summaryrefslogtreecommitdiff
path: root/dviware/dviimp/dviimp.web
blob: 5e5c5c803eb0b6b8612b5140bafcd0827d4cb7f9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
% This program by A. L. Samuel is not copyrighted and can be used freely.
% This program depends heavily on DVItype.WEB by D. E. Knuth for much of
% the basic material relating to the reading of DVI files and on GFtoDOVER
% for much of the basic material relating to the reading of GF files.
% The idea of getting the font information directly from the GF files
% rather than from PXL and TFM files was suggested by D. E. Knuth,
% Several people have contributed ideas as to fast methods of doing this.

% Version 0.3 now accepts as many as 50 256-character fonts and it does an
% automatic spooling job for the Imagen with the pages properly collated.
% Version 0.4 Corrections for the new_row_69 bug and a major clean-up by
% D.R.Fuchs with the introduction of |debug| and |gubed| instead of the
% earlier temporary fix.
% Version 0.5 Fix to get TFM widths for fonts with no GF file available.
% Version 0.6 Fix to handle |empty_glyph| cases properly, and a minor
% change to the |reconcile_scale| routine.
% Version 0.7 Major change to |m_store| now |mm_store|, making it to
% store from |[0,4] through |[0,85999]| then to |[1,4]| through |[1,85999]|.
% Version 0.8 Added switches /f, /n, and /c, being respectively, the number
% count[0] of the first page to be printed, the total number of pages and the
% number of copies desired.
% Version 0.9 Added xxx{point <number>} and xxx{join <pen size> number1>
% <number2>... special commands to locate points and draw lines.
% Also improved /f and /n to allow for Roman and Arabic page number mixes.
% Version 0.91 Added Imagen's version of circ_arc and ellipse_arc and  made
% several very minor bug fixes.
% Version 0.92 Added on-line disagreement reports for check_sum, design_size,
% and at-size. Also deleted a number of unneeded variables and cleaned things
% up a bit.
% Version 0.93 Fixed some off-by-one bugs in indexing the |mm_store| array.
% (JJW)
% Version 0.94 Fixed tfm loading ala TeX 2.7.  (TGR)

% Here is TeX material that gets inserted after \input webmac
\def\hang{\hangindent 3em\indent\ignorespaces}
\font\ninerm=cmr9
\let\mc=\ninerm % medium caps for names like PASCAL
\def\PASCAL{{\mc PASCAL}}
\let\swap=\leftrightarrow
\font\logo=logo10 % font used for the METAFONT logo
\def\MF{{\logo META}\-{\logo FONT}}

\def\(#1){} % this is used to make section names sort themselves better
\def\9#1{} % this is used for sort keys in the index

\def\title{DVIIMP}
\def\contentspagenumber{1}
\def\topofcontents{\null
  \def\titlepage{F} % include headline on the contents page
  \def\rheader{\mainfont\hfil \contentspagenumber}
  \vfill
  \centerline{\titlefont The {\ttitlefont DVIIMP} processor}
  \vskip 15pt
  \centerline{(Version 0.94, November 1987)}
  \vfill}
\def\botofcontents{\vfill
  \centerline{\hsize 5in\baselineskip9pt
    \vbox{\ninerm\noindent
    The preparation of this report
    was supported in part by the National Science
    Foundation under grants IST-8201926 and MCS-8300984,
    and by the System Development Foundation. `\TeX' is a
    trademark of the American Mathematical Society.}}}
\pageno=\contentspagenumber \advance\pageno by 1

@* Introduction.

This \.{DVIIMP} program reads binary device-independent (``\.{DVI}'')
files that are produced by document compilers such as \TeX, and converts
them into a form acceptable to the \.{IMAGEN} printer. The primary use of
this program will be to print documents that use a large variety of
different fonts that are freshly prepared by the \MF\ program and with
this use in mind the program gets the needed font information directly
from \.{GF} files.  This direct use of \.{GF} font information may set a
trend but it should be noted that many older but still useful fonts may
not be available in \.{GF} form.  \.{DVIIMP} has been written in the
\.{WEB} language to conform with the general practice for other programs
of this general type and to simplify the task of adapting it for use on a
variety of different computers and different operating systems.

This program reads the \.{GF} files and stores the font information
(somewhat compressed and simplified from the \.{GF} file format) in an
array called |mm_store|, and only translates the detailed raster
information into the needed \.{imPRESS} format a glyph at a time on the first
occurence of each needed glyph in the document being translated. This
requires a rather involved procedure for keeping a record of those glyphs
that have already been transmitted and of providing for the possibilities
that the memory space allowed for fonts in the main memory associated with
this program and the internal memory within the \.{IMAGEN} for glyphs may
not be large enough for the job without arranging for the deletion of some
font information and its possible replacement should it again prove to be
needed.

There seems to be a 2-to-the-17th-pixel limit to the maximum permitted
size of glyph that IMAGEN will accept, measured as the product of the
glyph's width (rounded up to a whole number of bytes) and its height.

The |banner| string defined here should be changed whenever \.{DVIIMP}
gets modified.

@d banner=='This is DVIIMP, Version 0.94' {printed when the program starts}
@d debug==@{ {change this to `$\\{debug}\equiv\null$' when debugging}
@d gubed==@t@>@} {change this to `$\\{gubed}\equiv\null$' when debugging}
@f debug==begin
@f gubed==end

@ This program is written in standard \PASCAL, except where it is necessary
to use extensions; for example, \.{DVIIMP} must read files whose names
are dynamically specified, and that would be impossible in pure \PASCAL.
All places where nonstandard constructions are used have been listed in
the index under ``system dependencies.''
@!@^system dependencies@>

One of the extensions to standard \PASCAL\ that we shall deal with is the
ability to move to a random place in a binary file; another is to
determine the length of a binary file.  If \.{DVIIMP} is being used
with \PASCAL s for which random file positioning is not efficiently
available, the following definition should be changed from |true| to
|false|; in such cases, \.{DVIIMP} will not include the optional feature
that reads the postamble first.

Another extension is to use a default |case| as in \.{TANGLE}, \.{WEAVE},
etc.

@d random_reading==true {should we skip around in the file?}
@d othercases == others: {default for cases not listed explicitly}
@d endcases == @+end {follows the default case in an extended |case| statement}
@f othercases == else
@f endcases == end

@ The binary input comes from |dvi_file|, and the symbolic output is written
on \PASCAL's standard |output| file. The term |print| is used instead of
|write| when this program writes on |output|, so that all such output
could easily be redirected if desired.

@d print(#)==write(#)
@d print_ln(#)==write_ln(#)
@d print_nl==write_ln

@p program DVI_IMP(@!dvi_file,@!im_file,@!output);
label @<Labels in the outer block@>@/
const @<Constants in the outer block@>@/
type @<Types in the outer block@>@/
var @<Globals in the outer block@>@/
procedure initialize; {this procedure gets things started properly}
  var i:integer; {loop index for initializations}
  jj:real; {a real variable}
  begin print_ln(banner);@/
  @<Set initial values@>@/
  end;

@ If the program has to stop prematurely, it goes to the
`|final_end|'. Another label, |done|, is used when stopping normally.

@d final_end=9999 {label for the end of it all}
@d done=30 {go here when finished with a subtask}
@d restart=40 {go here to restart an operation}

@<Labels...@>=final_end;

@ The following parameters can be changed at compile time to extend or
reduce \.{DVIIMP}'s capacity.

@<Constants...@>=
@!max_fonts=100; {maximum number of distinct fonts per \.{DVI} file}
@!max_glyphs=7680; {maximum number of different characters among all fonts}
@!line_length=320; {bracketed lines of output will be at most this long}
@!terminal_line_length=150; {maximum number of characters input in a single
  line of input from the terminal}
@!stack_size=200; {\.{DVI} files shouldn't |push| beyond this depth}
@!name_size=1000; {total length of all font file names}
@!name_length=50; {a file name shouldn't be longer than this}
@!m1_max=3; {max first |mm_store| index}
@!m2_size=86000; {used as multiplier or divider}
@!m2_max= 85999; {max second |mm_store| index}
@!mm_size=344000; {bytes in |mm_store|}
@!mm_max= 343999; {max location in |mm_store|}
@!max_char_no=255; {largest allowed char number}

@ Here are some macros for common programming idioms. We will have occasion,
both in the |do_page| and the |do_char| routines, to group certain cases
together and so we will also define these groupings at this time.

@d incr(#) == #:=#+1 {increase a variable by unity}
@d decr(#) == #:=#-1 {decrease a variable by unity}
@d do_nothing == {empty statement}
@d unity == @'200000 {$2^{16}$, represents 1.00000}
@d three_cases(#)==#,#+1,#+2
@d four_cases(#)==#,#+1,#+2,#+3
@d eight_cases(#)==four_cases(#),four_cases(#+4)
@d nine_cases(#)==eight_cases(#),#+8
@d sixteen_cases(#)==eight_cases(#),eight_cases(#+8)
@d nineteen_cases(#)==nine_cases(#),nine_cases(#+9),#+18
@d thirty_two_cases(#)==sixteen_cases(#),sixteen_cases(#+16)
@d thirty_seven_cases(#)==thirty_two_cases(#),four_cases(#+32),#+36
@d sixty_four_cases(#)==thirty_two_cases(#),thirty_two_cases(#+32)
@d eighty_three_cases(#)==sixty_four_cases(#),nineteen_cases(#+64)
@d one_sixty_five_cases(#)==
  sixty_four_cases(#), sixty_four_cases(#+64),
  thirty_seven_cases(#+128)

@ If the \.{DVI} file is badly malformed, the whole process must be aborted;
\.{DVIIMP} will give up, after issuing an error message about the symptoms
that were noticed.

Such errors might be discovered inside of subroutines inside of subroutines,
so a procedure called |jump_out| has been introduced. This procedure, which
simply transfers control to the label |final_end| at the end of the program,
contains the only non-local |goto| statement in \.{DVIIMP}.
@^system dependencies@>

@d abort(#)==begin print(' ',#); jump_out;
    end
@d bad_dvi(#)==abort('Bad DVI file: ',#,'!')
@.Bad DVI file@>

@p procedure jump_out;
begin goto final_end;
end;

@* The character set.
Like all programs written with the  \.{WEB} system, \.{DVIIMP} can be
used with any character set. But it uses ASCII code internally, because
the programming for portable input-output is easier when a fixed internal
code is used, and because \.{DVI} files use ASCII code for file names
and certain other strings.

The next few sections of \.{DVIIMP} have therefore been copied from the
analogous ones in the \.{WEB} system routines. They have been considerably
simplified, since \.{DVIIMP} need not deal with the controversial
ASCII codes less than @'40. If such codes appear in the \.{DVI} file,
they will be printed as question marks.

@<Types...@>=
@!ASCII_code=" ".."~"; {a subrange of the integers}

@ The original \PASCAL\ compiler was designed in the late 60s, when six-bit
character sets were common, so it did not make provision for lower case
letters. Nowadays, of course, we need to deal with both upper and lower case
alphabets in a convenient way, especially in a program like \.{DVIIMP}.
So we shall assume that the \PASCAL\ system being used for \.{DVIIMP}
has a character set containing at least the standard visible characters
of ASCII code (|"!"| through |"~"|).

Some \PASCAL\ compilers use the original name |char| for the data type
associated with the characters in text files, while other \PASCAL s
consider |char| to be a 64-element subrange of a larger data type that has
some other name.  In order to accommodate this difference, we shall use
the name |text_char| to stand for the data type of the characters in the
output file.  We shall also assume that |text_char| consists of
the elements |chr(first_text_char)| through |chr(last_text_char)|,
inclusive. The following definitions should be adjusted if necessary.
@^system dependencies@>

@d text_char == char {the data type of characters in text files}
@d first_text_char=0 {ordinal number of the smallest element of |text_char|}
@d last_text_char=127 {ordinal number of the largest element of |text_char|}

@<Types...@>=
@!text_file=packed file of text_char;

@ The \.{DVIIMP} processor converts between ASCII code and
the user's external character set by means of arrays |xord| and |xchr|
that are analogous to \PASCAL's |ord| and |chr| functions.

@<Globals...@>=
@!xord: array [text_char] of ASCII_code;
  {specifies conversion of input characters}
@!xchr: array [0..255] of text_char;
  {specifies conversion of output characters}

@ Under our assumption that the visible characters of standard ASCII are
all present, the following assignment statements initialize the
|xchr| array properly, without needing any system-dependent changes.

@<Set init...@>=
for i:=0 to @'37 do xchr[i]:='?';
xchr[@'40]:=' ';
xchr[@'41]:='!';
xchr[@'42]:='"';
xchr[@'43]:='#';
xchr[@'44]:='$';
xchr[@'45]:='%';
xchr[@'46]:='&';
xchr[@'47]:='''';@/
xchr[@'50]:='(';
xchr[@'51]:=')';
xchr[@'52]:='*';
xchr[@'53]:='+';
xchr[@'54]:=',';
xchr[@'55]:='-';
xchr[@'56]:='.';
xchr[@'57]:='/';@/
xchr[@'60]:='0';
xchr[@'61]:='1';
xchr[@'62]:='2';
xchr[@'63]:='3';
xchr[@'64]:='4';
xchr[@'65]:='5';
xchr[@'66]:='6';
xchr[@'67]:='7';@/
xchr[@'70]:='8';
xchr[@'71]:='9';
xchr[@'72]:=':';
xchr[@'73]:=';';
xchr[@'74]:='<';
xchr[@'75]:='=';
xchr[@'76]:='>';
xchr[@'77]:='?';@/
xchr[@'100]:='@@';
xchr[@'101]:='A';
xchr[@'102]:='B';
xchr[@'103]:='C';
xchr[@'104]:='D';
xchr[@'105]:='E';
xchr[@'106]:='F';
xchr[@'107]:='G';@/
xchr[@'110]:='H';
xchr[@'111]:='I';
xchr[@'112]:='J';
xchr[@'113]:='K';
xchr[@'114]:='L';
xchr[@'115]:='M';
xchr[@'116]:='N';
xchr[@'117]:='O';@/
xchr[@'120]:='P';
xchr[@'121]:='Q';
xchr[@'122]:='R';
xchr[@'123]:='S';
xchr[@'124]:='T';
xchr[@'125]:='U';
xchr[@'126]:='V';
xchr[@'127]:='W';@/
xchr[@'130]:='X';
xchr[@'131]:='Y';
xchr[@'132]:='Z';
xchr[@'133]:='[';
xchr[@'134]:='\';
xchr[@'135]:=']';
xchr[@'136]:='^';
xchr[@'137]:='_';@/
xchr[@'140]:='`';
xchr[@'141]:='a';
xchr[@'142]:='b';
xchr[@'143]:='c';
xchr[@'144]:='d';
xchr[@'145]:='e';
xchr[@'146]:='f';
xchr[@'147]:='g';@/
xchr[@'150]:='h';
xchr[@'151]:='i';
xchr[@'152]:='j';
xchr[@'153]:='k';
xchr[@'154]:='l';
xchr[@'155]:='m';
xchr[@'156]:='n';
xchr[@'157]:='o';@/
xchr[@'160]:='p';
xchr[@'161]:='q';
xchr[@'162]:='r';
xchr[@'163]:='s';
xchr[@'164]:='t';
xchr[@'165]:='u';
xchr[@'166]:='v';
xchr[@'167]:='w';@/
xchr[@'170]:='x';
xchr[@'171]:='y';
xchr[@'172]:='z';
xchr[@'173]:='{';
xchr[@'174]:='|';
xchr[@'175]:='}';
xchr[@'176]:='~';
for i:=@'177 to 255 do xchr[i]:='?';

@ The following system-independent code makes the |xord| array contain a
suitable inverse to the information in |xchr|.

@<Set init...@>=
for i:=first_text_char to last_text_char do xord[chr(i)]:=@'40;
for i:=" " to "~" do xord[xchr[i]]:=i;

@* Device-independent file format.
Before we get into the details of \.{DVIIMP}, we need to know exactly
what \.{DVI} files are. The form of such files was designed by David R.
@^Fuchs, David Raymond@>
Fuchs in 1979. Almost any reasonable typesetting device can be driven by
a program that takes \.{DVI} files as input, and dozens of such
\.{DVI}-to-whatever programs have been written. Thus, it is possible to
print the output of document compilers like \TeX\ on many different kinds
of equipment.

A \.{DVI} file is a stream of 8-bit bytes, which may be regarded as a
series of commands in a machine-like language. The first byte of each command
is the operation code, and this code is followed by zero or more bytes
that provide parameters to the command. The parameters themselves may consist
of several consecutive bytes; for example, the `|set_rule|' command has two
parameters, each of which is four bytes long. Parameters are usually
regarded as nonnegative integers; but four-byte-long parameters,
and shorter parameters that denote distances, can be
either positive or negative. Such parameters are given in two's complement
notation. For example, a two-byte-long distance parameter has a value between
$-2^{15}$ and $2^{15}-1$.
@.DVI {\rm files}@>

A \.{DVI} file consists of a ``preamble,'' followed by a sequence of one
or more ``pages,'' followed by a ``postamble.'' The preamble is simply a
|pre| command, with its parameters that define the dimensions used in the
file; this must come first.  Each ``page'' consists of a |bop| command,
followed by any number of other commands that tell where characters are to
be placed on a physical page, followed by an |eop| command. The pages
appear in the order that they were generated, not in any particular
numerical order. If we ignore |nop| commands and \\{fnt\_def} commands
(which are allowed between any two commands in the file), each |eop|
command is immediately followed by a |bop| command, or by a |post|
command; in the latter case, there are no more pages in the file, and the
remaining bytes form the postamble.  Further details about the postamble
will be explained later.

Some parameters in \.{DVI} commands are ``pointers.'' These are four-byte
quantities that give the location number of some other byte in the file;
the first byte is number~0, then comes number~1, and so on. For example,
one of the parameters of a |bop| command points to the previous |bop|;
this makes it feasible to read the pages in backwards order, in case the
results are being directed to a device that stacks its output face up.
Suppose the preamble of a \.{DVI} file occupies bytes 0 to 99. Now if the
first page occupies bytes 100 to 999, say, and if the second
page occupies bytes 1000 to 1999, then the |bop| that starts in byte 1000
points to 100 and the |bop| that starts in byte 2000 points to 1000. (The
very first |bop|, i.e., the one that starts in byte 100, has a pointer of $-1$.)

@ The \.{DVI} format is intended to be both compact and easily interpreted
by a machine. Compactness is achieved by making most of the information
implicit instead of explicit. When a \.{DVI}-reading program reads the
commands for a page, it keeps track of several quantities: (a)~The current
font |f| is an integer; this value is changed only
by \\{fnt} and \\{fnt\_num} commands. (b)~The current position on the page
is given by two numbers called the horizontal and vertical coordinates,
|h| and |v|. Both coordinates are zero at the upper left corner of the page;
moving to the right corresponds to increasing the horizontal coordinate, and
moving down corresponds to increasing the vertical coordinate. Thus, the
coordinates are essentially Cartesian, except that vertical directions are
flipped; the Cartesian version of |(h,v)| would be |(h,-v)|.  (c)~The
current spacing amounts are given by four numbers |w|, |x|, |y|, and |z|,
where |w| and~|x| are used for horizontal spacing and where |y| and~|z|
are used for vertical spacing. (d)~There is a stack containing
|(h,v,w,x,y,z)| values; the \.{DVI} commands |push| and |pop| are used to
change the current level of operation. Note that the current font~|f| is
not pushed and popped; the stack contains only information about
positioning.

The values of |h|, |v|, |w|, |x|, |y|, and |z| are signed integers having up
to 32 bits, including the sign. Since they represent physical distances,
there is a small unit of measurement such that increasing |h| by~1 means
moving a certain tiny distance to the right. The actual unit of
measurement is variable, as explained below.

@ Here is a list of all the commands that may appear in a \.{DVI} file. Each
command is specified by its symbolic name (e.g., |bop|), its opcode byte
(e.g., 139), and its parameters (if any). The parameters are followed
by a bracketed number telling how many bytes they occupy; for example,
`|p[4]|' means that parameter |p| is four bytes long.  (A somewhat
similar set of commands is used in \.{GF} files, as will be
explained in a later section).

\yskip\hang|set_char_0| 0. Typeset character number~0 from font~|f|
such that the reference point of the character is at |(h,v)|. Then
increase |h| by the width of that character. Note that a character may
have zero or negative width, so one cannot be sure that |h| will advance
after this command; but |h| usually does increase.

\yskip\hang|set_char_1| through |set_char_127| (opcodes 1 to 127).
Do the operations of |set_char_0|; but use the character whose number
matches the opcode, instead of character~0.

\yskip\hang|set1| 128 |c[1]|. Same as |set_char_0|, except that character
number~|c| is typeset. \TeX82 uses this command for characters in the
range |128<=c<256|.

\yskip\hang|set2| 129 |c[2]|. Same as |set1|, except that |c|~is two
bytes long, so it is in the range |0<=c<65536|. \TeX82 never uses this
command, which is intended for processors that deal with oriental languages;
but \.{DVIIMP} will allow character codes greater than 255, assuming that
they all have the same width as the character whose code is $c \bmod 256$.
@^oriental characters@>@^Chinese characters@>@^Japanese characters@>

\yskip\hang|set3| 130 |c[3]|. Same as |set1|, except that |c|~is three
bytes long, so it can be as large as $2^{24}-1$.

\yskip\hang|set4| 131 |c[4]|. Same as |set1|, except that |c|~is four
bytes long, possibly even negative. Imagine that.

\yskip\hang|set_rule| 132 |a[4]| |b[4]|. Typeset a solid black rectangle
of height |a| and width |b|, with its bottom left corner at |(h,v)|. Then
set |h:=h+b|. If either |a<=0| or |b<=0|, nothing should be typeset. Note
that if |b<0|, the value of |h| will decrease even though nothing else happens.
Programs that typeset from \.{DVI} files should be careful to make the rules
line up carefully with digitized characters, as explained in connection with
the |rule_pixels| subroutine below.

\yskip\hang|put1| 133 |c[1]|. Typeset character number~|c| from font~|f|
such that the reference point of the character is at |(h,v)|. (The `put'
commands are exactly like the `set' commands, except that they simply put out a
character or a rule without moving the reference point afterwards.)

\yskip\hang|put2| 134 |c[2]|. Same as |set2|, except that |h| is not changed.

\yskip\hang|put3| 135 |c[3]|. Same as |set3|, except that |h| is not changed.

\yskip\hang|put4| 136 |c[4]|. Same as |set4|, except that |h| is not changed.

\yskip\hang|put_rule| 137 |a[4]| |b[4]|. Same as |set_rule|, except that
|h| is not changed.

\yskip\hang|nop| 138. No operation, do nothing. Any number of |nop|'s
may occur between \.{DVI} commands, but a |nop| cannot be inserted between
a command and its parameters or between two parameters.

\yskip\hang|bop| 139 $c_0[4]$ $c_1[4]$ $\ldots$ $c_9[4]$ $p[4]$. Beginning
of a page: Set |(h,v,w,x,y,z):=(0,0,0,0,0,0)| and set the stack empty. Set
the current font |f| to an undefined value.  The ten $c_i$ parameters can
be used to identify pages, if a user wants to print only part of a \.{DVI}
file; \TeX82 gives them the values of \.{\\count0} $\ldots$ \.{\\count9}
at the time \.{\\shipout} was invoked for this page.  The parameter |p|
points to the previous |bop| command in the file, where the first |bop|
has $p=-1$.

\yskip\hang|eop| 140.  End of page: Print what you have read since the
previous |bop|. At this point the stack should be empty. (The \.{DVI}-reading
programs that drive most output devices will have kept a buffer of the
material that appears on the page that has just ended. This material is
largely, but not entirely, in order by |v| coordinate and (for fixed |v|) by
|h|~coordinate; so it usually needs to be sorted into some order that is
appropriate for the device in question. \.{DVIIMP} does not do such sorting.)

\yskip\hang|push| 141. Push the current values of |(h,v,w,x,y,z)| onto the
top of the stack; do not change any of these values. Note that |f| is
not pushed.

\yskip\hang|pop| 142. Pop the top six values off of the stack and assign
them to |(h,v,w,x,y,z)|. The number of pops should never exceed the number
of pushes, since it would be highly embarrassing if the stack were empty
at the time of a |pop| command.

\yskip\hang|right1| 143 |b[1]|. Set |h:=h+b|, i.e., move right |b| units.
The parameter is a signed number in two's complement notation, |-128<=b<128|;
if |b<0|, the reference point actually moves left.

\yskip\hang|right2| 144 |b[2]|. Same as |right1|, except that |b| is a
two-byte quantity in the range |-32768<=b<32768|.

\yskip\hang|right3| 145 |b[3]|. Same as |right1|, except that |b| is a
three-byte quantity in the range |@t$-2^{23}$@><=b<@t$2^{23}$@>|.

\yskip\hang|right4| 146 |b[4]|. Same as |right1|, except that |b| is a
four-byte quantity in the range |@t$-2^{31}$@><=b<@t$2^{31}$@>|.

\yskip\hang|w0| 147. Set |h:=h+w|; i.e., move right |w| units. With luck,
this parameterless command will usually suffice, because the same kind of motion
will occur several times in succession; the following commands explain how
|w| gets particular values.

\yskip\hang|w1| 148 |b[1]|. Set |w:=b| and |h:=h+b|. The value of |b| is a
signed quantity in two's complement notation, |-128<=b<128|. This command
changes the current |w|~spacing and moves right by |b|.

\yskip\hang|w2| 149 |b[2]|. Same as |w1|, but |b| is a two-byte-long
parameter, |-32768<=b<32768|.

\yskip\hang|w3| 150 |b[3]|. Same as |w1|, but |b| is a three-byte-long
parameter, |@t$-2^{23}$@><=b<@t$2^{23}$@>|.

\yskip\hang|w4| 151 |b[4]|. Same as |w1|, but |b| is a four-byte-long
parameter, |@t$-2^{31}$@><=b<@t$2^{31}$@>|.

\yskip\hang|x0| 152. Set |h:=h+x|; i.e., move right |x| units. The `|x|'
commands are like the `|w|' commands except that they involve |x| instead
of |w|.

\yskip\hang|x1| 153 |b[1]|. Set |x:=b| and |h:=h+b|. The value of |b| is a
signed quantity in two's complement notation, |-128<=b<128|. This command
changes the current |x|~spacing and moves right by |b|.

\yskip\hang|x2| 154 |b[2]|. Same as |x1|, but |b| is a two-byte-long
parameter, |-32768<=b<32768|.

\yskip\hang|x3| 155 |b[3]|. Same as |x1|, but |b| is a three-byte-long
parameter, |@t$-2^{23}$@><=b<@t$2^{23}$@>|.

\yskip\hang|x4| 156 |b[4]|. Same as |x1|, but |b| is a four-byte-long
parameter, |@t$-2^{31}$@><=b<@t$2^{31}$@>|.

\yskip\hang|down1| 157 |a[1]|. Set |v:=v+a|, i.e., move down |a| units.
The parameter is a signed number in two's complement notation, |-128<=a<128|;
if |a<0|, the reference point actually moves up.

\yskip\hang|down2| 158 |a[2]|. Same as |down1|, except that |a| is a
two-byte quantity in the range |-32768<=a<32768|.

\yskip\hang|down3| 159 |a[3]|. Same as |down1|, except that |a| is a
three-byte quantity in the range |@t$-2^{23}$@><=a<@t$2^{23}$@>|.

\yskip\hang|down4| 160 |a[4]|. Same as |down1|, except that |a| is a
four-byte quantity in the range |@t$-2^{31}$@><=a<@t$2^{31}$@>|.

\yskip\hang|y0| 161. Set |v:=v+y|; i.e., move down |y| units. With luck,
this parameterless command will usually suffice, because the same kind of motion
will occur several times in succession; the following commands explain how
|y| gets particular values.

\yskip\hang|y1| 162 |a[1]|. Set |y:=a| and |v:=v+a|. The value of |a| is a
signed quantity in two's complement notation, |-128<=a<128|. This command
changes the current |y|~spacing and moves down by |a|.

\yskip\hang|y2| 163 |a[2]|. Same as |y1|, but |a| is a two-byte-long
parameter, |-32768<=a<32768|.

\yskip\hang|y3| 164 |a[3]|. Same as |y1|, but |a| is a three-byte-long
parameter, |@t$-2^{23}$@><=a<@t$2^{23}$@>|.

\yskip\hang|y4| 165 |a[4]|. Same as |y1|, but |a| is a four-byte-long
parameter, |@t$-2^{31}$@><=a<@t$2^{31}$@>|.

\yskip\hang|z0| 166. Set |v:=v+z|; i.e., move down |z| units. The `|z|' commands
are like the `|y|' commands except that they involve |z| instead of |y|.

\yskip\hang|z1| 167 |a[1]|. Set |z:=a| and |v:=v+a|. The value of |a| is a
signed quantity in two's complement notation, |-128<=a<128|. This command
changes the current |z|~spacing and moves down by |a|.

\yskip\hang|z2| 168 |a[2]|. Same as |z1|, but |a| is a two-byte-long
parameter, |-32768<=a<32768|.

\yskip\hang|z3| 169 |a[3]|. Same as |z1|, but |a| is a three-byte-long
parameter, |@t$-2^{23}$@><=a<@t$2^{23}$@>|.

\yskip\hang|z4| 170 |a[4]|. Same as |z1|, but |a| is a four-byte-long
parameter, |@t$-2^{31}$@><=a<@t$2^{31}$@>|.

\yskip\hang|fnt_num_0| 171. Set |f:=0|. Font 0 must previously have been
defined by a \\{fnt\_def} instruction, as explained below.

\yskip\hang|fnt_num_1| through |fnt_num_63| (opcodes 172 to 234). Set
|f:=1|, \dots, |f:=63|, respectively.

\yskip\hang|fnt1| 235 |k[1]|. Set |f:=k|. \TeX82 uses this command for font
numbers in the range |64<=k<256|.

\yskip\hang|fnt2| 236 |k[2]|. Same as |fnt1|, except that |k|~is two
bytes long, so it is in the range |0<=k<65536|. \TeX82 never generates this
command, but large font numbers may prove useful for specifications of
color or texture, or they may be used for special fonts that have fixed
numbers in some external coding scheme.

\yskip\hang|fnt3| 237 |k[3]|. Same as |fnt1|, except that |k|~is three
bytes long, so it can be as large as $2^{24}-1$.

\yskip\hang|fnt4| 238 |k[4]|. Same as |fnt1|, except that |k|~is four
bytes long; this is for the really big font numbers (and for the negative ones).

\yskip\hang|xxx1| 239 |k[1]| |x[k]|. This command is undefined in
general; it functions as a $(k+2)$-byte |nop| unless special \.{DVI}-reading
programs are being used. \TeX82 generates |xxx1| when a short enough
\.{\\special} appears, setting |k| to the number of bytes being sent. It
is recommended that |x| be a string having the form of a keyword followed
by possible parameters relevant to that keyword.

\yskip\hang|xxx2| 240 |k[2]| |x[k]|. Like |xxx1|, but |0<=k<65536|.

\yskip\hang|xxx3| 241 |k[3]| |x[k]|. Like |xxx1|, but |0<=k<@t$2^{24}$@>|.

\yskip\hang|xxx4| 242 |k[4]| |x[k]|. Like |xxx1|, but |k| can be ridiculously
large. \TeX82 uses |xxx4| when |xxx1| would be incorrect.

\yskip\hang|fnt_def1| 243 |k[1]| |c[4]| |s[4]| |d[4]| |a[1]| |l[1]| |n[a+l]|.
Define font |k|, where |0<=k<256|; font definitions will be explained shortly.

\yskip\hang|fnt_def2| 244 |k[2]| |c[4]| |s[4]| |d[4]| |a[1]| |l[1]| |n[a+l]|.
Define font |k|, where |0<=k<65536|.

\yskip\hang|fnt_def3| 245 |k[3]| |c[4]| |s[4]| |d[4]| |a[1]| |l[1]| |n[a+l]|.
Define font |k|, where |0<=k<@t$2^{24}$@>|.

\yskip\hang|fnt_def4| 246 |k[4]| |c[4]| |s[4]| |d[4]| |a[1]| |l[1]| |n[a+l]|.
Define font |k|, where |@t$-2^{31}$@><=k<@t$2^{31}$@>|.

\yskip\hang|pre| 247 |i[1]| |num[4]| |den[4]| |mag[4]| |k[1]| |x[k]|.
Beginning of the preamble; this must come at the very beginning of the
file. Parameters |i|, |num|, |den|, |mag|, |k|, and |x| are explained below.

\yskip\hang|post| 248. Beginning of the postamble, see below.

\yskip\hang|post_post| 249. Ending of the postamble, see below.

\yskip\noindent Commands 250--255 are undefined at the present time.

@ @d set_char_0=0 {typeset character 0 and move right}
@d set1=128 {typeset a character and move right}
@d set_rule=132 {typeset a rule and move right}
@d put1=133 {typeset a character}
@d put_rule=137 {typeset a rule}
@d nop=138 {no operation}
@d bop=139 {beginning of page}
@d eop=140 {ending of page}
@d push=141 {save the current positions}
@d pop=142 {restore previous positions}
@d right1=143 {move right}
@d w0=147 {move right by |w|}
@d w1=148 {move right and set |w|}
@d x0=152 {move right by |x|}
@d x1=153 {move right and set |x|}
@d down1=157 {move down}
@d y0=161 {move down by |y|}
@d y1=162 {move down and set |y|}
@d z0=166 {move down by |z|}
@d z1=167 {move down and set |z|}
@d fnt_num_0=171 {set current font to 0}
@d fnt1=235 {set current font}
@d xxx1=239 {extension to \.{DVI} primitives}
@d xxx4=242 {potentially long extension to \.{DVI} primitives}
@d fnt_def1=243 {define the meaning of a font number}
@d pre=247 {preamble}
@d post=248 {postamble beginning}
@d post_post=249 {postamble ending}
@d undefined_commands==250,251,252,253,254,255

@ The preamble contains basic information about the file as a whole. As
stated above, there are six parameters:
$$\hbox{|@!i[1]| |@!num[4]| |@!den[4]| |@!mag[4]| |@!k[1]| |@!x[k]|.}$$
The |i| byte identifies \.{DVI} format; currently this byte is always set
to~2. (Some day we will set |i=3|, when \.{DVI} format makes another
incompatible change---perhaps in 1992.)

The next two parameters, |num| and |den|, are positive integers that define
the units of measurement; they are the numerator and denominator of a
fraction by which all dimensions in the \.{DVI} file could be multiplied
in order to get lengths in units of $10^{-7}$ meters. (For example, there are
exactly 7227 \TeX\ points in 254 centimeters, and \TeX82 works with scaled
points where there are $2^{16}$ sp in a point, so \TeX82 sets |num=25400000|
and $|den|=7227\cdot2^{16}=473628672$.)
@^sp@>

The |mag| parameter is what \TeX82 calls \.{\\mag}, i.e., 1000 times the
desired magnification. The actual fraction by which dimensions are
multiplied is therefore $mn/1000d$. Note that if a \TeX\ source document
does not call for any `\.{true}' dimensions, and if you change it only by
specifying a different \.{\\mag} setting, the \.{DVI} file that \TeX\
creates will be completely unchanged except for the value of |mag| in the
preamble and postamble. (Fancy \.{DVI}-reading programs allow users to
override the |mag|~setting when a \.{DVI} file is being printed.)

Finally, |k| and |x| allow the \.{DVI} writer to include a comment, which is not
interpreted further. The length of comment |x| is |k|, where |0<=k<256|.

@d id_byte=2 {identifies the kind of \.{DVI} files described here}

@ Font definitions for a given font number |k| contain further parameters
$$\hbox{|c[4]| |s[4]| |d[4]| |a[1]| |l[1]| |n[a+l]|.}$$
The four-byte value |c| is the check sum that \TeX\ (or whatever program
generated the \.{DVI} file) found in the \.{GF} file for this font;
|c| should match the check sum of the font found by programs that read
this \.{DVI} file.
@^check sum@>

Parameter |s| contains a fixed-point scale factor that is applied to the
character widths in font |k|; font dimensions in \.{GF} files and other
font files are relative to this quantity, which is always positive and
less than $2^{27}$. It is given in the same units as the other dimensions
of the \.{DVI} file.  Parameter |d| is similar to |s|; it is the ``design
size,'' and it is given in \.{DVI} units that have not been corrected for
the magnification~|mag| found in the preamble.  Thus, font |k| is to be
used at $|mag|\cdot s/1000d$ times its normal size.

The remaining part of a font definition gives the external name of the font,
which is an ASCII string of length |a+l|. The number |a| is the length
of the ``area'' or directory, and |l| is the length of the font name itself;
the standard local system font area is supposed to be used when |a=0|.
The |n| field contains the area in its first |a| bytes.

Font definitions must appear before the first use of a particular font number.
Once font |k| is defined, it must not be defined again; however, we
shall see below that font definitions appear in the postamble as well as
in the pages, so in this sense each font number is defined exactly twice,
if at all. Like |nop| commands and \\{xxx} commands, font definitions can
appear before the first |bop|, or between an |eop| and a |bop|.

@ The last page in a \.{DVI} file is followed by `|post|'; this command
introduces the postamble, which summarizes important facts that \TeX\ has
accumulated about the file, making it possible to print subsets of the data
with reasonable efficiency. The postamble has the form
$$\vbox{\halign{\hbox{#\hfil}\cr
  |post| |p[4]| |num[4]| |den[4]| |mag[4]| |l[4]| |u[4]| |s[2]| |t[2]|\cr
  $\langle\,$font definitions$\,\rangle$\cr
  |post_post| |q[4]| |i[1]| 223's$[{\G}4]$\cr}}$$
Here |p| is a pointer to the final |bop| in the file. The next three
parameters, |num|, |den|, and |mag|, are duplicates of the quantities that
appeared in the preamble.

Parameters |l| and |u| give respectively the height-plus-depth of the tallest
page and the width of the widest page, in the same units as other dimensions
of the file. These numbers might be used by a \.{DVI}-reading program to
position individual ``pages'' on large sheets of film or paper.

Parameter |s| is the maximum stack depth (i.e., the largest excess of
|push| commands over |pop| commands) needed to process this file. Then
comes |t|, the total number of pages (|bop| commands) present.

The postamble continues with font definitions, which are any number of
\\{fnt\_def} commands as described above, possibly interspersed with |nop|
commands. Each font number that is used in the \.{DVI} file must be defined
exactly twice: Once before it is first selected by a \\{fnt} command, and once
in the postamble.

@ The last part of the postamble, following the |post_post| byte that
signifies the end of the font definitions, contains |q|, a pointer to the
|post| command that started the postamble.  An identification byte, |i|,
comes next; this currently equals~2, as in the preamble.

The |i| byte is followed by four or more bytes that are all equal to
the decimal number 223 (i.e., @'337 in octal). \TeX\ puts out four to seven of
these trailing bytes, until the total length of the file is a multiple of
four bytes, since this works out best on machines that pack four bytes per
word; but any number of 223's is allowed, as long as there are at least four
of them. In effect, 223 is a sort of signature that is added at the very end.
@^Fuchs, David Raymond@>

This curious way to finish off a \.{DVI} file makes it feasible for
\.{DVI}-reading programs to find the postamble first, on most computers,
even though \TeX\ wants to write the postamble last. Most operating
systems permit random access to individual words or bytes of a file, so
the \.{DVI} reader can start at the end and skip backwards over the 223's
until finding the identification byte. Then it can back up four bytes, read
|q|, and move to byte |q| of the file. This byte should, of course,
contain the value 248 (|post|); now the postamble can be read, so the
\.{DVI} reader discovers all the information needed for typesetting the
pages. Note that it is also possible to skip through the \.{DVI} file at
reasonably high speed to locate a particular page, if that proves
desirable. This saves a lot of time, since \.{DVI} files used in production
jobs tend to be large.

Unfortunately, however, standard \PASCAL\ does not include the ability to
@^system dependencies@>
access a random position in a file, or even to determine the length of a file.
Almost all systems nowadays provide the necessary capabilities, so \.{DVI}
format has been designed to work most efficiently with modern operating systems.
As noted above, \.{DVIIMP} will limit itself to the restrictions of standard
\PASCAL\ if |random_reading| is defined to be |false|.

@* The imPRESS file format.
The format of an \.{imPRESS} file is quite similar in many ways to the
format of \.{DVI} files although, of course, the commands are all related
to the specific properties of the \.{IMAGEN} printer. For example,
dimensions are all in units that are derived from the inter-pixel distance
for the printer that is being used (1/300 of an inch on a 300
pixels-per-inch printer).  As far as we are concerned, an \.{imPRESS} file
consists of a sequence of bytes although, for some instructions the
associated parameters are made up of a collection of bits that are packed,
rather arbitrarily,
into one or more complete bytes (the commands themselves are never
split between bytes).

As will be explained in more detail later, the \.{IMAGEN} printer provides
facilities for defining certain state variables and for saving and
restoring sets of these variable through the use of push and pop commands.

The Imagen Corporation provides a publication-form-name that is used for
describing the commands and we will, so far as practical, use modified
forms of these publification-form-namess as our names for these commands,
simply prefacing the \.{IMAGEN} command name with \.{im} when this can be done
without making the name too long.
For consistancy, the same conventions are used to
specify the parameters as were used in module 15.

For the reader's convenience, we will list these commands under the same
headings as used in the \.{imPRESS} Programmer's Manual.

Document Structure Commands

\yskip\hang|set_char_0| 0. Typeset character number~0 from font~|f|
such that the reference point of the character is at |(h,v)|. Then
increase |h| by the width of that character. Note that a character may
have zero or negative width, so one cannot be sure that |h| will advance
after this command; but |h| usually does increase.

\yskip\hang|im_end_page| 219. This command declares the current page ready
for printing and starts page layout on a new page. State variables, which
are set once and remain in effect until changed, remain unchanged. These
include the current (|h|,|v|) position so these need to be reset as
desired. Note that some manipulation of data may be needed between a
\.{DVI} |eop| and an \.{imPRESS} |im_end_page|.

\yskip\hang|im_eof| 255. Marks the end of the \.{imPRESS} document.  Any
text after this command in the input file will be ignored.

\yskip\hang|im_no_op| 254. May be used for padding and is ignored. May be
used as a direct translation for \.{DVI}'s |nop|.

Coordinate System Commands

\yskip\hang|set_hv_system| 205 [1]. This command selects the logical
coordinate that is to be used to lay out the pages. This command need not
be given if the default coordinates are to be used (with |h| and |v| axes
equivalent to those for |x| and |y|).  The associated byte has a zero
first bit, the next two bits specify the origin, the next two bits specify
the axes and the final three bits specify the orientation.
For details, see the \.{imPRESS} User's Manual.

\yskip\hang|set_abs_h| 135 [2]. Set the |h| to the value given in the
following 16-bit signed word.

\yskip\hang|set_rel_h| 136 [2]. Add the value given in the following
16-bit signed word to |h|,

\yskip\hang|set_abs_v| 137 [2]. Set the |v| to the value given in the
following 16-bit signed word.

\yskip\hang|set_rel_v| 138 [2]. Add the value given in the following
16-bit signed word to |v|,

Text Positioning Commands

\yskip\hang|im_page| 213. Set both |h| and |v| to zero.

\yskip\hang|im_set_adv_dirs| 206 [1]. Set the main and secondary advance
directions as specified in the following byte.  The default direction
corresponde to normal english usage.
For details, see the \.{imPRESS} User's Manual.

\yskip\hang|im_mmove| 133 [2]. Displace the current |h|,|v| position in the
main advance direction by the value in the following signed 16notbit
word.  With the default value for |im_set_adv_dirs| this command is the
same as |im_set_rel_h|.

\yskip\hang|im_smove| 134 [2]. Displace the current |h|,|v| position in the
secondary advance direction by the value in the following signed 16notbit
word.  With the default value for |im_set_adv_dirs| this command is the
same as |im_set_rel_v|.

\yskip\hang|im_set_sp| 210 [2]. Set the current inter-word spacing to
the value in the following 16-bit signed word.
We will not use this command as \TeX\ normally handles this matter.

\yskip\hang|im_sp| 128. This command performs an inter-word space of the
size specified by the |im_set_sp| command.
We will not use this command as \TeX\ normally handles this matter.

\yskip\hang|im_sp1| 129. This command performs an inter-word space of the
size one pixel greater than that specified by the |im_set_sp| command.
We will not use this command as \TeX\ normally handles this matter.

\yskip\hang|im_mplus| 131. This command adjusts the current position by one
pixel in the main advance direction, that is normally to add one to the
current value of |h|.

\yskip\hang|im_mminus| 132. This command adjusts the current position by
minus one pixel in the main advance direction, that is normally to
subtract one from the current value of |h|.

\yskip\hang|im_crlf| 197. With no special advance directions, this command
sets |h| to the beginning-of-line value and advances |v| by the inter-line
space amount.

\yskip\hang|im_set_bol| 209 [2]. Set the beginning-of-line margin to the
value specified in the following signed 16-bit word.

\yskip\hang|im_set_il| 208 [2].  Set the inter-line space to the value
given in the following signed 16-bit word.

Text Printing Commnds

\yskip\hang|im_bgly| 199 [12 plus mask]. This command is used to download
glyphs defined by two bytes specifying <rotation, family, and member>, and
specified by two bytes each for the following four parameters,
width, left-offset, height, and top-offset, and finally by a mask
specifying the complete raster for the glyph within a minimum sized
bounding box (padded at the right with enough empty (white) pixels to
complete an otherwise partially filled byte). The rows are orderd starting
with the top row.  The number of bits for this mask is then |((width+7) div
8)*height|. Once the rotation and family have been stated, a series of glyphs
from this family may be printed by a string of bytes containing their member
numbers.

\yskip\hang|set_family| 207 [1].  This command sets the current-family to
|family| which must lie in the range from 0 to 95.

\yskip\hang|im_member| 0-127.  An \.{imPRESS} command code in the range
from 0 and 127 is a member command, calling for the designated member of
the current family to be printed at the current position and for the
printer to advance in the main advance direction by the glyph's associated
advance-width value.

Resident Glyphs

Normally, we will make no use of the resident glyphs provided by the
\.{IMAGEN} processor, since \TeX\ has no knowledge of these.  These fonts
are not accessed directly but must be referenced indirectly through member
maps and family tables.  For completeness, the commands that are used to
create these maps and family tables are here listed. For details see the
\.{imPRESS} User's Manual.

\yskip\hang|create_map| 222

\yskip\hang|create_family_table| 221.

Text Rule Command

\yskip\hang|im_brule| 193 w[2] h[2] t[2]. This command prints a rectangle
(either in black or textured) of width w and height h with a top-offset
of t where a positive value means below the current position.

State Saving and Restoring

\yskip\hang|set_push_mask| 214 [2]. This command specifies which of the
various state variables are to be saved. Nine variables, set by the last 9
bits (with the first 7 bits set to zero) of the associated 16-bit word are
involved, these being:  pen-and-texture, interword-space,
beginning-of-line, family, hv-position, advance-direction, origin, and
orientation. These are all marked for saving (set to one) at the beginning
of each document and remain so unless changed by this command.

\yskip\hang|im_push| 211. Save the state variables as prespecified
originally or as altered by the |set_push_mask| command.

\yskip\hang|im_pop| 212. Restore the state variables saved by the most
recent unmatched |im_push| command.


@ @d im_sp=128 {advance one space}
@d im_sp1=129 {advance one space plus 1 pixel}
@d im_mplus=131 {advance one pixel}
@d im_mminus=132 {back up one pixel}
@d im_mmove=133 {move in the main advance direction}
@d im_smove=134 {move in the secondary advance direction}
@d set_abs_h=135 {move to |h| position}
@d set_rel_h=136 {move in the |h| direction}
@d set_abs_v=137 {move to |v| position}
@d set_rel_v=138 {move in the |v| direction}
@d circ_arc=150 {define a circular path}
@d ellipse_arc=151 {define an eliptical path}
@d circ_segm=160 {define a pie-shaped path}
@d im_brule=193 {print a rule}
@d im_crlf=197 {move to the beginning of th next line}
@d im_bgly=199 {define a downloaded glyph}
@d set_hv_system=205 {select a logical coordinate system}
@d im_set_adv_dirs=206 {set the advance directions}
@d set_family=207 {set current-family to family}
@d im_set_il=208 {set inter-line spacing}
@d im_set_bol=209 {set margin}
@d im_set_sp=210 {set inter-word spacing}
@d im_push=211 {save the state variables}
@d im_pop=212 {restore the state variables}
@d im_page=213 {set both |h| and |v| to zero}
@d set_push_mask=214 {specify variables to save}
@d im_end_page=219 {end the page}
@d create_family_table=221 {define a family table}
@d create_map=222 {create a member map}
@d set_pum=225 {append new path or replace path}
@d create_path=230 {define a path of segments}
@d set_texture=231 {select a texture for drawing}
@d set_pen=232 {select a pen width (in pixels)}
@d fill_path=233 {shade the ares inside the path}
@d draw_path=234 {draw the current path (a line)}
@d bitmap=235 {print a full bitmap}
@d set_magnification=236 {magnify the page (by 1, 2, or 4)}
@d define_macro=242 {define a macro}
@d execute_macro=243 {execute the named macro}
@d im_no_op=254 {no operation}
@d im_eof=255 {end the document}


@* Input and Output for binary files.
We have seen that a \.{DVI} file is a sequence of 8-bit bytes. The bytes
appear physically in what is called a `|packed file of 0..255|'
in \PASCAL\ lingo.

Packing is system dependent, and many \PASCAL\ systems fail to implement
such files in a sensible way (at least, from the viewpoint of producing
good production software).  For example, some systems treat all
byte-oriented files as text, looking for end-of-line marks and such
things. Therefore some system-dependent code is often needed to deal with
binary files, even though most of the program in this section of
\.{DVIIMP} is written in standard \PASCAL.
@^system dependencies@>

One common way to solve the problem is to consider files of |integer|
numbers, and to convert an integer in the range $-2^{31}\L x<2^{31}$ to
a sequence of four bytes $(a,b,c,d)$ using the following code, which
avoids the controversial integer division of negative numbers:
$$\vbox{\halign{#\hfil\cr
|if x>=0 then a:=x div @'100000000|\cr
|else begin x:=(x+@'10000000000)+@'10000000000; a:=x div @'100000000+128;|\cr
\quad|end|\cr
|x:=x mod @'100000000;|\cr
|b:=x div @'200000; x:=x mod @'200000;|\cr
|c:=x div @'400; d:=x mod @'400;|\cr}}$$
The four bytes are then kept in a buffer and output one by one. (On 36-bit
computers, an additional division by 16 is necessary at the beginning.
Another way to separate an integer into four bytes is to use/abuse
\PASCAL's variant records, storing an integer and retrieving bytes that are
packed in the same place; {\sl caveat implementor!\/}) It is also desirable
in some cases to read a hundred or so integers at a time, maintaining a
larger buffer.

We shall stick to simple \PASCAL\ in this program, for reasons of clarity,
even if such simplicity is sometimes unrealistic.

@<Types...@>=
@!eight_bits=0..255; {unsigned one-byte quantity}
@!byte_file=packed file of eight_bits; {files that contain binary data}

@ The program deals with four binary file variables: |dvi_file| is the main
input file that we are translating into symbolic form, |gf_file| is
the generic font file from which the font information is being read,
|tfm_file| is the font-metric file that is used for width information
in those cases where this information is available but the corresponding
|gf_file| is not,  and
|im_file| is the output file that is to be sent to the \.{IMAGEN} printer.

@<Glob...@>=
@!dvi_file:byte_file; {the stuff we are transcribing to the IMAGEN}
@!gf_file:byte_file; {a generic font file}
@!tfm_file:byte_file; {a generic font file}
@!im_file:byte_file; {the output file}

@ Special considerations are involved in restricting the range of pages
that one may want to print since the |count[0]| numbers that the |dvi|
file reports may be either positive (the usual case) or negative to signal
that the page numbers are to be printed in italics. We will assume that the
user will specify, 1) the |count[0]| number of the first page that he or
she will wants printed, by typing `/f' followed by this number, and 2) the
tolal number of pages to be printed (in the order that they occur in the
\.{DVI} file), by typing `/n' again followed by the number wanted.  The
\.{Imagen} will, of course, actually deliver these pages in reverse order.
The method of reading these numbers is system dependent and the procedures
for calling |read_f|, etc., will be found in the change file.
Note that only |count[0]| will be used (as defined
in \.{PLAIN} and the remaining |count| numbers will be ignored.

@<Glob...@>=
@!start_page:integer; {the requested starting page |count[0]| number}
@!num_pages:integer; {the requested number of pages to be printed}
@!f_count,l_count:integer; {backward counts used when printing partial file}
@!f_flag,n_flag:boolean; {true when /f and /n are specified}
@!page_match:boolean; {true when starting page is found}
@!counter:integer; {used in back-counting pages}
@!copies:integer; {the number of copies requested}

@ @<Set init...@>=
counter:=0; f_count:=max_pages; l_count:=0;
num_pages:=max_pages; copies:=1;
f_flag:=false; n_flag:=false;
resolution:=300.0;
h_org:=round(resolution); v_org:=round(resolution);

@ The following procedures will be needed.

@p function read_int:integer;
var i:integer;
@!neg_flag:boolean;
begin
neg_flag:=false; i:=0;
get(tty);
while tty^=' ' do get(tty);
if (tty^='-') then neg_flag:=true;
while (tty^='-') or (tty^='+') do get(tty);
while (tty^>='0') and (tty^<='9') do begin
    i:=i*10+xord[tty^]-"0"; get(tty);
    end;
if neg_flag then i:=-i;
read_int:=i;
end;
@#
procedure read_f;
begin
start_page:=read_int;
f_flag:=true;
end;
@#
procedure read_n;
begin
num_pages:=read_int;
if num_pages=0 then num_pages:=max_pages;
n_flag:=true;
end;
@#
procedure read_c;
begin
copies:=read_int;
end;
@#
procedure read_h;
begin
h_org:=read_int;
end;
@#
procedure read_v;
begin
v_org:=read_int;
end;

@ To prepare the input files, we |reset| them. An extension of
\PASCAL\ is needed in the case of |gf_file| and of |tfm_file|,
since we want to associate them
with external files whose names are specified dynamically (i.e., not
known at compile time). The following code assumes that `|reset(f,s)|'
does this, when |f| is a file variable and |s| is a string variable that
specifies the file name. If |eof(f)| is true immediately after
|reset(f,s)| has acted, we assume that no file named |s| is accessible.
@^system dependencies@>

@p procedure open_dvi_file; {prepares to read packed bytes in |dvi_file|}
begin reset(dvi_file);
cur_loc:=0;
end;
@#
procedure open_gf_file; {prepares to read packed bytes in |gf_file|}
begin reset(gf_file,cur_name);
cur_gf_loc:=0;
end;
@#
procedure open_tfm_file; {prepares to read packed bytes in |tfm_file|}
begin reset(tfm_file,cur_tfm_name);
end;

@ To prepare the |im_file| for output, we |rewrite| it.

@p procedure open_im_file; {prepares to write packed bytes in |im_file|}
begin rewrite(im_file); im_byte_no:=0;
end;

@ If you looked carefully at the preceding code, you probably asked,
``What are |cur_loc| and |cur_name|?'' Good question. They're global
variables: |cur_loc| is the number of the byte about to be read next from
|dvi_file|, and |cur_name| is a string variable that will be set to the
generic font  file name before |open_gf_file| is called.  While we are at
it, we will also declare |cur_gf_loc|.

@<Glob...@>=
@!cur_loc:integer; {where we are about to look, in |dvi_file|}
@!cur_gf_loc:integer; {where we are about to look, in |gf_file|}
@!cur_name:packed array[1..name_length] of char; {external name,
  with no lower case letters}
@!cur_tfm_name:packed array[1..name_length] of char; {external name,
  with no lower case letters}
@!im_byte_no:integer; {where we are about to write, in |im_file|}

@ We shall use a set of simple functions to read the next byte or bytes
from a |gf_file|.
@^system dependencies@>

@p function gf_byte:integer; {returns the next byte, unsigned}
var b:eight_bits;
begin if eof(gf_file) then gf_byte:=0
else  begin read(gf_file,b); incr(cur_gf_loc); gf_byte:=b;
  end;
end;
@#
function gf_two_bytes:integer; {returns the next two bytes, unsigned}
var a,@!b:eight_bits;
begin read(gf_file,a); read(gf_file,b);
cur_gf_loc:=cur_gf_loc+2;
gf_two_bytes:=a*256+b;
end;
@#
function gf_three_bytes:integer; {returns the next three bytes, unsigned}
var a,@!b,@!c:eight_bits;
begin read(gf_file,a); read(gf_file,b); read(gf_file,c);
cur_gf_loc:=cur_gf_loc+3;
gf_three_bytes:=(a*256+b)*256+c;
end;
@#
function gf_signed_quad:integer; {returns the next four bytes, signed}
var a,@!b,@!c,@!d:eight_bits;
begin read(gf_file,a); read(gf_file,b); read(gf_file,c); read(gf_file,d);
cur_gf_loc:=cur_gf_loc+4;
if a<128 then gf_signed_quad:=((a*256+b)*256+c)*256+d
else gf_signed_quad:=(((a-256)*256+b)*256+c)*256+d;
end;

@ We will refer to \.{TFM} files for character width information in those
cases where \.{.GF} files are not available.  We read four bytes at a
time, putting the input into global
variables |b0|, |b1|, |b2|, and |b3|, with |b0| getting the first byte and
|b3| the fourth.

@<Glob...@>=
@!b0,@!b1,@!b2,@!b3: eight_bits; {four bytes input at once}

@ The |read_tfm_word| procedure sets |b0| through |b3| to the next
four bytes in the current \.{TFM} file.
@^system dependencies@>

@p procedure read_tfm_word;
begin read(tfm_file,b0); read(tfm_file,b1);
read(tfm_file,b2); read(tfm_file,b3);
end;

@ We shall use another set of simple functions to read the next byte or
bytes from |dvi_file|. There are seven possibilities, each of which is
treated as a separate function in order to minimize the overhead for
subroutine calls.
@^system dependencies@>

@p function get_byte:integer; {returns the next byte, unsigned}
var b:eight_bits;
begin if eof(dvi_file) then get_byte:=0
else  begin read(dvi_file,b); incr(cur_loc); get_byte:=b;
  end;
end;
@#
function signed_byte:integer; {returns the next byte, signed}
var b:eight_bits;
begin read(dvi_file,b); incr(cur_loc);
if b<128 then signed_byte:=b @+ else signed_byte:=b-256;
end;
@#
function get_two_bytes:integer; {returns the next two bytes, unsigned}
var a,@!b:eight_bits;
begin read(dvi_file,a); read(dvi_file,b);
cur_loc:=cur_loc+2;
get_two_bytes:=a*256+b;
end;
@#
function signed_pair:integer; {returns the next two bytes, signed}
var a,@!b:eight_bits;
begin read(dvi_file,a); read(dvi_file,b);
cur_loc:=cur_loc+2;
if a<128 then signed_pair:=a*256+b
else signed_pair:=(a-256)*256+b;
end;
@#
function get_three_bytes:integer; {returns the next three bytes, unsigned}
var a,@!b,@!c:eight_bits;
begin read(dvi_file,a); read(dvi_file,b); read(dvi_file,c);
cur_loc:=cur_loc+3;
get_three_bytes:=(a*256+b)*256+c;
end;
@#
function signed_trio:integer; {returns the next three bytes, signed}
var a,@!b,@!c:eight_bits;
begin read(dvi_file,a); read(dvi_file,b); read(dvi_file,c);
cur_loc:=cur_loc+3;
if a<128 then signed_trio:=(a*256+b)*256+c
else signed_trio:=((a-256)*256+b)*256+c;
end;
@#
function signed_quad:integer; {returns the next four bytes, signed}
var a,@!b,@!c,@!d:eight_bits;
begin read(dvi_file,a); read(dvi_file,b); read(dvi_file,c); read(dvi_file,d);
cur_loc:=cur_loc+4;
if a<128 then signed_quad:=((a*256+b)*256+c)*256+d
else signed_quad:=(((a-256)*256+b)*256+c)*256+d;
end;

@ Finally we come to the routines that are used only if |random_reading| is
|true|. The driver program below needs two such routines: |dvi_length| should
compute the total number of bytes in |dvi_file|, possibly also
causing |eof(dvi_file)| to be true; and |move_to_byte(n)|
should position |dvi_file| so that the next |get_byte| will read byte |n|,
starting with |n=0| for the first byte in the file.
@^system dependencies@>

Such routines are, of course, highly system dependent. They are implemented
here in terms of two assumed system routines called |set_pos| and |cur_pos|.
The call |set_pos(f,n)| moves to item |n| in file |f|, unless |n| is
negative or larger than the total number of items in |f|; in the latter
case, |set_pos(f,n)| moves to the end of file |f|.
The call |cur_pos(f)| gives the total number of items in |f|, if
|eof(f)| is true; we use |cur_pos| only in such a situation.

@p function dvi_length:integer;
begin set_pos(dvi_file,-1); dvi_length:=cur_pos(dvi_file);
end;
@#
procedure move_to_byte(n:integer);
begin set_pos(dvi_file,n); cur_loc:=n;
end;

@ We face a similar problem in dealing with the \.{GF} files so perhaps we
should deal with this problem at this time.  We will need two special
routines, one to determine the byte length of the individual \.{GF} files
and the second to position |gf_file| so that the next |gf_byte| will read
byte |n|, starting with |n=0| for the first byte in the file.
@^system dependencies@>

@p function gf_length:integer;
begin set_pos(gf_file,-1); gf_length:=cur_pos(gf_file);
end;
@#
procedure move_to_gf_byte(n:integer);
begin set_pos(gf_file,n); cur_gf_loc:=n;
end;

@ We will also need a simple way of sending bytes, unsigned bytes, and signed
16-bit words to the |im_file|. While the \.{imPRESS} manual user |u_byte|
for an unsigned byte, we will attach an `s' prefix for the signed case, leaving
|im_byte| to mean an unsigned byte as used elsewhere in this program.

@d im_byte(#)==begin write(im_file,#);
 incr(im_byte_no); end

@p procedure im_sbyte(@!w:integer);
begin
if w<0 then w:=w+@"100;
im_byte(w);
end;
@#
procedure im_halfword(@!w:integer);
begin
if w<0 then w:=w+@"10000;
im_byte(w div @"100);
im_byte(w mod @"100);
end;

@* GF file format.
This program, in contrast with many device drivers, gets its font
information directly from the ``generic font'' (\.{GF}) files that are the
most important output produced by the \MF\ program.  The term {\sl
generic\/} indicates that this file format doesn't match the conventions
of any name-brand manufacturer; but it is easy to convert \.{GF} files to
the special format required by almost all digital phototypesetting
equipment, if these devices are designed to accept fonts directly.
Alternately, one can translate the \.{GF} and pass the needed raster
information on to the printer at the time that a \.{DVI} file is being
processed, as is done in this program.

There's a strong analogy
between the \.{DVI} files written by \TeX\ and the \.{GF} files written
by \MF; and, in fact, the file formats have a lot in common.

A \.{GF} file is a stream of 8-bit bytes that may be
regarded as a series of commands in a machine-like language. The first
byte of each command is the operation code, and this code is followed by
zero or more bytes that provide parameters to the command. The parameters
themselves may consist of several consecutive bytes; for example, the
`|boc|' (beginning of character) command has six parameters, each of
which is four bytes long, while the shortened, more ofter used, form, `|boc1|'
has five parameters, each of which is only one byte long.
Parameters are usually regarded as nonnegative
integers; but four-byte-long parameters can be either positive or
negative, hence they range in value from $-2^{31}$ to $2^{31}-1$.
As in \.{TFM} files, numbers that occupy
more than one byte position appear in BigEndian order,
and negative numbers appear in two's complement notation.

A \.{GF} file consists of a ``preamble,'' followed by a sequence of one or
more ``characters,'' followed by a ``postamble.'' The preamble is simply a
|pre| command, with its parameters that introduce the file; this must come
first.  Each ``character'' consists of a |boc| or a |boc1|
command, followed by any
number of other commands that specify ``black'' pixels,
followed by an |eoc| command. The characters appear in the order that \MF\
generated them. If we ignore no-op commands (which are allowed between any
two commands in the file), each |eoc| command is immediately followed by a
|boc| or a |boc1|
command, or by a |post| command; in the latter case, there are no
more characters in the file, and the remaining bytes form the postamble.
Further details about the postamble will be explained later.

Some parameters in \.{GF} commands are ``pointers.'' These are four-byte
quantities that give the location number of some other byte in the file;
the first file byte is number~0, then comes number~1, and so on.

@ The \.{GF} format is intended to be both compact and easily interpreted
by a machine. Compactness is achieved by making most of the information
relative instead of absolute. When a \.{GF}-reading program reads the
commands for a character, it keeps track of two quantities: (a)~the current
column number,~|m|; and (b)~the current row number,~|n|.  These are 32-bit
signed integers, although most actual font formats produced from \.{GF}
files will need to curtail this vast range because of practical
limitations. (\MF\ output will never allow $\vert m\vert$ or $\vert
n\vert$ to exceed 4096, but the \.{GF} format tries to be more general.)

How do \.{GF}'s row and column numbers correspond to the conventions
of \TeX\ and \MF? Well, the ``reference point'' of a character, in \TeX's
view, is considered to be at the lower left corner of the pixel in row~0
and column~0. This point is the intersection of the baseline with the left
edge of the type; it corresponds to location $(0,0)$ in \MF\ programs.
Thus the pixel in \.{GF} row~0 and column~0 is \MF's unit square, comprising the
region of the plane whose coordinates both lie between 0 and~1. The
pixel in \.{GF} row~|n| and column~|m| consists of the points whose \MF\
coordinates |(x,y)| satisfy |m<=x<=m+1| and |n<=y<=n+1|.  Negative values of
|m| and~|x| correspond to columns of pixels {\sl left\/} of the reference
point; negative values of |n| and~|y| correspond to rows of pixels {\sl
below\/} the baseline.

Besides |m| and |n|, there's also a third aspect of the current
state, namely the @!|paint_switch|, which is always either \\{black} or
\\{white}. Each \\{paint} command advances |m| by a specified amount~|d|,
and blackens the intervening pixels if |paint_switch=black|; then
the |paint_switch| changes to the opposite state. \.{GF}'s commands are
designed so that |m| will never decrease within a row, and |n| will never
increase within a character; hence there is no way to whiten a pixel that
has been blackened. \.{DVIIMP} does not use a |paint_switch| parameter,
as such, but other programs do and the concept is useful in following
the way that the |paint| commands are handled.

@ Here is a list of all the commands that may appear in a \.{GF} file. Each
command is specified by its symbolic name (e.g., |boc|), its opcode byte
(e.g., 67), and its parameters (if any). The parameters are followed
by a bracketed number telling how many bytes they occupy; for example,
`|d[2]|' means that parameter |d| is two bytes long.

\yskip\hang|paint_0| 0. This is a \\{paint} command with |d=0|; it does
nothing but change the |paint_switch| from \\{black} to \\{white} or vice~versa.

\yskip\hang\\{paint\_1} through \\{paint\_63} (opcodes 1 to 63).
These are \\{paint} commands with |d=1| to~63, defined as follows: If
|paint_switch=black|, blacken |d|~pixels of the current row~|n|,
in columns |m| through |m+d-1| inclusive. Then, in any case,
complement the |paint_switch| and advance |m| by~|d|.

\yskip\hang|paint1| 64 |d[1]|. This is a \\{paint} command with a specified
value of~|d|; \MF\ uses it to paint when |64<=d<256|.

\yskip\hang|@!paint2| 65 |d[2]|. Same as |paint1|, but |d|~can be as high
as~65535.

\yskip\hang|@!paint3| 66 |d[3]|. Same as |paint1|, but |d|~can be as high
as $2^{24}-1$. \MF\ never needs this command, and it is hard to imagine
anybody making practical use of it; surely a more compact encoding will be
desirable when characters can be this large. But the command is there,
anyway, just in case.

\yskip\hang|boc| 67 |c[4]| |p[4]| |min_m[4]| |max_m[4]| |min_n[4]|
|max_n[4]|. Beginning of a character:  Here |c| is the character code, and
|p| points to the previous character beginning (if any) for characters having
this code number modulo 256.  (The pointer |p| is |-1| if there was no
prior character with an equivalent code.) The values of registers |m| and |n|
defined by the instructions that follow for this character must
satisfy |min_m<=m<=max_m| and |min_n<=n<=max_n|.  (The values of |max_m| and
|min_n| need not be the tightest bounds possible.)  When a \.{GF}-reading
program sees a |boc|, it can use |min_m|, |max_m|, |min_n|, and |max_n| to
initialize the bounds of an array. Then it sets |m:=min_m|, |n:=max_n|, and
|paint_switch:=white|.

\yskip\hang|boc1| 68 |c[1]| |@!del_m[1]| |max_m[1]| |@!del_n[1]| |max_n[1]|.
Same as |boc|, but |p| is assumed to be~$-1$; also |del_m=max_m-min_m|
and |del_n=max_n-min_n| are given instead of |min_m| and |min_n|.
The one-byte parameters must be between 0 and 255, inclusive.
\ (This abbreviated |boc| saves 19~bytes per character, in common cases.)

\yskip\hang|eoc| 69. End of character: All pixels blackened so far
constitute the pattern for this character. In particular, a completely
blank character might have |eoc| immediately following |boc|.

\yskip\hang|skip0| 70. Decrease |n| by 1 and set |m:=min_m|,
|paint_switch:=white|. \ (This finishes one row and begins another,
ready to whiten the leftmost pixel in the new row.)

\yskip\hang|skip1| 71 |d[1]|. Decrease |n| by |d+1|, set |m:=min_m|, and set
|paint_switch:=white|. This is a way to produce |d| all-white rows.

\yskip\hang|@!skip2| 72 |d[2]|. Same as |skip1|, but |d| can be as large
as 65535.

\yskip\hang|@!skip3| 73 |d[3]|. Same as |skip1|, but |d| can be as large
as $2^{24}-1$. \MF\ obviously never needs this command.

\yskip\hang|new_row_0| 74. Decrease |n| by 1 and set |m:=min_m|,
|paint_switch:=black|. \ (This finishes one row and begins another,
ready to {\sl blacken\/} the leftmost pixel in the new row.)

\yskip\hang|@!new_row_1| through |@!new_row_164| (opcodes 75 to 238). Same as
|new_row_0|, but with |m:=min_m+1| through |min_m+164|, respectively.

\yskip\hang|xxx1| 239 |k[1]| |x[k]|. This command is undefined in
general; it functions as a $(k+2)$-byte |no_op| unless special \.{GF}-reading
programs are being used. \MF\ generates \\{xxx} commands when encountering
a \&{special} string; this occurs in the \.{GF} file only between
characters, after the preamble, and before the postamble. However,
\\{xxx} commands might appear anywhere in \.{GF} files generated by other
processors. It is recommended that |x| be a string having the form of a
keyword followed by possible parameters relevant to that keyword.

\yskip\hang|@!xxx2| 240 |k[2]| |x[k]|. Like |xxx1|, but |0<=k<65536|.

\yskip\hang|xxx3| 241 |k[3]| |x[k]|. Like |xxx1|, but |0<=k<@t$2^{24}$@>|.
\MF\ uses this when sending a \&{special} string whose length exceeds~255.

\yskip\hang|@!xxx4| 242 |k[4]| |x[k]|. Like |xxx1|, but |k| can be
ridiculously large; |k| mustn't be negative.

\yskip\hang|yyy| 243 |y[4]|. This command is undefined in general;
it functions as a 5-byte |no_op| unless special \.{GF}-reading programs
are being used. \MF\ puts |scaled| numbers into |yyy|'s, as a
result of \&{numspecial} commands; the intent is to provide numeric
parameters to \\{xxx} commands that immediately precede.

\yskip\hang|no_op| 244. No operation, do nothing. Any number of |no_op|'s
may occur between \.{GF} commands, but a |no_op| cannot be inserted between
a command and its parameters or between two parameters.

\yskip\hang|char_loc| 245 |c[1]| |dx[4]| |dy[4]| |w[4]| |p[4]|.
This command will appear only in the postamble, which will be explained shortly.

\yskip\hang|@!char_loc0| 246 |c[1]| |@!dm[1]| |w[4]| |p[4]|.
Same as |char_loc|, except that |dy| is assumed to be zero, and the value
of~|dx| is taken to be |65536*dm|, where |0<=dm<256|.

\yskip\hang|pre| 247 |i[1]| |k[1]| |x[k]|.
Beginning of the preamble; this must come at the very beginning of the
file. Parameter |i| is an identifying number for \.{GF} format, currently
131. The other information is merely commentary; it is not given
special interpretation like \\{xxx} commands are. (Note that \\{xxx}
commands may immediately follow the preamble, before the first |boc|.)

\yskip\hang|post| 248. Beginning of the postamble, see below.

\yskip\hang|post_post| 249. Ending of the postamble, see below.

\yskip\noindent Commands 250--255 are undefined at the present time.

@d gf_id_byte=131 {identifies the kind of \.{GF} files described here}

@ Here are the opcodes that \.{DVIIMP} actually refers to.

@d paint_0=0 {beginning of the \\{paint} commands}
@d paint1=64 {move right a given number of columns, then
  black${}\swap{}$white}
@d paint2=65
@d boc=67 {beginning of a character}
@d boc1=68 {abbreviated |boc|}
@d eoc=69 {end of a character}
@d skip0=70 {skip no blank rows}
@d skip1=71 {skip over blank rows}
@d skip2=72 {skip over blank rows}
@d new_row_0=74 {move down one row and then right}
@d new_row_164=238 {move down 164 rows and then right}
{xxx1=239 defined previously}
@d yyy=243 {for \&{numspecial} numbers}
@d no_op=244 {no operation}
@d char_loc=245 {character locators in the postamble}
{pre=247 (preamble) defined previously}
{post 248 (postamble beginning) defined previously}
{|post_post|=249 (postamble ending) defined previously}
{undefined commands==250,251,252,253,254,255}

@ The last character in a \.{GF} file is followed by `|post|'; this command
introduces the postamble, which summarizes important facts that \MF\ has
accumulated. The postamble has the form
$$\vbox{\halign{\hbox{#\hfil}\cr
  |post| |p[4]| |@!ds[4]| |@!cs[4]| |@!hppp[4]| |@!vppp[4]|
   |min_m[4]| |max_m[4]| |min_n[4]| |max_n[4]|\cr
  $\langle\,$character locators$\,\rangle$\cr
  |post_post| |q[4]| |i[1]| 223's$[{\G}4]$\cr}}$$
Here |p| is a pointer to the byte following the final |eoc| in the file
(or to the byte following the preamble, if there are no characters);
it can be used to locate the beginning of \\{xxx} commands
that might have preceded the postamble. The |ds| and |cs| parameters
@^design size@> @^check sum@>
give the design size and check sum, respectively, which are exactly the
values put into the header of any \.{TFM} file that shares information with this
\.{GF} file. Parameters |hppp| and |vppp| are the ratios of
pixels per point, horizontally and vertically, expressed as |scaled| integers
(i.e., multiplied by $2^{16}$); they can be used to correlate the font
with specific device resolutions, magnifications, and ``at sizes.''  Then
come |min_m|, |max_m|, |min_n|, and |max_n|, which bound the values that
registers |m| and~|n| assume in all characters in this \.{GF} file.
(These bounds need not be the best possible; |max_m| and |min_n| may, on the
other hand, be tighter than the similar bounds in |boc| commands. For
example, some character may have |min_n=-100| in its |boc|, but it might
turn out that |n| never gets lower than |-50| in any character; then
|min_n| can have any value |<=-50|. If there are no characters in the file,
it's possible to have |min_m>max_m| and/or |min_n>max_n|.)

@ Character locators are introduced by |char_loc| commands,
which specify a character residue~|c|, character displacements (|dx,dy|),
a character width~|w|, and a pointer~|p|
to the beginning of that character. (If two or more characters have the
same code~|c| modulo 256, only the last will be indicated; the others can be
located by following backpointers. Characters whose codes differ by a
multiple of 256 are assumed to share the same font metric information,
hence the \.{TFM} file contains only residues of character codes modulo~256.
This convention is intended for oriental languages, when there are many
character shapes but few distinct widths.)
@^oriental characters@>@^Chinese characters@>@^Japanese characters@>

The character displacements (|dx,dy|) are the values of \MF's \&{chardx}
and \&{chardy} parameters; they are in units of |scaled| pixels;
i.e., |dx| is in horizontal pixel units times $2^{16}$, and |dy| is in
vertical pixel units times $2^{16}$.  This is the intended amount of
displacement after typesetting the character; for \.{DVI} files, |dy|
should be zero, but other document file formats allow nonzero vertical
displacement.

The character width~|w| duplicates the information in the \.{TFM} file; it
is $2^{24}$ times the ratio of the true width to the font's design size.

The backpointer |p| points to the character's |boc|, or to the first of
a sequence of consecutive \\{xxx} or |yyy| or |no_op| commands that
immediately precede the |boc|, if such commands exist; such ``special''
commands essentially belong to the characters, while the special commands
after the final character belong to the postamble (i.e., to the font
as a whole). This convention about |p| applies also to the backpointers
in |boc| commands, even though it wasn't explained in the description
of~|boc|. @^backpointers@>
@^oriental characters@>@^Chinese characters@>@^Japanese characters@>

Pointer |p| might be |-1| if the character exists in the \.{TFM} file
but not in the \.{GF} file. This unusual situation can arise in \MF\ output
if the user had |proofing<0| when the character was being shipped out,
but then made |proofing>=0| in order to get a \.{GF} file.

These |p| pointers are not currently being used in this program, instead we
store all rasters as received in the |mm_store| and index then by
|glyph_ptr|.  The role of a |-1| value for |p| is take over by a |-1| in
the |glyph_ptr| array.

@ The last part of the postamble, following the |post_post| byte that
signifies the end of the character locators, contains |q|, a pointer to the
|post| command that started the postamble.  An identification byte, |i|,
comes next; this currently equals~131, as in the preamble.

The |i| byte is followed by four or more bytes that are all equal to
the decimal number 223 (i.e., @'337 in octal). \MF\ puts out four to seven of
these trailing bytes, until the total length of the file is a multiple of
four bytes, since this works out best on machines that pack four bytes per
word; but any number of 223's is allowed, as long as there are at least four
of them. In effect, 223 is a sort of signature that is added at the very end.
@^Fuchs, David Raymond@>

This curious way to finish off a \.{GF} file makes it feasible for
\.{GF}-reading programs to find the postamble first, on most computers,
even though \MF\ wants to write the postamble last. Most operating
systems permit random access to individual words or bytes of a file, so
the \.{GF} reader can start at the end and skip backwards over the 223's
until finding the identification byte. Then it can back up four bytes, read
|q|, and move to byte |q| of the file. This byte should, of course,
contain the value 248 (|post|); now the postamble can be read, so the
\.{GF} reader can discover all the information needed for individual characters.

Unfortunately, however, standard \PASCAL\ does not include the ability to
@^system dependencies@>
access a random position in a file, or even to determine the length of a file.
Almost all systems nowadays provide the necessary capabilities, so \.{GF}
format has been designed to work most efficiently with modern operating systems.
But if \.{GF} files have to be processed under the restrictions of standard
\PASCAL, one can simply read them from front to back. This will
be adequate for most applications. However, the postamble-first approach
would facilitate a program that merges two \.{GF} files, replacing data
from one that is overridden by corresponding data in the other.

@* Reading the font information.
\.{DVI} file format does not include information about character widths
nor the detailed raster information.  \.{DVIIMP} gets this information
directly from the (\.{GF}) files.
@.GF {\rm files}@>

The task facing \.{DVIIMP} is quite different from that facing \.{DVItype}
which has a comparatively easy task in this regard, since it needs only a
few words of information from each font.  We will follow this earlier
program as much as possible in our use of file names and related details
but our data structure will necessarily be somewhat more complicated.

We follow \.{DVItype} to the extent of listing the current number of known
fonts as |nf|. Each known font has an internal number |f|, where |0<=f<nf|;
the external number of this font, i.e., its font identification number in
the \.{DVI} file, is |font_num[f]|, and the external name of this font is
the string that occupies positions |font_name[f]| through
|font_name[f+1]-1| of the array |names|. The latter array consists of
|ASCII_code| characters, and |font_name[nf]| is its first unoccupied
position.

Fonts containing more than 128 characters require special attention since
\.{Imagen} will only accept 0 to 127 as valid character numbers. An easy
way out of this difficulty is to assign |f| numbers starting at the
largest font number (95) that \.{Imagen} will accept (and progressing
downward) as |im_extension| family numbers that can be assigned to the
over 127 characters of large fonts and that can be downloaded with |c-128|
as the \.{Imagen} identification.  A record of this relationship is
maintained in an |im_extension[cur_font]| array.

We will find it necessary, occasionally, to reuse the |mm_store| space
and to make this possible we define a |free_limit| parameter.
This parameter is set initially to |mm_max|. The following
|make_space| procedure is used to free space.
Note that this does not prevent the printing of those glyphs that have
been downloaded but the raster data for those glyphs that have not been
downloaded will have to be reread from the |gf| file should any of these
be subsequently requested.

@p procedure make_space;
var i,j,k,q: integer;
begin
@!debug
print(' overwriting font ');
print_ln(font_order[0]:1,' ');
gubed@/
j:=data_start[font_order[0]];
k:=data_start[font_order[1]];
q:=glyph_ptr[k];
if q>12 then free_limit:=q-1 else free_limit:=mm_size;
for i:=j to k-1 do
    if glyph_ptr[i]>=4 then glyph_ptr[i]:=0; {mark as no longer available}
for i:=0 to max_fonts-1 do font_order[i]:=font_order[i+1];
end;

@ We also follow the \.{DVItype} example of storing the glyph widths
(measured in \.{DVI} units) in a |width| array that is indexed by values
stored in a |data_base| array.  This |data_base| is in turn indexed by the
internal font number and its values point to pseudo starting locations in
the |width| array where the first glyph widths for the fonts would be
stored were there a zero numbered glyph in the font.  The actualy starting
location for each font's data in the |width| table is displaced forward
by |font_bc| where |font_bc| is the lowest character number that is
contained in each particular font.  The values in the |data_base| array
are, of course, also used to access the |pixel_width| values (measured in
pixels) since it will be organized in an identical way to that used with
the |width| table.

Gaining access to the font raster details, stored in |mm_store|, is a
slightly longer process because the spaces occupied by the raster details
will usually vary from glyph to glyph.  We handle this matter by having
yet another indexing stage where the starting location in |mm_store| for
each individual glyph is stored in a |glyph_ptr| array that is accessed,
in turn, by using the same |data_base| value that is used to locate the
|width| and |pixel_width| values.

Normally, this double-indexing recall needs be done but once for
each used glyph since all glyphs are stored internally in the \.{IMAGEN}
on the first occasions when they are used. As will be noted later, we
signal the fact that any particular glyph has been down-loaded by
negating its reference number in the |glyph_ptr| array.

@d char_width_end(#)==#]
@d char_width(#)==width[data_base[#]+char_width_end
@d invalid_width==@'17777777777
@d stow(#)==begin mm_store[m1,m2]:=#;
    if (mm<free_limit) and ((mm+8)>free_limit) then make_space;
    if m2<m2_max then begin incr(m2); incr(mm); end
    else
  begin
  m2:=4; {|-4<m2<4| freed for down-loading and |make_space| signs}
  mm:=mm+5;
  if m1<m1_max then incr(m1) else begin m1:=0; mm:=4; end;
  end;
    end

@<Glob...@>=
@!font_num:array [0..max_fonts] of integer; {external font numbers}
@!font_m_val:array [0..max_fonts] of integer; {overall font magnification}
@!font_name:array [0..max_fonts] of 0..name_size; {starting positions
  of external font names}
@!names:array [0..name_size] of ASCII_code; {characters of names}
@!font_check_sum:array [0..max_fonts] of integer; {check sums}
@!font_scaled_size:array [0..max_fonts] of integer; {scale factors}
@!font_design_size:array [0..max_fonts] of integer; {design sizes}
@!font_space:array [0..max_fonts] of integer; {boundary between ``small''
  and ``large'' spaces}
@!font_bc:array [0..max_fonts] of integer; {beginning characters in fonts}
@!font_ec:array [0..max_fonts] of integer; {ending characters in fonts}
@!data_base:array [0..max_fonts] of integer; {index into font data tables}
@!width:array [0..max_glyphs] of integer; {character widths, in \.{DVI} units}
@!in_width:array[0..255] of integer; {\.{TFM} width data in \.{DVI} units}
@!tfm_check_sum:integer; {check sum found in |tfm_file|}
@!nf:0..max_fonts; {the number of known fonts}
@!nf2: 0..95;  {the lower limit of font extension numbers}
@!im_extension: array[0..max_fonts] of integer; {relating extension numbers}
@!width_ptr:0..max_glyphs; {the number of known character widths}
@!bc,ec:integer; {beginning and ending c in current font}
@!w_byte: array[0..max_char_no, 0..3] of eight_bits; {to hold |width| bytes}
@!gf_ptr: array[0..max_char_no] of integer; {to hold valid glyph indicators}

@ @<Set init...@>=
nf:=0; width_ptr:=0; font_name[0]:=0; font_space[0]:=0;
nf2:=95; {limit to usable font numbers set by Imagen}
for i:=0 to max_fonts do im_extension[i]:=-1; {marked as not assigned}

@ It is, of course, a simple matter to print the name of a given font.

@p procedure print_font(@!f:integer); {|f| is an internal font number}
var k:0..name_size; {index into |names|}
begin if f=nf then print('UNDEFINED!')
@.UNDEFINED@>
else  begin for k:=font_name[f] to font_name[f+1]-1 do
    print(xchr[names[k]]);
  end;
end;

@ The following procedure is used to print the font-name extension as
used on the \.{SAIL} computer at Stanford.  It condenses a possibly 4-digit
number into three characters by using the letters A to Z for the first character
for extensions in the range from 1000 to 3599 and simply reporting an extension
of .GF for those unlikely cases where the value is 3600 or greater.
@^system dependencies@>

@p procedure print_extension(m:integer);
begin
print('.');
if m < 3600 then
    begin
    if m < 1000 then print(xchr[(m div 100)+@'60])
        else print(xchr[(m div 100)+@'67]);
    print(xchr[(m mod 100) div 10+@'60]);
    print(xchr[m mod 10+@'60]);
    end
else print('GF');
end;

@ The global variable |gf_check_sum| is set to the check sum that
appears in the current \.{GF} file.

@<Glob...@>=
@!gf_check_sum:integer; {check sum found in |gf_file|}

@ We will need a number of procedures to extract the necessary inforation
fron a \.{GF} file, assuming that the file has just been successfully
reset so that we are ready to read its first byte.  Only a limited amount
of validity checking of the \.{GF} file will be done since \.{GF} files
are almost always valid, and since the \.{GFtype} utility program has been
specifically designed to diagnose \.{GF} errors. The procedure simply
returns |false| if it detects anything amiss in the \.{GF} data.

Since we are going to defer the creation of an \.{imPRESS} |bgly| command
for each glyph until the first time that it is actually called, we will
now only decipher the |gf| commands far enough to determine if they are to
be saved and to store them away in as compact a form as possible.

As mentioned earlier, raster determining commands are stored in a large
array, |mm_store|.  This information is stored serially, as it is received,
together with 8 bytes of preliminary information that must also be
transmitted. The location of the first byte of information is recorded
in the |glyph_ptr| array.  To insure that this number will always be greater
than 3 (since numbers in the range between -3 and +3 are used as special
signals) we do not use the first 4 cells in |mm_store| (actually, the first
4 cells in each of the four sections into which |mm_store| is divided).
Later, when the glyph is first called for
by the \.{DVI} file, we will generate an appropriate \.{IMAGEN} |bgly|
command and complement the pointer value in the |glyph_ptr| array to show
that this has been done.  Finally, as will be explained in more detail
later, we will have to arrange for the removal of the raster information
for one or more fonts, to make space for other fonts. and we will have to
store a record of this removal.

We will find it convenient to define a |find_gf_postamble| function and a
|read_gf_postamble| procedure.  Since we will have occasion to deal with
parameters associated with the GF commands, we will also define a function
|first_gf_par| analogous to the |first_par| that we defined earlier.

@p function find_gf_postamble:boolean;
var q,@!k: integer;
begin
find_gf_postamble:=true;
gf_post_loc:=gf_length-4;
repeat if gf_post_loc=0 then find_gf_postamble:=false;
move_to_gf_byte(gf_post_loc); k:=gf_byte; decr(gf_post_loc);
until k<>223;
if k<>gf_id_byte then find_gf_postamble:=false;
move_to_gf_byte(gf_post_loc-3); q:=gf_signed_quad;
if (q<0)or(q>gf_post_loc-3) then find_gf_postamble:=false;
move_to_gf_byte(q); k:=gf_byte;
if k<>post then find_gf_postamble:=false;
@!debug
print_ln( ' gf postamble at ',cur_gf_loc:1);
gubed
end;

@ Having found the |gf_postamble|, we must now read it and stow the
data away as as halfwords as required later by \.{IMAGEN}.

@p procedure read_gf_postamble;
var k,l:integer; {loop indices}
@!p,q,@!m,@!c:integer; {general purpose registers}
begin gf_post_loc:=cur_gf_loc-1;
@.gf_postamble starts at byte n@>
p:=gf_signed_quad;
design_size:=gf_signed_quad; check_sum:=gf_signed_quad;@/
hppp:=gf_signed_quad; vppp:=gf_signed_quad;@/
magnification:=hppp/(65536.0*resolution/72.27);
@<Report font specification disagreements@>;
min_m:=gf_signed_quad; max_m:=gf_signed_quad;
min_n:=gf_signed_quad; max_n:=gf_signed_quad;@/
bc:=max_char_no; ec:=0;
  {prepare for a determination in Process the character loc}
@<Clear |w_byte| array@>;
@<Process the character locations in the postamble@>;
while not eof(gf_file) do m:=gf_byte; {to close out file}
end;
@#
function first_gf_par(o:eight_bits):integer;
begin case o of
sixty_four_cases(paint_0): first_gf_par:=o-paint_0;
paint1,skip1,char_loc,char_loc+1,xxx1: first_gf_par:=gf_byte;
paint2,skip2,xxx1+1: first_gf_par:=gf_two_bytes;
paint1+2,skip1+2,xxx1+2: first_gf_par:=gf_three_bytes;
xxx1+3,yyy: first_gf_par:=gf_signed_quad;
boc,boc1,eoc,skip0,no_op,pre,post,post_post,undefined_commands: first_gf_par:=0;
one_sixty_five_cases(new_row_0): first_gf_par:=o-new_row_0;
end;
end;
@#
procedure copy_byte;
var w:eight_bits;
begin
w:=gf_byte; stow(w);
end;
@#
procedure stow_pair(@!w:integer);
begin
stow(w div @"100);
stow(w mod @"100);
end;
@#
procedure stow_signed_pair(@!w:integer);
begin
if w<0 then w:=w+@"10000;
stow(w div @"100);
stow(w mod @"100);
end;

@ @<Report font specification disagreements@>=
if design_size<>font_design_size[cur_font]*16 then
    begin print_nl; print('design sizes for font '); print_font(cur_font);
    print_extension(font_m_val[cur_font]); print(' do not agree. ');
    end;
if (check_sum<>font_check_sum[cur_font]) and (check_sum<>0)
  and (font_check_sum[cur_font]<>0) then
    begin print_nl; print('check sums for font '); print_font(cur_font);
    print_extension(font_m_val[cur_font]); print(' do not agree. ');
    end;
q:=round((resolution*65536/72.27)*(mag/1000.0)*
  font_scaled_size[cur_font]/font_design_size[cur_font]);
if ((q-(q div 100))>hppp) or ((q+(q div 100))<hppp) then
    begin print_nl; print('at size values for font '); print_font(cur_font);
    print_extension(font_m_val[cur_font]);
    print(' disagree by more than one percent. ');
    end;

@ @<Clear |w_byte| array@>=
for k:=0 to max_char_no do
  begin
  for l:=0 to 3 do w_byte[k,l]:=0;
  gf_ptr[k]:=0; {so data of missing glyphs will be made available}
  end;

@ @<Process the character locations in the postamble@>=
repeat k:=gf_byte;
if (k=char_loc) or (k=char_loc+1) then
  begin
  c:=gf_byte;
  if c>max_char_no then abort('Character number too large');
  if c<bc then bc:=c; if c>ec then ec:=c;
  if k=char_loc then
    begin  dx[c]:=gf_signed_quad div 65536; dy:=gf_signed_quad;
    end
  else begin dx[c]:=gf_byte; dy:=0;
    end;
@!debug
  print(' k=',k:1,' c=',c:1,' dx=',dx[c]:1);
gubed@/
  w_byte[c,0]:=gf_byte;
  w_byte[c,1]:=gf_byte;
  w_byte[c,2]:=gf_byte;
  w_byte[c,3]:=gf_byte;
  gf_ptr[c]:=gf_signed_quad; {the |>0| values will mark existing glyphs}
@!debug
  print_ln(' k=',k:1,' gfptr=',gf_ptr[c]:1);
gubed@/
  k:=no_op;
  end;
until k<>no_op;

@ Here is the main information we glean from the postamble together with
some auxiliary parameters.

@<Glob...@>=
@!design_size: integer;
@!hppp, @!vppp: integer;
@!check_sum: integer;
@!gf_post_loc: integer;
@!magnification: real;
@!dx: array [0..max_char_no] of integer;
@!dy: integer; {not used since value should always be zero}
@!total_glyphs:integer; {the total number of glyphs stored in |mm_store|}
@!mm_store:packed array [0..m1_max,4..m2_max] of eight_bits;
  {to store glyph information}
@!mm,@!m1,@!m2:integer; {indices for |mm_store|}
@!free_limit:integer; {|mm| value of last free location in |mm_store|}
@!data_start:array [0..max_fonts] of integer; {|data_base+bc| for fonts}
@!font_order:array [0..max_fonts] of integer; {font numbers in loaded order}
@!gf_prev_ptr: integer; {location of next character}
@!char_code: integer; {current character number}
@!glyph_ptr: array[0..max_glyphs] of integer;
  {pointers to |mm_store|}
@!max_m,@!min_m,@!max_n,@!min_n: integer; {raster bounding parameters}
@!row_count: integer; {used to correct the raster height figure}
@!column_count:integer; {used to accumulate column counts}
@!max_column_count:integer; {used to correct the raster width figure}

@ @<Set init...@>=
for i:=0 to max_glyphs do glyph_ptr[i]:=-1;
      {mark glyphs as not being in the file}
total_glyphs:=0;
mm:=4; m1:=0; m2:=4; {|-4<mm<4| saved for signalling purposes}
free_limit:=mm_max;
for i:=0 to max_fonts do font_order[i]:=-1;

@ A temporary procedure.

@p
@!debug
procedure tabulate;
var i,j,k,l:integer;
begin
print_nl;
print_ln('  Contents of the glyph ptr table');
print('     ');
for j:=0 to 9 do print(j:7);
print_nl;
for i:=0 to 29 do
  begin
  print(i*10:3,' ');
  for j:=0 to 9 do
    begin
    k:=glyph_ptr[10*i+j];
    l:=k div m2_size;
    k:=k mod m2_size;
    print(l:1,',',k:1);
    end;
  print_nl;
  end;
end;
gubed

@ Here is the long awaited |in_gf| routine.

@p function in_gf(@!z:integer):boolean; {input \.{GF} data or return |false|}
label done,restart,
  9997, {go here when the format is bad}
  9998,   {go here when the information cannot be loaded}
  9999;  {go here to exit}
var k:integer; {index for loops}
@!nw:integer; {number of words in the width table}
@!wp:0..max_glyphs; {new value of |width_ptr| after successful input}
@!alpha,@!beta:integer; {quantities used in the scaling computation}
@!c: integer; { used it index character number}
@!o:integer; {used to hold |gf| commands}
@!p:integer; {used to hold |gf| parameter}
@!del_m:integer; {used to hold |gf| parameter}
@!del_n:integer; {used to hold |gf| parameter}
@!mm_save,@!m1_save,@!m2_save:integer; {temp save to allow for corrections}
begin
if not find_gf_postamble then
  begin print_ln(' Trouble with postamble');
  goto 9997;
  end;
read_gf_postamble;
@<Check |width| table and |goto 9997| if there is a problem@>;
@<Convert and store the width values@>;
@<Process the gf preamble@>;
@<Stow all of the glyph-raster info@>;
@!debug
tabulate; {Used to show the start of the |glyph_ptr| array}
print_ln(' glyph-raster done');
gubed@/
width_ptr:=wp;
in_gf:=true; goto 9999;
9997: print_ln('---not loaded, GF file is bad');
@.GF file is bad@>
9998: in_gf:=false;
9999: end;

@ @<Check |width| table and...@>=
font_bc[cur_font]:=bc; font_ec[cur_font]:=ec;
if font_ec[cur_font]<font_bc[cur_font] then
  font_bc[cur_font]:=font_ec[cur_font]+1;
if width_ptr+font_ec[cur_font]-font_bc[cur_font]+1>max_glyphs then
  begin print_ln('---not loaded, DVIIMP needs larger width table');
    goto 9998;
  end;
wp:=width_ptr+font_ec[cur_font]-font_bc[cur_font]+1;
nw:=ec+1-bc;
@!debug
print_ln(' bc=',bc:1,' ec=',ec:1,' nw=',nw:1);
gubed@/
if (nw=0)or(nw>256) then goto 9997;

@ @<Process the gf preamble@>=
open_gf_file;
o:=gf_byte; {fetch the first byte}
if o<>pre then begin
  print_ln(' GF file does not start with |pre|');
  goto 9997;
  end;
o:=gf_byte; {fetch the identification byte}
if o<>gf_id_byte then begin
  print_ln(' id =',o:1,' should be ',gf_id_byte:1);
  goto 9997;
  end;
o:=gf_byte; {fetch the length of the introductory comment}
while o>0 do
  begin decr(o); p:=gf_byte;
  end;

@ An important part of |in_gf| is the width computation, which
involves multiplying the relative widths in the \.{GF} file by the
scaling factor in the \.{DVI} file. This fixed-point multiplication
must be done with precisely the same accuracy by all \.{DVI}-reading programs,
in order to validate the assumptions made by \.{DVI}-writing programs
like \TeX82.

Let us therefore summarize what needs to be done. Each width in a \.{GF}
file appears as a four-byte quantity called a |fix_word|.  A |fix_word|
whose respective bytes are $(a,b,c,d)$ represents the number
$$x=\left\{\vcenter{\halign{$#$,\hfil\qquad&if $#$\hfil\cr
b\cdot2^{-4}+c\cdot2^{-12}+d\cdot2^{-20}&a=0;\cr
-16+b\cdot2^{-4}+c\cdot2^{-12}+d\cdot2^{-20}&a=255.\cr}}\right.$$
(No other choices of $a$ are allowed, since the magnitude of a \.{GF}
dimension must be less than 16.)  We want to multiply this quantity by the
integer~|z|, which is known to be less than $2^{27}$. Let $\alpha=16z$.
If $|z|<2^{23}$, the individual multiplications $b\cdot z$, $c\cdot z$,
$d\cdot z$ cannot overflow; otherwise we will divide |z| by 2, 4, 8, or
16, to obtain a multiplier less than $2^{23}$, and we can compensate for
this later. If |z| has thereby been replaced by $|z|^\prime=|z|/2^e$, let
$\beta=2^{4-e}$; we shall compute
$$\lfloor(b+c\cdot2^{-8}+d\cdot2^{-16})\,z^\prime/\beta\rfloor$$ if $a=0$,
or the same quantity minus $\alpha$ if $a=255$.  This calculation must be
done exactly, for the reasons stated above; the following program does the
job in a system-independent way, assuming that arithmetic is exact on
numbers less than $2^{31}$ in magnitude.

Whereas \.{DVItype} obtained the |pixel_width|s by rounding the |width|
value, we obtain these values from the |dx| parameter associated with the
|char_loc| command.  It should be noted that |width[k]| is the
device-independent width of some character in \.{DVI} units while
|pixel_width[k]| is the corresponding pixel width of that character in an
actual font.

The macro |char_pixel_width| is set up to be analogous to |char_width|.

@d char_pixel_width(#)==pixel_width[data_base[#]+char_width_end

@d pixel_round(#)==round(conv*(#))

@<Glob...@>=
@!pixel_width:array[0..max_glyphs] of integer; {actual character widths,
  in pixels}
@!conv:real; {converts \.{DVI} units to pixels}
@!true_conv:real; {converts unmagnified \.{DVI} units to pixels}
@!numerator,@!denominator:integer; {stated conversion ratio}
@!mag:integer; {magnification factor times 1000}
@!empty_glyph: boolean; {foxing Imagen into accepting an empty glyph}

@ @<Convert and store the width values@>=
@<Replace |z| by $|z|^\prime$ and compute $\alpha,\beta$@>;
data_base[cur_font]:=width_ptr-bc;
data_start[cur_font]:=width_ptr;
wp:=width_ptr+ec-bc+1;
c:=bc;
for k:=width_ptr to wp-1 do begin
  if gf_ptr[c]=0 then begin
     width[k]:=invalid_width; pixel_width[k]:=0;
@!debug
    print(' invalid width for c=',c:1);
gubed
    end
  else begin
    width[k]:=(((((w_byte[c,3]*z)div@'400)
    +(w_byte[c,2]*z))div@'400)+(w_byte[c,1]*z))div beta;
    if (w_byte[c,0]>0) then
      if (w_byte[c,0]<255) then begin
        print_ln(' w byte=',w_byte[c,0]:1);
        goto 9997
        end
      else width[k]:=width[k]-alpha;
    pixel_width[k]:=dx[c];
    end;
@!debug
  print(' dx=',dx[c]:1,' for ',c:1);
  print(' [ ',c:1,']');
gubed@/
  incr(c);
  end;

@ @<Replace |z| by $|z|^\prime$ and compute $\alpha,\beta$@>=
begin alpha:=16;
while z>=@'40000000 do
  begin z:=z div 2; alpha:=alpha+alpha;
  end;
beta:=256 div alpha; alpha:=alpha*z;
end


@ In those few cases (we hope) where a \.{GF} file is not available we
will want to refer to the \.{TFM} file and leave space in the document for
the missing glyphs. The following procedure is used for this purpose.

@p function in_tfm(@!z:integer):boolean; {input \.{TFM} data or return |false|}
label 9997, {go here when the format is bad}
  9998,  {go here when the information cannot be loaded}
  9999;  {go here to exit}
var k:integer; {index for loops}
@!lh:integer; {length of the header data, in four-byte words}
@!nw:integer; {number of words in the width table}
@!wp:0..max_glyphs; {new value of |width_ptr| after successful input}
@!alpha,@!beta:integer; {quantities used in the scaling computation}
begin @<Read past the header data; |goto 9997| if there is a problem@>;
@<Store character-width indices at the end of the |width| table@>;
@<Read and convert the width values, setting up the |in_width| table@>;
@<Move the widths from |in_width| to |width|,
  and append |pixel_width| values@>;
width_ptr:=wp; in_tfm:=true; goto 9999;
9997: print_ln('---not loaded, TFM file is bad');
@.TFM file is bad@>
9998: in_tfm:=false;
9999: end;

@ @<Read past the header...@>=
read_tfm_word; lh:=b2*256+b3;
read_tfm_word; font_bc[cur_font]:=b0*256+b1;
font_ec[cur_font]:=b2*256+b3;
if font_ec[cur_font]<font_bc[cur_font] then
  font_bc[cur_font]:=font_ec[cur_font]+1;
if width_ptr+font_ec[cur_font]-font_bc[cur_font]+1>max_glyphs then
  begin print_ln('---not loaded, DVItype needs larger width table');
@.DVItype needs larger...@>
    goto 9998;
  end;
wp:=width_ptr+font_ec[cur_font]-font_bc[cur_font]+1;
read_tfm_word; nw:=b0*256+b1;
if (nw=0)or(nw>256) then goto 9997;
for k:=1 to 3+lh do
  begin if eof(tfm_file) then goto 9997;
  read_tfm_word;
  if k=4 then
    if b0<128 then tfm_check_sum:=((b0*256+b1)*256+b2)*256+b3
    else tfm_check_sum:=(((b0-256)*256+b1)*256+b2)*256+b3;
  end;

@ @<Store character-width indices...@>=
if wp>0 then for k:=width_ptr to wp-1 do
  begin read_tfm_word;
  if b0>nw then goto 9997;
  width[k]:=b0;
  end;

@ @<Read and convert the width values...@>=
@<Replace |z| by $|z|^\prime$ and compute $\alpha,\beta$@>;
for k:=0 to nw-1 do
  begin read_tfm_word;
  in_width[k]:=(((((b3*z)div@'400)+(b2*z))div@'400)+(b1*z))div beta;
  if b0>0 then if b0<255 then goto 9997
    else in_width[k]:=in_width[k]-alpha;
  end

@ @<Move the widths from |in_width| to |width|,
  and append |pixel_width| values@>=
if in_width[0]<>0 then goto 9997; {the first width should be zero}
data_base[cur_font]:=width_ptr-font_bc[cur_font];
if wp>0 then for k:=width_ptr to wp-1 do
  if width[k]=0 then
    begin width[k]:=invalid_width; pixel_width[k]:=0;
    end
  else  begin width[k]:=in_width[width[k]];
    pixel_width[k]:=pixel_round(width[k]);
    glyph_ptr[k]:=-1;
    end

@ @<Stow all...@>=
@!debug
print_ln(' loading font  ',cur_font:1,'[',m1:1,',',m2:1,'] ');
print((free_limit div m2_size):1,'-',(free_limit mod m2_size):1,' ');
gubed@/
k:=0; while font_order[k]>=0 do incr(k);
font_order[k]:=cur_font; {add this font to ordered list}
repeat gf_prev_ptr:=cur_gf_loc;
@<Pass |no_op|, |xxx| and |yyy| commands@>;
if (o=boc) or (o=boc1) then
  begin
  m1_save:=m1; m2_save:=m2; {for width and height corrections}
  mm_save:=m1*m2_size+m2;  {to be stored in |glyph_ptr| when |c| is known}
  if o=boc then  begin @<Stow the |boc| information@> end
  else begin @<Stow the |boc1| information@>;
  end;
glyph_ptr[data_base[cur_font]+c]:=mm_save; {save glyph start address}
@!debug
print(' (',cur_font:1,')',c:1,'[',m1:1,',',m2:1,']');
gubed@/
if empty_glyph then
    begin
    glyph_ptr[data_base[cur_font]+c]:=-1;
    empty_glyph:=false;
    end;
  @<Stow the glyph details@>;
  end;
until o=post;

@ As noted earlier, the parameters associated with the |boc| command are
received from the |gf| file as |signed_quad|s and are converted into the
form needed by the \.{IMAGEN} and then stowed into |mm_store| as
|signed_pairs|, in keeping with the restricted range of value that the
\.{IMAGEN} allows.

@ @<Stow the |boc| information@>=
incr(total_glyphs);
char_code:=gf_signed_quad;
p:=gf_signed_quad;
c:=char_code mod 256;
if c<0 then c:=c+256;
if c>127 then if im_extension[cur_font]=-1 then
    begin
    if nf2=nf then
  begin
  print_ln(' ---Out of font storage space');
  goto 9998;
  end;
    im_extension[cur_font]:=nf2; decr(nf2);
    end;
@!debug
print(' boc[',c:1,']');
if char_code<>c then
  print(' in family ',(char_code-c) div 256 : 1);
gubed@/
min_m:=gf_signed_quad; max_m:=gf_signed_quad;
min_n:=gf_signed_quad; max_n:=gf_signed_quad;
if max_m-min_m<=0 then empty_glyph:=true else empty_glyph:=false;
stow_signed_pair(max_m-min_m+1); {width}
stow_signed_pair(-min_m); {left offset}
stow_signed_pair(max_n-min_n+1); {height}
stow_signed_pair(max_n); {top offset}

@  Similarly, the one byte parameters associated with the
|boc1| command are converted into the required form and stored into
|mm_store| as |signed_pairs|.

@ @<Stow the |boc1| information@>=
incr(total_glyphs);
char_code:=gf_byte;
p:=-1;
c:=char_code;
if c>127 then if im_extension[cur_font]=-1 then
    begin
    if nf2=nf then
  begin
  print_ln(' ---Out of font storage space');
  goto 9998;
  end;
    im_extension[cur_font]:=nf2; decr(nf2);
    end;
@!debug
print_nl; print_nl;
print(' boc1[',c:1,']');
gubed@/
del_m:=gf_byte; max_m:=gf_byte;
del_n:=gf_byte; max_n:=gf_byte;
if del_m<=0 then empty_glyph:=true else empty_glyph:=false;
stow_signed_pair(del_m+1);
stow_signed_pair(del_m-max_m);
stow_signed_pair(del_n+1);
stow_signed_pair(max_n);
@!debug
print_ln(' c=',c:1,' del_m+1=',del_m+1:1,' del_m-max_m=',del_m-max_m:1,
' del_n+1=',del_n+1:1,' max_n=',max_n:1);
gubed@/

@ Having deciphered a |boc| command or a |boc1| command and having stored
the necessary information that precedes the mask information in a |bgly|
command, we can limit the variety of commands that are to be stored to
only those commands actually needed to specify the mask portion of a
|bgly| command.

@ @<Pass |no_op|, |xxx| and |yyy| commands@>=
repeat
  o:=gf_byte;
  if (o=yyy) then begin
    p:=first_gf_par(o); o:=no_op;
    end
  else if (o>=xxx1) and (o<=xxx1+3) then begin
    p:=first_gf_par(o);
    while p>0 do begin q:=gf_byte; decr(p); end;
    o:=no_op;
    end;
until o<>no_op;

@ @<Stow the glyph details@>=
max_column_count:=0; {set for the glyph}
column_count:=0;
row_count:=0;
while true do begin
  restart:
  o:=gf_byte;
  case o of
  sixty_four_cases(paint_0): begin
    column_count:=column_count+o-paint_0;
{|print_ln(' s0 ',o:1);|}
    end;
  paint1: begin
    stow(o); o:=gf_byte; column_count:=column_count+o;
{|print_ln(' s1 ',o:1);|}
    end;
  paint2: begin
    stow(o); o:=gf_byte;
    stow(o); column_count:=column_count+256*o;
    o:=gf_byte; column_count:=column_count+o;
    end;
  skip0:  begin
    incr(row_count);
    if column_count>max_column_count then
      max_column_count:=column_count;
    column_count:=0;
    end;
  skip1:  begin
    stow(o); o:=gf_byte;
    row_count:=row_count+1+o;
    if column_count>max_column_count then
      max_column_count:=column_count;
    column_count:=0;
    end;
  one_sixty_five_cases(new_row_0): begin
    incr(row_count);
    if column_count>max_column_count then
      max_column_count:=column_count;
    column_count:=o-new_row_0;
    end;
  xxx1: begin
    o:=gf_byte;
    while o>0 do begin q:=gf_byte; decr(o); end;
    goto restart;
    end;
  yyy: begin
    o:=5;
    while o>0 do begin q:=gf_byte; decr(o); end;
    goto restart;
    end;
  no_op:  goto restart;
  eoc: goto done;
  othercases
    print_ln('! Unexpected command: ',o:1)
  endcases;
  stow(o);
  end;
done:
stow(o); {this should be an |eoc| command}
{|print_ln('S EOC');|}
if column_count>0 then incr(row_count); {last row isn't terminated}
if column_count>max_column_count then max_column_count:=column_count;
mm_store[m1_save,m2_save]:=max_column_count div 256;
if m2_save<m2_max then incr(m2_save) else
    begin m2_save:=4; if m1_save<m1_max then incr(m1_save)
        else m1_save:=0;
    end;
mm_store[m1_save,m2_save]:=max_column_count mod 256;
if m2_save+3<m2_size then m2_save:=m2_save+3 else
    begin m2_save:=m2_save+7-m2_size; if m1_save<m1_max then incr(m1_save)
  else m1_save:=0;
    end;
mm_store[m1_save,m2_save]:=row_count div 256;
if m2_save<m2_max then incr(m2_save) else
    begin m2_save:=4; if m1_save<m1_max then incr(m1_save)
        else m1_save:=0;
    end;
mm_store[m1_save,m2_save]:=row_count mod 256;

@* Optional modes of output.
As normally compiled, the |dialog| routine is not called and \.{DVIIMP}
operated in the |errors_only| mode. One can remove the brackets ( {|...|} )
that surround the |dialog| call in the main program module and
\.{DVIIMP} will then print different quantities of information based on some
options that the user must specify: The |out_mode| level is set to one of
four values (|errors_only|, |terse|, |verbose|, |the_works|), giving
different degrees of output; and the typeout can be confined to a
restricted subset of the pages by specifying the desired starting page and
the maximum number of pages. Furthermore there is an option to specify the
resolution of an assumed discrete output device, so that pixel-oriented
calculations will be shown; and there is an option to override the
magnification factor that is stated in the \.{DVI} file.

The starting page is specified by giving a sequence of 1 to 10 numbers or
asterisks separated by dots. For example, the specification `\.{1.*.-5}'
can be used to refer to a page output by \TeX\ when $\.{\\count0}=1$
and $\.{\\count2}=-5$. (Recall that |bop| commands in a \.{DVI} file
are followed by ten `count' values.) An asterisk matches any number,
so the `\.*' in `\.{1.*.-5}' means that \.{\\count1} is ignored when
specifying the first page. If several pages match the given specification,
\.{DVIIMP} will begin with the earliest such page in the file. The
default specification `\.*' (which matches all pages) therefore denotes
the page at the beginning of the file.

When the modified \.{DVIIMP} begins, it engages the user in a brief dialog
so that the options will be specified. This part of \.{DVIIMP} requires
nonstandard \PASCAL\ constructions to handle the online interaction; so it
may not be easy to allow for this dialog,
and if so, one should simply to stick to the
default options (starting page `\.*' (but printed in
reverse order),
|max_pages=1000|, |resolution=300.0|, |new_mag=0|).  On other hand, the
system-dependent routines that are needed are not complicated, so it should
not be terribly difficult to introduce them.
@^system dependencies@>

@<Glob...@>=
@!max_pages:integer; {at most this many |bop..eop| pages will be printed}
@!resolution:real; {pixels per inch}
@!new_mag:integer; {if positive, overrides the postamble's magnification}

@ The starting page specification is recorded in two global arrays called
|start_count| and |start_there|. For example, `\.{1.*.-5}' is represented
by |start_there[0]=true|, |start_count[0]=1|, |start_there[1]=false|,
|start_there[2]=true|, |start_count[2]=-5|.
We also set |start_vals=2|, to indicate that count 2 was the last one
mentioned. The other values of |start_count| and |start_there| are not
important, in this example.

@<Glob...@>=
@!start_count:array[0..9] of integer; {count values to select starting page}
@!start_there:array[0..9] of boolean; {is the |start_count| value relevant?}
@!start_vals:0..9; {the last count considered significant}
@!count:array[0..9] of integer; {the count values on the current page}

@ @<Set init...@>=
max_pages:=1000; start_vals:=0; start_there[0]:=false; new_mag:=0;

@ Here is a simple subroutine that tests if the current page might be the
starting page.

@p function start_match:boolean; {does |count| match the starting spec?}
var k:0..9;  {loop index}
@!match:boolean; {does everything match so far?}
begin match:=true;
for k:=0 to start_vals do
  if start_there[k]and(start_count[k]<>count[k]) then match:=false;
start_match:=match;
end;

@ The |input_ln| routine waits for the user to type a line at his or her
terminal; then it puts ASCII-code equivalents for the characters on that line
into the |buffer| array. The |term_in| file is used for terminal input,
and |term_out| for terminal output.
@^system dependencies@>

@<Glob...@>=
@!buffer:array[0..terminal_line_length] of ASCII_code;
@!term_in:text_file; {the terminal, considered as an input file}
@!term_out:text_file; {the terminal, considered as an output file}

@ Since the terminal is being used for both input and output, some systems
need a special routine to make sure that the user can see a prompt message
before waiting for input based on that message. (Otherwise the message
may just be sitting in a hidden buffer somewhere, and the user will have
no idea what the program is waiting for.) We shall invoke a system-dependent
subroutine |update_terminal| in order to avoid this problem.
@^system dependencies@>

@d update_terminal == break(term_out) {empty the terminal output buffer}

@ During the dialog, \.{DVIIMP} will treat the first blank space in a
line as the end of that line. Therefore |input_ln| makes sure that there
is always at least one blank space in |buffer|.
@^system dependencies@>

@p procedure input_ln; {inputs a line from the terminal}
var k:0..terminal_line_length;
begin update_terminal; reset(term_in);
if eoln(term_in) then read_ln(term_in);
k:=0;
while (k<terminal_line_length)and not eoln(term_in) do
  begin buffer[k]:=xord[term_in^]; incr(k); get(term_in);
  end;
buffer[k]:=" ";
end;

@ The global variable |buf_ptr| is used while scanning each line of input;
it points to the first unread character in |buffer|.

@<Glob...@>=
@!buf_ptr:0..terminal_line_length; {the number of characters read}

@ Here is a routine that scans a (possibly signed) integer and computes
the decimal value. If no decimal integer starts at |buf_ptr|, the
value 0 is returned. The integer should be less than $2^{31}$ in
absolute value.

@p function get_integer:integer;
var x:integer; {accumulates the value}
@!negative:boolean; {should the value be negated?}
begin if buffer[buf_ptr]="-" then
  begin negative:=true; incr(buf_ptr);
  end
else negative:=false;
x:=0;
while (buffer[buf_ptr]>="0")and(buffer[buf_ptr]<="9") do
  begin x:=10*x+buffer[buf_ptr]-"0"; incr(buf_ptr);
  end;
if negative then get_integer:=-x @+ else get_integer:=x;
end;

@ The selected options are put into global variables by the |dialog|
procedure, which is called just as \.{DVIIMP} begins.
@^system dependencies@>

@p procedure dialog;
label 2,3,4,5;
var k:integer; {loop variable}
begin rewrite(term_out); {prepare the terminal for output}
write_ln(term_out,banner);
@<Determine the desired |start_count| values@>;
@<Determine the desired |max_pages|@>;
@<Determine the desired |resolution|@>;
@<Determine the desired |new_mag|@>;
@<Print all the selected options@>;
end;

@ @<Determine the desired |start...@>=
2: write(term_out,'Starting page (default=*): ');
start_vals:=0; start_there[0]:=false;
input_ln; buf_ptr:=0; k:=0;
if buffer[0]<>" " then
  repeat if buffer[buf_ptr]="*" then
    begin start_there[k]:=false; incr(buf_ptr);
    end
  else  begin start_there[k]:=true; start_count[k]:=get_integer;
    end;
  if (k<9)and(buffer[buf_ptr]=".") then
    begin incr(k); incr(buf_ptr);
    end
  else if buffer[buf_ptr]=" " then start_vals:=k
  else  begin write(term_out,'Type, e.g., 1.*.-5 to specify the ');
    write_ln(term_out,'first page with \count0=1, \count2=-5.');
    goto 2;
    end;
  until start_vals=k

@ @<Determine the desired |max_pages|@>=
3: write(term_out,'Maximum number of pages (default=1000000): ');
max_pages:=1000000; input_ln; buf_ptr:=0;
if buffer[0]<>" " then
  begin max_pages:=get_integer;
  if max_pages<=0 then
    begin write_ln(term_out,'Please type a positive number.');
    goto 3;
    end;
  end

@ @<Determine the desired |resolution|@>=
4: write(term_out,'Assumed device resolution');
write(term_out,' in pixels per inch (default=300/1): ');
resolution:=300.0; input_ln; buf_ptr:=0;
if buffer[0]<>" " then
  begin k:=get_integer;
  if (k>0)and(buffer[buf_ptr]="/")and
    (buffer[buf_ptr+1]>"0")and(buffer[buf_ptr+1]<="9") then
    begin incr(buf_ptr); resolution:=k/get_integer;
    end
  else  begin write(term_out,'Type a ratio of positive integers;');
    write_ln(term_out,' (1 pixel per mm would be 254/10).');
    goto 4;
    end;
  end

@ @<Determine the desired |new_mag|@>=
5: write(term_out,'New magnification (default=0 to keep the old one): ');
new_mag:=0; input_ln; buf_ptr:=0;
if buffer[0]<>" " then
  if (buffer[0]>="0")and(buffer[0]<="9") then new_mag:=get_integer
  else  begin write(term_out,'Type a positive integer to override ');
    write_ln(term_out,'the magnification in the DVI file.');
    goto 5;
    end

@ After the dialog is over, we print the options so that the user
can see what \.{DVIIMP} thought was specified.

@<Print all the selected options@>=
print_ln('Options selected:');
@.Options selected@>
print('  Starting page = ');
for k:=0 to start_vals do
  begin if start_there[k] then print(start_count[k]:1)
  else print('*');
  if k<start_vals then print('.')
  else print_ln(' ');
  end;
print_ln('  Maximum number of pages = ',max_pages:1);
print_ln('  Resolution = ',resolution:12:8,' pixels per inch');
if new_mag>0 then print_ln('  New magnification factor = ',new_mag/1000:8:3)

@* Identifying and loading fonts.
\.{DVIIMP} stores the raster information relating to the glyphs that it
uses in a large |mm_store| array and stores the location of these rasters
and information relating to their state in a |glyph_ptr| array.  Additional
|width| and |pixel_width| information is stored in still other arrays.

It is usually not possible to provide a large enough |mm_store| space
for all of the fonts that may be used in some documents.  \.{DVIIMP}
provides the facility for removing fonts from |mm_store| to make space for
additional fonts and then for restoring the removed fonts if this becomes
necessary.

The general procedure is to
read the \.{DVI} postamble first to get the desired |fnt_def1|
information and to store this identifying information initially without
storing the font rasters.  An array |font_state[f]| is used to keep a
record of the state of all fonts with the values set to 0 when the font
identifying information is read.  Later, when a |fnt_num| command is
encountered in the body of the \.{DVI} file, the rasters for the entire
font are read in and the |font_state| value for this font is changed to 1.
However, glyphs are only downloaded as they are needed for the first time.

The location and state for each individual glyph in all the fonts used is
kept in the |glyph_ptr| array.  This array is initially set to -1,
indicating that the referenced glyphs either do not exist or that they
have not yet been read into the |mm_store| memory.  The individual glyph
pointers are then set to positive values (actually, greater than 3) when
the font rasters are read in, recording the position in the |mm_store|
where the glyph is stored. These numbers are negated when each individual
glyph is downloaded.  Finally, if it becomes necessary to remove rasters
to make space for other fonts, the positive |glyph_ptr| values for all
glyphs of the removed fonts are set to zero without touching the negative
pointer values (which still indicate the downloaded or non-existant states
of the glyphs in question).

Removing the rasters for the downloaded  glyphs does not in any way prevent the
continued use of these particular glyphs and no effort is made to reload any
particular font until a request is encountered for a removed non-down-loaded
glyph, as signalled by encountering a 0 value in the |glyph_ptr| array. At
this time, only the non-down-loaded glyphs of the reloaded font are restored,
with a possible substantial reduction in the space requirements as compared
with the font's initial needs, since most of the more commonly used
glyphs may have already been downloaded.

A number of different utility procedures and functions will be needed.

@<Glob...@>=
@!font_state:array[0..max_fonts] of integer; {0 unloaded, 1 loaded}
@!font_a_val:array[0..max_fonts] of integer; {length of directory name}
@!font_l_val:array[0..max_fonts] of integer; {length of font name}
@!scale_val:array [0..12] of integer; {table of preferred font scale values}

@ @<Set init...@>=
scale_val[0]:=round(1.0954*resolution);
jj:=1.0;
for i:=1 to 7 do
  begin jj:=1.2*jj; scale_val[i]:=round(jj*resolution);
@!debug
  print_ln('  i=',i:1,' jj=',jj:1,' scale val=',scale_val[i]:1);
gubed
  end;
scale_val[8]:=4*round(resolution);
  {magnifications of 4000 and 5000 are sometines used}
scale_val[9]:=5*round(resolution);
scale_val[10]:=6*round(resolution);
scale_val[11]:=7*round(resolution);
scale_val[12]:=8*round(resolution);

@ A minor problem in specifying the sizes of scaled fonts arises because
of the fact that \.{\\magstep} definitions are in terms of the rounded
values based on the magnification times 1000.  For example, one will get
different values for 1)~a magnification of 1200 as applied to a font
scaled \.{\\magstep4}, and for 2)~a magnification of 1000 as applied to a
font scaled \.{\\magstep5}.  The following table and function provides the
mechanism for resolving these differences by identifying the nearest match
in terms of the overall actual magnification times the resolution. At
\.{SAIL}, this figure is used as the file-name extension for standard
\.{GF} files.  @^system dependencies@>

@p function reconcile_scale(m:integer):integer;
label done;
var i:0..12;
begin
reconcile_scale:=m;
for i:=0 to 12 do
  if abs(m-scale_val[i]) < abs(m-scale_val[i+1]) then
    begin
    if abs(m-scale_val[i])<4 then reconcile_scale:=scale_val[i];
    goto done;
    end;
done: end;

@ The following subroutine does the necessary things when a \\{fnt\_def}
command is being processed in the postamble.

@p procedure identify_font(@!e:integer); {|e| is an external font number}
var f:0..max_fonts;
@!p:integer; {length of the area/directory spec}
@!n:integer; {length of the font name proper}
@!c,@!q,@!d:integer; {check sum, scaled size, and design size}
@!k:0..name_size; {indices into |names|}
@!m: integer; {available for use in |mag| effect caculations}
begin if nf=max_fonts then abort('DVIIMP capacity exceeded (max fonts=',
    max_fonts:1,')!');
@.DVIIMP capacity exceeded...@>
font_num[nf]:=e; f:=0;
while font_num[f]<>e do incr(f);
@<Read the font parameters into position for font |nf|@>;
@<Verify |font_scaled_size| and |font_design_size| for size@>;
font_state[nf]:=0; {font identified but not read in}
font_space[nf]:=q div 6; {this is a 3-unit ``thin space''}
incr(nf); {signalling completion of identification}
font_space[nf]:=0; {for |out_space| and |out_vmove|}
end;

@ @<Read the font parameters into position for font |nf|...@>=
c:=signed_quad; font_check_sum[nf]:=c;@/
q:=signed_quad; font_scaled_size[nf]:=q;@/
d:=signed_quad; font_design_size[nf]:=d;@/
p:=get_byte; font_a_val[nf]:=p;@/
n:=get_byte; font_l_val[nf]:=n;@/
if font_name[nf]+n+p>name_size then
  abort('DVIIMP capacity exceeded (name size=',name_size:1,')!');
@.DVIIMP capacity exceeded...@>
font_name[nf+1]:=font_name[nf]+n+p;
if n+p=0 then abort(' null n+p ')
@.null n+p@>
else for k:=font_name[nf] to font_name[nf+1]-1 do names[k]:=get_byte;
m:=round((0.3*mag*q)/d);
if (m>=round(1.05*resolution)) and (m<1500) then m:=reconcile_scale(m);
font_m_val[nf]:=m;
@!debug
incr(nf);
print_font(nf-1);
print('.',m:1,' ');
print_ln(' e=',e:1,' f=',nf:1,' c=',c:1,' q=',q:1,' d=',d:1,
  ' p=',p:1,' n=',n:1);
decr(nf);
gubed

@ @<Verify |font_scaled_size| and |font_design_size| for size@>=
if (q<=0)or(q>=@'1000000000) then
    print('---may not load, bad scale (',q:1,')!')
@.bad scale@>
  else if (d<=0)or(d>=@'1000000000) then
    print('---may not load, bad design size (',d:1,')!');
@.bad design size@>

@ It will be desirable to skip over the |fnt_def1| commands that are found in
the body of the \.{DVI} file as our method of reading the pages in reverse
order makes it impractical for us to use them.

@p procedure skip_it; {to bypass the |fnt_def1| commands in the body}
var i,j,k: integer;
begin
for i:=1 to 13 do j:=get_byte;
j:=j+get_byte;
if j>0 then for i:=1 to j do k:=get_byte;
end;

@ We will have occasion to call the following from two different locations.

@p procedure get_gf_file;
var
@!p:integer; {length of the area/directory spec}
@!n:integer; {length of the font name proper}
@!r:0..name_length; {index into |cur_name|}
@!k:0..name_size; {indices into |names|}
@!m: integer; {available for use in |mag| effect caculations}
begin
m:=font_m_val[cur_font];
p:=font_a_val[cur_font];
n:=font_l_val[cur_font];
@<Move font name into the |cur_name| string@>;
@!debug
print_font(cur_font); print('.',m:1);
print('(',cur_font:1,') ');
gubed@/
open_gf_file;

if eof(gf_file) then
    begin
    print_nl;
    print_font(cur_font); print_extension(m);
@!debug
    print('(',cur_font:1,') ');
gubed@/
    print(' not found');
    @<Move font name into the |cur_tfm_name| string@>;
    open_tfm_file;
    if eof(tfm_file) then
  begin
  print(' and there is no |tfm| file ');
  font_state[cur_font]:=-2;
  end
    else
  begin
  print(', characters will be left blank.');
  font_state[cur_font]:=2;
  end;
    end;
end;

@ If |p=0|, i.e., if no font directory has been specified, \.{DVIIMP}
is supposed to use the default font directory, which is a
system-dependent place where the standard fonts are kept.
The string variable |default_directory| contains the name of this area.
@^system dependencies@>

@d default_directory_name=='TeXGFs:' {change this to the correct name}
@d default_directory_name_length=7 {change this to the correct length}
@d dflt_tfm_directory_name=='TeXfonts:' {change this to the correct name}
@d dflt_tfm_directory_name_length=9 {change this to the correct length}

@<Glob...@>=
@!default_directory:packed array[1..default_directory_name_length] of char;
@!dflt_tfm_directory:packed array[1..dflt_tfm_directory_name_length] of char;

@ @<Set init...@>=
default_directory:=default_directory_name;
dflt_tfm_directory:=dflt_tfm_directory_name;

@ The string |cur_name| is supposed to be set to the external name of the
\.{GF} file for the current font. This usually means that we need to
prepend the name of the default directory, and
to append the suffix `\.{.GF}'. Furthermore, we change lower case letters
to upper case, since |cur_name| is a \PASCAL\ string.
@^system dependencies@>

@<Move font name into the |cur_name| string@>=
for k:=1 to name_length do cur_name[k]:=' ';
if p=0 then
  begin for k:=1 to default_directory_name_length do
    cur_name[k]:=default_directory[k];
  r:=default_directory_name_length;
  end
else r:=0;
for k:=font_name[cur_font] to font_name[cur_font+1]-1 do
  begin incr(r);
  if r+4>name_length then
    abort('DVIIMP capacity exceeded (max font name length=',
      name_length:1,')!');
@.DVIIMP capacity exceeded...@>
  if (names[k]>="a")and(names[k]<="z") then
      cur_name[r]:=xchr[names[k]-@'40]
  else cur_name[r]:=xchr[names[k]];
  end;
cur_name[r+1]:='.'; cur_name[r+2]:='G'; cur_name[r+3]:='F';
{|cur_name[r+4]:='M';|}

@ Normally, we only need to reference the \.{GF} files.  On those
occasions when no \.{GF} file is to be found we will want to obtain the
glyph widths from a \.{TFM} file.
The following module takes care of setting the external name of this
\.{TFM} file.

@<Move font name into the |cur_tfm_name| string@>=
for k:=1 to name_length do cur_tfm_name[k]:=' ';
if p=0 then
  begin for k:=1 to dflt_tfm_directory_name_length do
    cur_tfm_name[k]:=dflt_tfm_directory[k];
  r:=dflt_tfm_directory_name_length;
  end
else r:=0;
for k:=font_name[cur_font] to font_name[cur_font+1]-1 do
  begin incr(r);
  if r+4>name_length then
    abort('DVIIMP capacity exceeded (max font name length=',
      name_length:1,')!');
@.DVIIMP capacity exceeded...@>
  if (names[k]>="a")and(names[k]<="z") then
      cur_tfm_name[r]:=xchr[names[k]-@'40]
  else cur_tfm_name[r]:=xchr[names[k]];
  end;
cur_tfm_name[r+1]:='.'; cur_tfm_name[r+2]:='T';
cur_tfm_name[r+3]:='F'; cur_tfm_name[r+4]:='M';

@ We now come to the routines for reloading a font that has been removed.

@p procedure reload_font;
label done, restart;
var k:integer; {index for loops}
@!c: integer; { used it index character number}
@!o:integer; {used to hold |gf| commands}
@!p:integer; {used to hold |gf| parameter}
@!a:integer; {used to hold |gf| parameter}
@!del_m:integer; {used to hold |gf| parameter}
@!del_n:integer; {used to hold |gf| parameter}
@!mm_save,@!m1_save,@!m2_save:integer; {to allow corrections}
begin
get_gf_file;
@<Skip over the preamble@>;
@<Restow glyph rasters that have not been downloaded@>;
font_state[cur_font]:=1; {signalling that font is loaded}
end;

@ @<Skip over the preamble@>=
o:=gf_byte; {fetch the first byte}
o:=gf_byte; {fetch the identification byte}
o:=gf_byte; {fetch the length of the introductory comment}
while o>0 do
  begin decr(o); p:=gf_byte;
  end;

@ @<Restow glyph rasters that have not been downloaded@>=
k:=0; while font_order[k]>=0 do incr(k);
font_order[k]:=cur_font; {add this font to ordered list}
repeat gf_prev_ptr:=cur_gf_loc;
@<Pass |no_op|, |xxx| and |yyy| commands@>;
if (o=boc) or (o=boc1) then begin
  if o=boc then @<Read the |boc| information@>
  else @<Read the |boc1| information@>;
@!debug
  print(' c=',c:1);
gubed
  if glyph_ptr[data_base[cur_font]+c]<0 then
    @<Pass over the raster details@> {glyph has been downloaded}
  else begin
    mm_save:=mm; m1_save:=m1; m2_save:=m2;
      {for possible width and height corrections}
    glyph_ptr[data_base[cur_font]+c]:=m1*m2_size+m2;
      {save glyph starting address}
@!debug
print(' (',cur_font:1,')',c:1,'[',m1:1,',',m2:1,']');
gubed@/
    @<Stow the |boc| or |boc1| information@>;
    @<Stow the glyph details@>;
    end;
  end;
until o=post;

@ @<Read the |boc| information@>=
begin
char_code:=gf_signed_quad;
p:=gf_signed_quad;
c:=char_code mod 256;
if c<0 then c:=c+256;
@!debug
print('[',c:1,']');
if char_code<>c then
  print(' in family ',(char_code-c) div 256 : 1);
gubed@/
min_m:=gf_signed_quad; max_m:=gf_signed_quad;
min_n:=gf_signed_quad; max_n:=gf_signed_quad;
del_m:=max_m-min_m;
del_n:=max_n-min_n;
end

@ @<Read the |boc1| information@>=
begin
char_code:=gf_byte;
p:=-1;
c:=char_code;
del_m:=gf_byte; max_m:=gf_byte;
del_n:=gf_byte; max_n:=gf_byte;
min_m:=max_m-del_m;
end

@ @<Stow the |boc| or |boc1| information@>=
stow_signed_pair(del_m+1);
stow_signed_pair(-min_m); {this is the initial |m| value}
stow_signed_pair(del_n+1);
stow_signed_pair(max_n);

@ @<Pass over the raster details@>= {this glyph has been downloaded}
begin
o:=gf_byte;
while o<>eoc do begin
  a:=cur_gf_loc;
  while (o<paint1) or (o=skip0) or ((o>=new_row_0) and (o<=new_row_164)) do
    o:=gf_byte;
  if (o=paint1) or (o=skip1) then begin
          p:=gf_byte; o:=gf_byte;
    end
  else if (o=paint2) or (o=skip2) then begin
          p:=gf_byte; p:=gf_byte; o:=gf_byte;
    end
  else if o=xxx1 then begin  {\MF\ will not do this but it is allowed}
    p:=gf_byte;
    while p>0 do begin q:=gf_byte; decr(p); end;
    o:=gf_byte;
    end;
  end;
end

@* Downloading glyph information.
As mentioned earlier, the information for each used glyph (as stored in
the |mm_store| array) will have to be translated and downloaded by means of
an |im_bgly| command on the first occasion that the glyph is to be
printed.  The following definitions and tables will assist in this work:

@d advance_q==begin if q2<m2_max then incr(q2)
    else
  begin
  q2:=4; {|-4<m2<4| is left free for other uses}
   if q1<m1_max then incr(q1) else q1:=0;
  end;
    end

@<Glob...@>=
@!atab:array[1..8] of integer; {used to locate asterisks if showing pattern}
@!btab:array[0..8] of integer; {used to define bits to blacken}

@ @<Set initial values@>=
atab[1]:=128;
btab[0]:=255;
for i:=2 to 8 do atab[i]:=atab[i-1] div 2;
for i:=1 to 8 do btab[i]:=btab[i-1] div 2;

@ We will also have occasion to read halfwords from |mm_store|.

@p function read_signed_pair(mm_tmp:integer):integer;
   {returns the next two bytes, signed}
var a,b:eight_bits;
m1_tmp,m2_tmp:integer;
begin
m1_tmp:=mm_tmp div (m2_size); m2_tmp:=mm_tmp mod (m2_size);
a:=mm_store[m1_tmp,m2_tmp];
if m2_tmp<m2_max then incr(m2_tmp)
else
    begin m2_tmp:=4;
    if m1_tmp<m1_max then incr(m1_tmp) else m1_tmp:=0; {wrap-around assumed}
    end;
b:=mm_store[m1_tmp,m2_tmp];
if a<128 then read_signed_pair:=(a*256)+b
else read_signed_pair:=(a-256)*256+b;
end;

@ For debugging purposes it may be desirable to display the actual glyph
raster while it is being downloaded.

@p procedure show_it(v:integer);
var i: integer;
begin
for i:=1 to 8 do
  if v>=atab[i] then
    begin
    print('*'); v:=v-atab[i];
    end else print('.');
end;

@ And here is the procedure that does the actual downloading.

@p procedure do_im_bgly(@!c:integer);
var b,dis,n,i,q,val,w,real_w:integer;
q1,q2: integer;
bytes_required:integer; {bytes per row for current glyph}
begin
im_byte(im_bgly);
if c<128 then im_halfword(cur_font*128+c) {normal family and member name}
else im_halfword(im_extension[cur_font]*128+c-128);
  {Imagen's family and member name}
q:=pixel_width[data_base[cur_font]+c];
im_halfword(q);         {advance width}
q:=glyph_ptr[data_base[cur_font]+c];
   {get starting location in |mm_store|}
q1:= q div (m2_size); q2:=q mod (m2_size);
@!debug
print('   im(',cur_font:1,')',c:1,'[',q1:1,',',q2:1,']');
gubed@/
bytes_required:=((read_signed_pair(q)+7)div 8);
for i:=1 to 8 do
    begin
    im_byte(mm_store[q1,q2]);
    advance_q;
    end;    {width, left offset, height,top offset}
n:=0; dis:=0; val:=0; w:=0; real_w:=0;
while real_w<>eoc do begin
  @<Translate a sequence of paint commands@>;
  w:=mm_store[q1,q2];
  real_w:=w;
  if (w>=new_row_0) and (w<=new_row_164) then
    @<Translate a |new_row| command@>
  else if (w>=skip0) and (w<new_row_0) then
    @<Translate a |skip| command@>
else if real_w<>eoc then
print_ln('BAD D L COM ',w:1,' (',cur_font:1,')',c:1,'[',q1:1,',',q2:1,']');
  end;
{|print_ln('G EOC');|}
glyph_ptr[data_base[cur_font]+c]:=-glyph_ptr[data_base[cur_font]+c];
         {to show that the glyph has been downloaded}
end;

@ @<Translate a sequence of paint commands@>=
while n<bytes_required do begin
  if dis=0 then begin
    @<Get two paint commands@>; dis:=w+b;
    end;
  while dis<8 do begin
    val:=val+btab[w]-btab[dis];
    @<Get two paint commands@>; w:=dis+w; dis:=w+b;
    end;
  if w>=8 then w:=w-8
  else begin
    val:=val+btab[w]; w:=0;
    end;
  im_byte(val); dis:=dis-8;
  val:=0; incr(n);
  end

@ @<Translate a |new_row| command@>=
begin
w:=w-new_row_0;
advance_q;
b:=mm_store[q1,q2];
if b<=paint2 then begin
  advance_q;
  if b=paint2 then
    begin b:=mm_store[q1,q2]; advance_q;
    b:=b*256+mm_store[q1,q2]; advance_q;
    end
  else if b=paint1 then begin
    b:=mm_store[q1,q2]; advance_q;
    end;
  n:=0; dis:=w+b; val:=0;
  end
else begin b:=0; w:=8*bytes_required; {a safety measure}
     end;
n:=0; dis:=w+b; val:=0;
end

@ @<Translate a |skip| command@>=
begin
if w>skip0 then begin
  advance_q;
  w:=mm_store[q1,q2];
  while w>0 do begin
    for n:=1 to bytes_required do im_byte(0);
    decr(w);
    end;
  end;
advance_q;
n:=0; dis:=0; val:=0; w:=0; b:=0;
end

@ @<Get two paint commands@>=
begin w:=mm_store[q1,q2];
if w<=paint2 then
    begin
    if w=paint2 then
  begin advance_q; w:=mm_store[q1,q2]; advance_q;
  w:=w*256+mm_store[q1,q2]; {can be as high as 65535}
  end
    else if w=paint1 then
  begin advance_q; w:=mm_store[q1,q2]; {can be between 64 and 255}
  end;
    advance_q;
    b:=mm_store[q1,q2];
    if b<=paint2 then
  begin
  if b=paint2 then
      begin advance_q; b:=mm_store[q1,q2]; advance_q;
      b:=b*256+mm_store[q1,q2];
      end
  else if b=paint1 then
      begin advance_q;
      b:=mm_store[q1,q2];
      end;
  advance_q;
  end
      else
  begin
  b:=0; w:=8*bytes_required; {a safety measure}
  end;
    end
else
    begin b:=0; w:=8*bytes_required; {a safety measure}
    end;
end



@* Translation to Impress form.
The main work of \.{DVIIMP} is accomplished by the |do_page| procedure,
which produces the output for an entire page, assuming that the |bop|
command for that page has already been processed. This procedure is
essentially an interpretive routine that reads and acts on the \.{DVI}
commands.

@ The definition of \.{DVI} files refers to six registers,
$(h,v,w,x,y,z)$, which hold integer values in \.{DVI} units.  In practice,
we also need registers |hh| and |vv|, the pixel analogs of $h$ and $v$,
since it is not always true that |hh=pixel_round(h)| or
|vv=pixel_round(v)|. We will also find it useful to have two other
registers, |hhi| and |vvi|
to hold the values that \.{IMAGEN} would automatically
assign for for the horizontal and vertical locations.

The stack of $(h,v,w,x,y,z)$ values is represented by eight arrays
called |hstack|, \dots, |zstack|, |hhstack|, and |vvstack|.

@<Glob...@>=
@!h,@!v,@!w,@!x,@!y,@!z,@!hh,@!hhi,@!vv,@!vvi:integer; {current state values}
@!hstack,@!vstack,@!wstack,@!xstack,@!ystack,@!zstack:
  array [0..stack_size] of integer; {pushed down values in \.{DVI} units}
@!hhstack,@!vvstack:
  array [0..stack_size] of integer; {pushed down values in pixels}
@!h_org, @!v_org: integer; {page origin}

@ Three characteristics of the pages (their |max_v|, |max_h|, and
|max_s|) are specified in the postamble.
Only |max_s| should not be exceeded.
The postamble also specifies the total number of pages.

@<Glob...@>=
@!max_v:integer; {the value of |abs(v)| should probably not exceed this}
@!max_h:integer; {the value of |abs(h)| should probably not exceed this}
@!max_s:integer; {the stack depth should not exceed this}
@!max_s_so_far:integer; {the record high levels}
@!total_pages:integer; {the stated total number of pages}

@ @<Set init...@>=
max_s:=stack_size+1;
max_s_so_far:=0;

@ Before we get into the details of |do_page|, it is convenient to
consider a simpler routine that computes the first parameter of each
opcode. In doing this, we will use some multiple-case terms that were
defined earlier.

@p function first_par(o:eight_bits):integer;
begin case o of
sixty_four_cases(set_char_0),sixty_four_cases(set_char_0+64):
  first_par:=o-set_char_0;
set1,put1,fnt1,xxx1,fnt_def1: first_par:=get_byte;
set1+1,put1+1,fnt1+1,xxx1+1,fnt_def1+1: first_par:=get_two_bytes;
set1+2,put1+2,fnt1+2,xxx1+2,fnt_def1+2: first_par:=get_three_bytes;
right1,w1,x1,down1,y1,z1: first_par:=signed_byte;
right1+1,w1+1,x1+1,down1+1,y1+1,z1+1: first_par:=signed_pair;
right1+2,w1+2,x1+2,down1+2,y1+2,z1+2: first_par:=signed_trio;
set1+3,set_rule,put1+3,put_rule,right1+3,w1+3,x1+3,down1+3,y1+3,z1+3,
  fnt1+3,xxx1+3,fnt_def1+3: first_par:=signed_quad;
nop,bop,eop,push,pop,pre,post,post_post,undefined_commands: first_par:=0;
w0: first_par:=w;
x0: first_par:=x;
y0: first_par:=y;
z0: first_par:=z;
sixty_four_cases(fnt_num_0): first_par:=o-fnt_num_0;
end;
end;

@ Here is another subroutine that we need: It computes the number of
pixels in the height or width of a rule. Characters and rules will line up
properly if the sizes are computed precisely as specified here.  (Since
|conv| is computed with some floating-point roundoff error, in a
machine-dependent way, format designers who are tailoring something for a
particular resolution should not plan their measurements to come out to an
exact integer number of pixels; they should compute things so that the
rule dimensions are a little less than an integer number of pixels, e.g.,
4.99 instead of 5.00.)

@p function rule_pixels(x:integer):integer;
  {computes $\lceil|conv|\cdot x\rceil$}
var n:integer;
begin n:=trunc(conv*x);
if n<conv*x then rule_pixels:=n+1 @+ else rule_pixels:=n;
end;

@ The Imagen is capable of executing a limited repartee of graphic
commands and it will be convenient to assign a set of six
\.{\\special} commands to invoke them.
We will need the following globals.

@<Glob...@>=
@!pen_size: integer; {must be between 0 and 20 finally}
@!hh_point,@!vv_point:array[0..255] of integer; {point coordinates}
@!p_index:integer; {used to index |hh_point| and |vv_point|}
@!join_points:array[0..255] of eight_bits; {points used in a |join|}
@!vertex_count:integer; {used to index |join_points|}
@!xxx_point:array[1..6] of eight_bits;
@!xxx_join:array[1..5] of eight_bits;
@!xxx_rectangle:array[1..10] of eight_bits;
@!xxx_circle:array[1..7] of eight_bits;
@!xxx_arc:array[1..4] of eight_bits;
@!xxx_segm:array[1..5] of eight_bits;
@!xxx_ellipse:array[1..8] of eight_bits;
@!xxx_o:eight_bits; {needed in special prcedures}
@!xxx_k:integer; {needed in special prcedures}

@ @<Set initial values@>=
xxx_point[1]:="p"; xxx_point[2]:="o"; xxx_point[3]:="i"; xxx_point[4]:="n";
xxx_point[5]:="t"; xxx_point[6]:=" ";
xxx_join[1]:="j"; xxx_join[2]:="o"; xxx_join[3]:="i"; xxx_join[4]:="n";
xxx_join[5]:=" ";
xxx_rectangle[1]:="r"; xxx_rectangle[2]:="e"; xxx_rectangle[3]:="c";
xxx_rectangle[4]:="t"; xxx_rectangle[5]:="a"; xxx_rectangle[6]:="n";
xxx_rectangle[7]:="g"; xxx_rectangle[8]:="l"; xxx_rectangle[9]:="e";
xxx_rectangle[10]:=" ";
xxx_circle[1]:="c"; xxx_circle[2]:="i"; xxx_circle[3]:="r"; xxx_circle[4]:="c";
xxx_circle[5]:="l"; xxx_circle[6]:="e"; xxx_circle[7]:=" ";
xxx_arc[1]:="a"; xxx_arc[2]:="r"; xxx_arc[3]:="c"; xxx_arc[4]:=" ";
xxx_segm[1]:="s"; xxx_segm[2]:="e"; xxx_segm[3]:="g"; xxx_segm[4]:="m";
xxx_segm[5]:=" ";
xxx_ellipse[1]:="e"; xxx_ellipse[2]:="l";
xxx_ellipse[3]:="l"; xxx_ellipse[4]:="i";
xxx_ellipse[5]:="p"; xxx_ellipse[6]:="s";
xxx_ellipse[7]:="e"; xxx_ellipse[8]:=" ";

@ The following procedures will be used for these \.{\\special} commands.

@p function read_ascii(p:integer):real;
var jj,kk:real;
negative:boolean;
begin
jj:=0.0;
negative:=false;
while (xxx_o=" ") and (xxx_k<p) do begin incr(xxx_k); xxx_o:=get_byte; end;
if (xxx_o="-") and (xxx_k<p) then
    begin negative:=true;
    incr(xxx_k); xxx_o:=get_byte;
    end;
while (xxx_o>="0") and (xxx_o<="9") and (xxx_k<=p) do
    begin
    jj:=jj*10+(xxx_o-"0"); incr(xxx_k);
    if xxx_k<=p then xxx_o:=get_byte;
    end;
if (xxx_o=".") and (xxx_k<p) then
    begin
    incr(xxx_k); xxx_o:=get_byte;
    kk:=1.0;
    while (xxx_o>="0") and (xxx_o<="9") and (xxx_k<=p) do
  begin
        kk:=kk*0.1; jj:=jj+kk*(xxx_o-"0"); incr(xxx_k);
  if xxx_k<=p then xxx_o:=get_byte;
  end;
    end;
if negative then jj:=-jj;
read_ascii:=jj;
end;

@ This procedure defines the points for use by the |do_join| procedure
that follows.

@p procedure do_point(p:integer);
var k:integer; {loop variable}
o:eight_bits;
match:boolean; {does everything match}
begin if p<7 then for k:=2 to p do o:=get_byte else
    begin match:=true;
    for k:=2 to 6 do
  begin o:=get_byte;
  if o<>xxx_point[k] then match:=false;
@!debug
  print(xchr[o]);
gubed
  end;
    p_index:=0;
    for k:=7 to p do
  begin o:=get_byte;
  if match then p_index:=p_index*10+o-"0";
  end;
    if match then
  begin hh_point[p_index]:=pixel_round(h);
   vv_point[p_index]:=pixel_round(v);
@!debug
print(p_index:1,' ',pixel_round(h):1,',',pixel_round(v):1);
gubed
  end;
    end;
end;

@ The |do_join| procedure joins points by straight lines only.

@p procedure do_join(p:integer);
var k,q:integer;
jj:real; {used in computing |pen_size|}
match:boolean; {does everything match}
begin if p<8 then for k:=2 to p do xxx_o:=get_byte else
    begin match:=true;
    for k:=2 to 5 do
  begin xxx_o:=get_byte;
  if xxx_o<>xxx_join[k] then match:=false;
  end;
    if not match then for k:=6 to p do xxx_o:=get_byte else
  begin xxx_o:=get_byte;
  xxx_k:=6;
  jj:=read_ascii(p);
  pen_size:=pixel_round(jj*65536.0);
  if pen_size>20 then pen_size:=20 else if pen_size<0 then pen_size:=0;
  im_byte(set_pen); im_byte(pen_size);
  vertex_count:=1; q:=0; incr(xxx_k);
  for k:=xxx_k to p do begin
      xxx_o:=get_byte;
      if (xxx_o>="0") and (xxx_o<="9") then q:=q*10+xxx_o-"0" else
      if xxx_o=" " then begin
    join_points[vertex_count]:=q; incr(vertex_count); q:=0;
    end;
      end;
  join_points[vertex_count]:=q;
  im_byte(create_path);
  im_halfword(vertex_count);
  for q:=1 to vertex_count do
      begin im_halfword(hh_point[join_points[q]]);
      im_halfword(vv_point[join_points[q]]);
      end;
  im_byte(draw_path); im_byte(15);
  end;
    end;
end;

@ And now we come the the |do_circle| procedure.

@p procedure do_circle(p:integer);
var k,q,r:integer; jj:real;
match:boolean; {does everything match}
begin if p<13 then for k:=2 to p do xxx_o:=get_byte else
    begin match:=true;
    for k:=2 to 7 do
  begin xxx_o:=get_byte;
  if xxx_o<>xxx_circle[k] then match:=false;
@!debug
  print(xchr[xxx_o]);
gubed
  end;
    if not match then for k:=8 to p do xxx_o:=get_byte else
  begin xxx_o:=get_byte;
  xxx_k:=8;
  jj:=read_ascii(p);
  pen_size:=pixel_round(jj*65536.0);
  if pen_size>20 then pen_size:=20 else if pen_size<0 then pen_size:=0;
  im_byte(set_pen); im_byte(pen_size);
  @<Resyncronize@>;
  im_byte(circ_arc);
@!debug
  print('(',pen_size:1,')');
gubed
  jj:=read_ascii(p);
  r:=pixel_round(jj*65536.0); im_halfword(r); {the radius}
@!debug
  print('(',r:1,')');
gubed
  jj:=read_ascii(p);
   q:=-round(jj*16384/360); {to measure counterclockwise}
  im_halfword(q); {first angle}
@!debug
  print('(',q:1,')');
gubed
  jj:=read_ascii(p);
  r:=-round(jj*16384/360); {to measure counterclockwise}
  im_halfword(r); {second angle}
@!debug
  print('(',r:1,')');
gubed
  im_byte(draw_path); im_byte(15);
  end;
    end;
end;

@ And finally the |do_ellipse| procedure.
@p procedure do_ellipse(p:integer);
var k,q,r:integer; jj:real;
match:boolean; {does everything match}
begin if p<18 then for k:=2 to p do xxx_o:=get_byte else
    begin match:=true;
    for k:=2 to 8 do
  begin xxx_o:=get_byte;
  if xxx_o<>xxx_ellipse[k] then match:=false;
@!debug
  print(xchr[xxx_o]);
gubed
  end;
    if not match then for k:=9 to p do xxx_o:=get_byte else
  begin xxx_o:=get_byte;
  xxx_k:=9;
  jj:=read_ascii(p);
  pen_size:=pixel_round(jj*65536.0);
  if pen_size>20 then pen_size:=20 else if pen_size<0 then pen_size:=0;
  im_byte(set_pen); im_byte(pen_size);
  @<Resyncronize@>;
  im_byte(ellipse_arc);
@!debug
  print('(',pen_size:1,')');
gubed
  jj:=read_ascii(p);
  r:=pixel_round(jj*65536.0); im_halfword(r); {radiusa}
@!debug
  print('(',r:1,')');
gubed
     jj:=read_ascii(p);
  r:=pixel_round(jj*65536.0); im_halfword(r); {radiusb}
@!debug
  print('(',r:1,')');
gubed
  jj:=read_ascii(p);
   q:=-round(jj*16384/360); {to measure counterclockwise}
  im_halfword(q); {|alpha_offset|}
@!debug
  print('(',q:1,')');
gubed
  jj:=read_ascii(p);
   q:=-round(jj*16384/360); {to measure counterclockwise}
  im_halfword(q); {first angle}
@!debug
  print('(',q:1,')');
gubed
  jj:=read_ascii(p);
  r:=-round(jj*16384/360); {to measure counterclockwise}
  im_halfword(r); {second angle}
@!debug
  print('(',r:1,')');
gubed
  im_byte(draw_path); im_byte(15);
  end;
    end;
end;

@ The |do_page|
subroutine is organized as a typical interpreter, with a multiway branch
on the command code followed by |goto| statements leading to routines that
finish up the activities common to different commands. We will use the
following labels:

@d fin_set=41 {label for commands that set or put a character}
@d fin_rule=42 {label for commands that set or put a rule}
@d move_right=43 {label for commands that change |h|}
@d move_down=44 {label for commands that change |v|}
@d change_font=45 {label for commands that change |cur_font|}

@ Some \PASCAL\ compilers severely restrict the length of procedure bodies,
so we shall split |do_page| into two parts, one of which is
called |special_cases|. The different parts communicate with each other
via the global variables mentioned above, together with the following ones:

@<Glob...@>=
@!s:integer; {current stack size}
@!cur_font:integer; {current internal font number}

@ Here is the overall setup.

@d infinity==@'17777777777 {$\infty$ (approximately)}

@p @t\4@>@<Declare the function called |special_cases|@>@;
procedure do_page;
label fin_set,fin_rule,move_right,done,9999;
var o:eight_bits; {operation code of the current command}
@!p,@!q:integer; {parameters of the current command}
@!g:integer; {to hold |glyph_ptr| temporarily and force its computation}
@!a:integer; {byte number of the current command}
@!hhh:integer; {|h|, rounded to the nearest pixel}
begin cur_font:=nf; {set current font undefined}
    s:=0; w:=0; x:=0; y:=0; z:=0;
    h:=round(h_org/conv); v:=round(v_org/conv);
    hh:=pixel_round(h); vv:=pixel_round(v);
    hhi:=infinity; vvi:=infinity;
    {initialize the state variables}
while true do @<Translate the next command in the \.{DVI} file;
    |goto 9999| if it was |eop|@>;
9999: im_byte(im_end_page);
end;

@ The following procedure will do the actual comparing of the specified
|start_page| with values of |count[0]| and it will increment |f_count|.

@p procedure back_count;
var @!k:0..255; {command code}
begin
move_to_byte(new_backpointer);
k:=get_byte; if k=bop then
   begin
   incr(f_count);
   for k:=0 to 9 do count[k]:=signed_quad;
   if count[0]=start_page then page_match:=true;
   new_backpointer:=signed_quad;
   end else new_backpointer:=-1;
end;

@ The following routine allows us to read the pages in reverse order.

@p procedure next_page;
var @!k:0..255; {command code}
begin
incr(counter);
move_to_byte(new_backpointer);
k:=get_byte; if k=bop then
  begin
  for k:=0 to 9 do count[k]:=signed_quad;
  new_backpointer:=signed_quad;
@!debug
  print_ln(' In next_page first_backpointer=',first_backpointer:1);
gubed
  end;
if (counter>=l_count) then
    begin
    do_page; print('[',count[0]:1,'] ');
    end;
end;

@ The main command loop.

@<Translate the next command...@>=
begin a:=cur_loc;
@!debug
 print_nl; print(a:1,': ');
gubed
o:=get_byte; p:=first_par(o);
if eof(dvi_file) then bad_dvi('the file ended prematurely');
@.the file ended prematurely@>
@<Start translation of command |o| and |goto| the appropriate label to
  finish the job@>;
fin_set: @<Finish a command that either sets or puts a character, then
    |goto move_right| or |done|@>;
fin_rule: @<Finish a command that either sets or puts a rule, then
    |goto move_right| or |done|@>;
move_right: @<Finish a command that sets |h:=h+q|, then |goto done|@>;
done:
end

@ The multiway switch in |first_par|, above, was organized by the length
of each command; the one in |do_page| is organized by the semantics.

@<Start translation...@>=
if o<set_char_0+128 then goto fin_set
else case o of
  four_cases(set1): goto fin_set;
  four_cases(put1): goto fin_set;
  set_rule: goto fin_rule;
  put_rule: goto fin_rule;
  @t\4@>@<Cases for commands |nop|, |bop|, \dots, |pop|@>@;
  @t\4@>@<Cases for horizontal motion@>@;
  othercases begin special_cases(o,p,a); goto done; end
  endcases

@ @<Declare the function called |special_cases|@>=
procedure special_cases(@!o:eight_bits;@!p,@!a:integer);
label change_font,move_down,done;
var q:integer; {parameter of the current command}
@!k:integer; {loop index}
@!vvv:integer; {|v|, rounded to the nearest pixel}
begin
case o of
@t\4@>@<Cases for vertical motion@>@;
@t\4@>@<Cases for fonts@>@;
four_cases(xxx1): @<Translate an |xxx| command and |goto done|@>;
pre: bad_dvi('preamble command within a page!');
@.preamble command within a page@>
post,post_post: bad_dvi('postamble command within a page!');
@.postamble command within a page@>
othercases bad_dvi('undefined command ',o:1,'!')
@.undefined command@>
endcases;
move_down: @<Finish a command that sets |v:=v+p|, then |goto done|@>;
change_font: @<Finish a command that changes the current font,
  then |goto done|@>;
done:
end;

@ @<Cases for commands |nop|, |bop|, \dots, |pop|@>=
nop: goto done;
bop: bad_dvi('bop occurred before eop!');
@.bop occurred before eop@>
eop: begin
  if s<>0 then bad_dvi('stack not empty at end of page (level ',
    s:1,')!');
@.stack not empty...@>
  goto 9999;
  end;
push: begin
  if s=max_s_so_far then
    begin max_s_so_far:=s+1;
    if s=max_s then bad_dvi('deeper than claimed in postamble!');
@.deeper than claimed...@>
@.push deeper than claimed...@>
    if s=stack_size then
      bad_dvi('DVIIMP capacity exceeded (stack size=',
        stack_size:1,')');
    end;
  hstack[s]:=h; vstack[s]:=v; wstack[s]:=w;
  xstack[s]:=x; ystack[s]:=y; zstack[s]:=z;
  hhstack[s]:=hh; vvstack[s]:=vv; incr(s);
@!debug
print(' push(',s:1,')',hh:1,',',vv:1);
gubed
  goto done;
  end;
pop: begin
  if s=0 then bad_dvi('POP illegal at level zero')
  else  begin decr(s); hh:=hhstack[s]; vv:=vvstack[s];
    h:=hstack[s]; v:=vstack[s]; w:=wstack[s];
    x:=xstack[s]; y:=ystack[s]; z:=zstack[s];
@!debug
print(' pop(',s:1,')',hh:1,',',vv:1);
gubed
    end;
  goto done;
  end;

@ Rounding to the nearest pixel is best done in the manner shown here, so as
to be inoffensive to the eye: When the horizontal motion is small, like a
kern, |hh| changes by rounding the kern; but when the motion is large, |hh|
changes by rounding the true position |h| so that accumulated rounding errors
disappear. We allow a larger space in the negative direction than in
the positive one, because \TeX\ makes comparatively
large backspaces when it positions accents.

@d out_space==if (p>=font_space[cur_font])or(p<=-4*font_space[cur_font]) then
    hh:=pixel_round(h+p)
  else hh:=hh+pixel_round(p);
  q:=p; goto move_right

@<Cases for horizontal motion@>=
four_cases(right1): begin out_space; end;
w0,four_cases(w1):begin w:=p; out_space; end;
x0,four_cases(x1):begin x:=p; out_space; end;

@ Vertical motion is done similarly, but with the threshold between
``small'' and ``large'' increased by a factor of five. The idea is to make
fractions like ``$1\over2$'' round consistently, but to absorb accumulated
rounding errors in the baseline-skip moves.

@d out_vmove==if abs(p)>=5*font_space[cur_font] then vv:=pixel_round(v+p)
  else vv:=vv+pixel_round(p);
  goto move_down

@<Cases for vertical motion@>=
four_cases(down1): begin out_vmove; end;
y0,four_cases(y1): begin y:=p; out_vmove; end;
z0,four_cases(z1): begin z:=p; out_vmove; end;

@ @<Cases for fonts@>=
sixty_four_cases(fnt_num_0): goto change_font;
four_cases(fnt1): goto change_font;
four_cases(fnt_def1): begin skip_it; goto done; end;

@ @<Translate an |xxx| command and |goto done|@>=
begin
if p<0 then bad_dvi('string of negative length!');
@.string of negative length@>
if p<=0 then goto done;
o:=get_byte;
case o of
"p":begin
@!debug
 print_nl; print(a:1,': ');
 print(' p');
gubed
    do_point(p);
    end;
"j":begin
@!debug
 print_nl; print(a:1,': ');
 print(' j');
gubed
    do_join(p);
    end;
"c":begin
@!debug
 print_nl; print(a:1,': ');
 print(' c');
gubed
    do_circle(p);
    end;
"e":begin
@!debug
 print_nl; print(a:1,': ');
 print(' e');
gubed
    do_ellipse(p);
    end;
othercases begin print(' othercases');
    for k:=2 to p do o:=get_byte;
    end
endcases;
goto done;
end

@ @<Resyncronize@>=
if hhi<>hh then begin
@!debug
print('  ',hhi:1,',',hh:1);
gubed
  hhi:=hh; im_byte(set_abs_h); im_halfword(hh);
  end;
if vvi<>vv then begin
  vvi:=vv; im_byte(set_abs_v); im_halfword(vv);
  end;

@ @<Finish a command that either sets or puts a character...@>=
if p<0 then p:=255-((-1-p) mod 256)
else if p>=256 then p:=p mod 256; {width computation for oriental fonts}
@^oriental characters@>@^Chinese characters@>@^Japanese characters@>
{|if (p<font_bc[cur_font])or(p>font_ec[cur_font]) then q:=invalid_width else|}
     q:=char_width(cur_font)(p);
@!debug
print_ln(' p=',p:1);
print_ln(' bc=',font_bc[cur_font]:1,' ec=',font_ec[cur_font]:1);
print(' ch',char_width(cur_font)(p):1);
print_ln(' q=',q:1);
gubed
if q=invalid_width then
  begin print('character ',p:1,' invalid in font ');
@.character $c$ invalid...@>
  print_font(cur_font);
  if cur_font<>nf then print('!'); {font |nf| has `\.!' in its name}
  end
else begin
  g:=glyph_ptr[data_base[cur_font]+p];
@!debug
if g<-3 then print(' (',cur_font:1,')',p:1);
gubed
  if g=0 then begin
@!debug
    print_ln(' must reload (',cur_font:1,')',p:1);
gubed
    reload_font; {font must be reloaded}
    g:=glyph_ptr[data_base[cur_font]+p];
    end;
@!debug
if g=-1 then print(' -1(',cur_font:1,')',p:1);
gubed
  if g>3 then do_im_bgly(p);
  @<Resyncronize@>;
if (font_state[cur_font]=2) or (g=-1) then
    begin
    hhi:=hhi+pixel_width[data_base[cur_font]+p];
    @<Resyncronize@>;
    end
else
    begin
  if p<128 then im_byte(p) {this sets or puts p of current family}
  else begin
    im_byte(set_family); im_byte(im_extension[cur_font]);
    im_byte(p-128); {this sets or puts glyph under its imagen name}
    im_byte(set_family); im_byte(cur_font);
    end;
  hhi:=hhi+pixel_width[data_base[cur_font]+p];
  end;
    end;
if o>=put1 then goto done;
if q=invalid_width then q:=0
else hh:=hh+char_pixel_width(cur_font)(p);
goto move_right

@ @<Finish a command that either sets or puts a rule...@>=
q:=signed_quad;
@<Resyncronize@>;
im_byte(im_brule); im_halfword(rule_pixels(q)); im_halfword(rule_pixels(p));
im_halfword(rule_pixels(-p));
if o=put_rule then goto done;
hh:=hh+rule_pixels(q);
goto move_right

@ A sequence of consecutive rules, or consecutive characters in a fixed-width
font whose width is not an integer number of pixels, can cause |hh| to drift
far away from a correctly rounded value. \.{DVIIMP} ensures that the
amount of drift will never exceed |max_drift| pixels.

@d max_drift=2 {we insist that abs|(hh-pixel_round(h))<=max_drift|}

@<Finish a command that sets |h:=h+q|, then |goto done|@>=
if (h>0)and(q>0) then if h>infinity-q then
  begin print('arithmetic overflow! parameter changed from ',
@.arithmetic overflow...@>
    q:1,' to ',infinity-h:1);
  q:=infinity-h;
  end;
if (h<0)and(q<0) then if -h>q+infinity then
  begin print('arithmetic overflow! parameter changed from ',
    q:1, ' to ',(-h)-infinity:1);
  q:=(-h)-infinity;
  end;
hhh:=pixel_round(h+q);
if abs(hhh-hh)>max_drift then
  begin
  if hhh>hh then hh:=hhh-max_drift
  else hh:=hhh+max_drift;
  hhi:=hh; im_byte(set_abs_h); im_halfword(hhi);
  end;
h:=h+q;
@!debug
print(' r ',hh:1,' ');
gubed
goto done

@ @<Finish a command that sets |v:=v+p|, then |goto done|@>=
if (v>0)and(p>0) then if v>infinity-p then
  begin print('arithmetic overflow! parameter changed from ',
@.arithmetic overflow...@>
    p:1,' to ',infinity-v:1);
  p:=infinity-v;
  end;
if (v<0)and(p<0) then if -v>p+infinity then
  begin print('arithmetic overflow! parameter changed from ',
    p:1, ' to ',(-v)-infinity:1);
  p:=(-v)-infinity;
  end;
vvv:=pixel_round(v+p);
if abs(vvv-vv)>max_drift then
  begin
  if vvv>vv then vv:=vvv-max_drift
  else vv:=vvv+max_drift;
  vvi:=vv; im_byte(set_abs_v); im_halfword(vvi);
  end;
v:=v+p;
@!debug
print(' d ',vv:1,' ');
gubed
goto done

@ @<Finish a command that changes the current font...@>=
font_num[nf]:=p; cur_font:=0;
while font_num[cur_font]<>p do incr(cur_font);
if cur_font=nf then bad_dvi('bad font?');
if font_state[cur_font]=0 then
  begin get_gf_file;
  if font_state[cur_font]=0 then
    begin
    if in_gf(font_scaled_size[cur_font]) then
  font_state[cur_font]:=1 else font_state[cur_font]:=-1;
    end;
  if font_state[cur_font]=2 then
    begin
    if in_tfm(font_scaled_size[cur_font]) then
      font_state[cur_font]:=2 else font_state[cur_font]:=-1;
    end;
  end;
im_byte(set_family); im_byte(cur_font);
goto done

@* Using the backpointers.
The routines in this section of the program are brought into play only
if |random_reading| is |true|.
First comes a routine that illustrates how to find the postamble quickly.

@<Find the postamble, working back from the end@>=
n:=dvi_length;
if n<53 then bad_dvi('only ',n:1,' bytes long');
@.only n bytes long@>
m:=n-4;
repeat if m=0 then bad_dvi('all 223s');
@.all 223s@>
move_to_byte(m); k:=get_byte; decr(m);
until k<>223;
if k<>id_byte then bad_dvi('ID byte is ',k:1);
@.ID byte is wrong@>
move_to_byte(m-3); q:=signed_quad;
if (q<0)or(q>m-33) then bad_dvi('post pointer ',q:1,' at byte ',m-3:1);
@.post pointer is wrong@>
move_to_byte(q); k:=get_byte;
if k<>post then bad_dvi('byte ',q:1,' is not post');
@.byte n is not post@>
post_loc:=q; first_backpointer:=signed_quad;

@ Note that the last steps of the above code save the locations of the
the |post| byte and the final |bop|.  We had better declare these global
variables, together with others that we will need shortly.

@<Glob...@>=
@!post_loc:integer; {byte location where the postamble begins}
@!first_backpointer:integer; {the pointer following |post|}
@!new_backpointer:integer; {the current |bop| command location}

@ The following routine locates the postamble in order to read the value
of the |first_backpointer| but then processes the pages starting with the
last page so that the pages will be stacked properly by the \.{IMAGEN}.

@<Find the postamble then process the pages in reverse order@>=
q:=post_loc;
move_to_byte(q); k:=get_byte;
if k<>post then bad_dvi('byte ',q:1,' is not post');
@.byte n is not post@>
first_backpointer:=signed_quad;
new_backpointer:=first_backpointer;
while (new_backpointer<>-1) and (counter<f_count) do next_page;
while im_byte_no mod 4 <> 3 do im_byte(im_no_op);
im_byte(im_eof);

@* Reading the postamble.
Now imagine that we are reading the \.{DVI} file and positioned just
four bytes after the |post| command. That, in fact, is the situation,
when the following part of \.{DVIIMP} is called upon to read, translate,
and check the rest of the postamble.

@p procedure read_postamble;
var k:integer; {loop index}
@!p:integer; {general purpose registers}
begin
post_loc:=cur_loc-5;
if signed_quad<>numerator then
  print_ln('numerator doesn''t match the preamble!');
@.numerator doesn't match@>
if signed_quad<>denominator then
  print_ln('denominator doesn''t match the preamble!');
@.denominator doesn't match@>
if signed_quad<>mag then if new_mag=0 then
  print_ln('magnification doesn''t match the preamble!');
@.magnification doesn't match@>
max_v:=signed_quad; max_h:=signed_quad;@/
max_s:=get_two_bytes; total_pages:=get_two_bytes;@/
@<Process the font definitions of the postamble@>;
end;

@ @<Process the font definitions...@>=
repeat k:=get_byte;
if (k>=fnt_def1)and(k<fnt_def1+4) then
  begin p:=first_par(k);
        identify_font(p); k:=nop;
  end;
until k<>nop;
if k<>post_post then
  print_ln('byte ',cur_loc-1:1,' is not postpost!')
@.byte n is not postpost@>

@ @<Establish range of pages to be printed@>=
if f_flag=false then f_count:=total_pages else
    begin f_count:=0; q:=post_loc;
    move_to_byte(q); p:=get_byte;
    page_match:=false; f_count:=0;
    first_backpointer:=signed_quad;
    new_backpointer:=first_backpointer;
    while (new_backpointer<>-1) and (page_match=false) do back_count;
    end;
if n_flag=false then l_count:=1 else l_count:=f_count-num_pages+1;

@* The main program.
Now we are ready to put it all together. This is where \.{DVIIMP} starts,
and where it ends.

@p begin initialize; {get all variables initialized}
@<Process the preamble@>;
open_im_file;
@<Find the postamble, working back from the end@>;
read_postamble;
@<Establish range of pages to be printed@>;
@<Find the postamble then process the pages in reverse order@>;
final_end:end.

@ The main program needs a few global variables in order to do its work.

@<Glob...@>=
@!k,@!m,@!n,@!p,@!q:integer; {general purpose registers}
@!id_len: 0..255;
@!id: packed array[0..255] of 0..255;


@ A \.{DVI}-reading program that reads the postamble first need not look at the
preamble; but \.{DVIIMP} looks at the preamble in order to do error
checking, and to display the introductory comment.

@<Process the preamble@>=
open_dvi_file;
p:=get_byte; {fetch the first byte}
if p<>pre then bad_dvi('First byte isn''t start of preamble!');
@.First byte isn't...@>
p:=get_byte; {fetch the identification byte}
if p<>id_byte then
  bad_dvi('identification in byte 1 should be ',id_byte:1,'!');
@.identification...should be n@>
@<Compute the conversion factor@>;
id_len:=get_byte; {fetch the length of the introductory comment}
p:=0;
while p<id_len do
  begin incr(p); id[p]:=get_byte;
  end;

@ The conversion factor |conv| is figured as follows: There are exactly
|n/d| \.{DVI} units per decimicron, and 254000 decimicrons per inch,
and |resolution| pixels per inch. Then we have to adjust this
by the stated amount of magnification.

@<Compute the conversion factor@>=
numerator:=signed_quad; denominator:=signed_quad;
if numerator<=0 then bad_dvi('numerator is ',numerator:1);
@.numerator is wrong@>
if denominator<=0 then bad_dvi('denominator is ',denominator:1);
@.denominator is wrong@>
conv:=(numerator/254000.0)*(resolution/denominator);
mag:=signed_quad;
if new_mag>0 then mag:=new_mag
else if mag<=0 then bad_dvi('magnification is ',mag:1);
@.magnification is wrong@>
true_conv:=conv; conv:=true_conv*(mag/1000.0);

@* System-dependent changes.
This section should be replaced, if necessary, by changes to the program
that are necessary to make \.{DVIIMP} work at a particular installation.
It is usually best to design your change file so that all changes to
previous sections preserve the section numbering; then everybody's version
will be consistent with the printed program. More extensive changes,
which introduce new sections, can be inserted here; then only the index
itself will get a new section number.
@^system dependencies@>

@* Index.
Pointers to error messages appear here together with the section numbers
where each ident\-i\-fier is used.