]);
  heads = (uint16_t*)(&slot_offsets[num_slots]);
  items = (uint32_t*)(&heads[num_buckets]);
  source_ref = (uint8_t**)(&items[total_items]);

  result->magic = kLeanPreparedDictionaryMagic;
  result->num_items = total_items;
  result->source_size = (uint32_t)source_size;
  result->hash_bits = hash_bits;
  result->bucket_bits = bucket_bits;
  result->slot_bits = slot_bits;
  BROTLI_UNALIGNED_STORE_PTR(source_ref, source);

  total_items = 0;
  for (i = 0; i < num_slots; ++i) {
    slot_offsets[i] = total_items;
    total_items += slot_size[i];
    slot_size[i] = 0;
  }
  for (i = 0; i < num_buckets; ++i) {
    uint32_t slot = i & slot_mask;
    uint32_t count = num[i];
    uint32_t pos;
    size_t j;
    size_t cursor = slot_size[slot];
    if (count > slot_limit[slot]) count = slot_limit[slot];
    if (count == 0) {
      heads[i] = 0xFFFF;
      continue;
    }
    heads[i] = (uint16_t)cursor;
    cursor += slot_offsets[slot];
    slot_size[slot] += count;
    pos = bucket_heads[i];
    for (j = 0; j < count; j++) {
      items[cursor++] = pos;
      pos = next_bucket[pos];
    }
    items[cursor - 1] |= 0x80000000;
  }

  BROTLI_FREE(m, flat);
  return result;
}

PreparedDictionary* CreatePreparedDictionary(MemoryManager* m,
    const uint8_t* source, size_t source_size) {
  uint32_t bucket_bits = 17;
  uint32_t slot_bits = 7;
  uint32_t hash_bits = 40;
  uint16_t bucket_limit = 32;
  size_t volume = 16u << bucket_bits;
  /* Tune parameters to fit dictionary size. */
  while (volume < source_size && bucket_bits < 22) {
    bucket_bits++;
    slot_bits++;
    volume <<= 1;
  }
  return CreatePreparedDictionaryWithParams(m,
      source, source_size, bucket_bits, slot_bits, hash_bits, bucket_limit);
}

void DestroyPreparedDictionary(MemoryManager* m,
    PreparedDictionary* dictionary) {
  if (!dictionary) return;
  BROTLI_FREE(m, dictionary);
}

BROTLI_BOOL AttachPreparedDictionary(
    CompoundDictionary* compound, const PreparedDictionary* dictionary) {
  size_t length = 0;
  size_t index = 0;

  if (compound->num_chunks == SHARED_BROTLI_MAX_COMPOUND_DICTS) {
    return BROTLI_FALSE;
  }

  if (!dictionary) return BROTLI_FALSE;

  length = dictionary->source_size;
  index = compound->num_chunks;
  compound->total_size += length;
  compound->chunks[index] = dictionary;
  compound->chunk_offsets[index + 1] = compound->total_size;
  {
    uint32_t* slot_offsets = (uint32_t*)(&dictionary[1]);
    uint16_t* heads = (uint16_t*)(&slot_offsets[1u << dictionary->slot_bits]);
    uint32_t* items = (uint32_t*)(&heads[1u << dictionary->bucket_bits]);
    const void* tail = (void*)&items[dictionary->num_items];
    if (dictionary->magic == kPreparedDictionaryMagic) {
      compound->chunk_source[index] = (const uint8_t*)tail;
    } else {
      /* dictionary->magic == kLeanPreparedDictionaryMagic */
      compound->chunk_source[index] =
          (const uint8_t*)BROTLI_UNALIGNED_LOAD_PTR((const uint8_t**)tail);
    }
  }
  compound->num_chunks++;
  return BROTLI_TRUE;
}