1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
|
/* This file is part of dvi2bitmap; see README for copyrights and licence */
// There are problems with the implementation here, of which the most
// pronounced is the way that cropping and scaling down are muddled
// together. Partly, this is because the implementations of these
// features are not cleanly separated. Better, I think, would be to
// have the crop() and scaleDown() methods simply request the
// corresponding features, leaving the actual transformations to be
// done immediately before write(), for example.
//
// Also attractive (and easier, after that) would be a way to have the
// crop margins specifiable in a fuller range of units.
#include <config.h>
#include <iostream> // debug code writes to cerr
#include <string>
#ifdef HAVE_CSTD_INCLUDE
#include <cstdarg>
#include <climits> // g++ doesn't have <limits>
#include <cmath>
#include <cassert>
#include <cstring> // for memcpy and friends
#else
#include <stdarg.h>
#include <limits.h>
#include <math.h>
#include <assert.h>
#include <string.h>
#endif
using STD::cout;
using STD::cerr;
using STD::endl;
#include "Bitmap.h"
#include "BitmapImage.h"
#include "DviFilePosition.h"
// Declare static variables
verbosities Bitmap::verbosity_ = normal;
int Bitmap::cropMarginDefault[4] = { 0, 0, 0, 0 };
bool Bitmap::cropMarginAbsDefault[4] = {false, false, false, false };
Bitmap::BitmapColour Bitmap::def_fg_ = { 0, 0, 0};
Bitmap::BitmapColour Bitmap::def_bg_ = {255, 255, 255};
bool Bitmap::def_customRGB_ = false;
const char* Bitmap::logBitmapPrefix_ = 0;
Bitmap::const_iterator Bitmap::endIterator_;
// Indecision: Within scaleDown, it seems sensible to average the
// pixel values over the complete factor*factor square, even when
// we've strayed out of the bounding box. However, this sometimes makes
// the edges of images look too faint. If SCALEDOWN_COMPLETE_AVERAGE
// is 1, then average over the whole square; if it's 0, then average
// only over those pixels which are actually on the bitmap.
#define SCALEDOWN_COMPLETE_AVERAGE 0
/**
* Create a new bitmap with the given parameters.
*
* <p>Coordinates on the bitmap run from 0 to W-1, and 0 to H-1,
* with point (0,0) in the top-left corner, the <em>x</em>-axis
* increasing to the right, and the <em>y</em>-axis increasing downwards.
*
* @param w the width of the bitmap, in pixels
*
* @param h the height of the bitmap, in pixels
*
* @param bpp the number of bits-per-pixel (default is 1)
*
* @param expandable if true (the default), the bitmap is expandable;
* if false, the bitmap is fixed at the specified size
*
* @param maxwidth if <code>expandable</code> is true, and
* <code>maxwidth</code> is greater than or equal to <code>w</code>,
* this is the maximum horizontal size the bitmap will expand to; if
* it is less than <code>w</code> (which includes negative, the
* default), the maximum width is set to a default multiplier of the width
* <code>w</code>
*
* @param maxheight if <code>expandable</code> is true, and
* <code>maxheight</code> is greater than or equal to <code>h</code>,
* this is the maximum vertical size the bitmap will expand to; if
* <code>maxheight</code> is less than <code>h</code> (which includes
* negative, the default), the maximum vertical size will be such that
* <code>maxheight/h==maxwidth/w</code>
*
* @throws BitmapError if the arguments are inconsistent
*/
Bitmap::Bitmap (const int w, const int h, const int bpp,
bool expandable,
const int maxwidth, const int maxheight)
throw (BitmapError)
: W(w), H(h), isExpandable_(expandable),
frozen_(false), mark_(0), transparent_(false),
customRGB_(false), bpp_(bpp)
{
if (W <= 0 || H <= 0)
throw BitmapError("Bitmap constructor called with negative size!");
B = new Byte[W*H];
clear();
if (isExpandable_) {
if (maxwidth >= w)
maxW_ = maxwidth;
else
maxW_ = 10*W; // default upper limit on expansion
if (maxheight >= h)
maxH_ = maxheight;
else
maxH_ = h*maxW_/w + 1; // round up
}
if (def_customRGB_)
{
fg_.red = def_fg_.red;
fg_.green = def_fg_.green;
fg_.blue = def_fg_.blue;
bg_.red = def_bg_.red;
bg_.green = def_bg_.green;
bg_.blue = def_bg_.blue;
if (verbosity_ > normal)
cerr << "Bitmap::Bitmap: Custom RGB:"
<< static_cast<int>(fg_.red) << ','
<< static_cast<int>(fg_.green) << ','
<< static_cast<int>(fg_.blue) << '/'
<< static_cast<int>(bg_.red) << ','
<< static_cast<int>(bg_.green) << ','
<< static_cast<int>(bg_.blue) << endl;
customRGB_ = true;
}
if (bpp_ > 8)
// too big for a Byte...
bpp_ = 8;
max_colour_ = static_cast<Byte>((1<<bpp_) - 1);
if (verbosity_ > normal)
cerr << "Bitmap::new Bitmap(W="
<< W << ", H=" << H << ", bpp=" << bpp_ << ")" << endl;
}
Bitmap::~Bitmap()
{
delete[] B;
if (mark_ != 0)
delete mark_;
}
/**
* Resets the bitmap to its initial state. This clears the bitmap by
* setting all the pixels to white, unfreezing it, and resetting the
* bounding box and crops to their initial states. It does not
* deallocate any memory, however, so if the bitmap has expanded in
* the past, the reset bitmap is the same size.
*
* <p>It does not reset the transparency flag or adjust the colour
* setting, or reset the pixel depth. This latter behaviour
* <em>may</em> change in future.
*/
void Bitmap::clear()
{
STD::memset ((void*)B, 0, W*H);
bbL = bbT = INT_MAX; // numeric_limits<int>::max();
bbR = bbB = INT_MIN; // numeric_limits<int>::min();
cropL = 0;
cropR = W;
cropT = 0;
cropB = H;
cropMargin[Left] = cropMarginDefault[Left];
cropMargin[Right] = cropMarginDefault[Right];
cropMargin[Top] = cropMarginDefault[Top];
cropMargin[Bottom] = cropMarginDefault[Bottom];
cropMarginAbs[Left] = cropMarginAbsDefault[Left];
cropMarginAbs[Right] = cropMarginAbsDefault[Right];
cropMarginAbs[Top] = cropMarginAbsDefault[Top];
cropMarginAbs[Bottom] = cropMarginAbsDefault[Bottom];
cropped_ = false;
scaled_ = false;
frozen_ = false;
// but don't reset transparent_ or customRGB_
if (mark_ != 0) {
delete mark_;
mark_ = 0;
}
if (verbosity_ > normal)
cerr << "Bitmap::clear" << endl;
}
/**
* Declares that a routine is about to draw in the rectangle with
* corners <em>(ulx, uly)</em> to <em>(lrx, lry)</em>
* (<em>inclusive</em>). If the bitmap is expandable, this should do
* any reallocations which are necessary or possible, and adjust W and
* H accordingly.
*
* <p>This does not (currently) allow any expansion towards negative
* coordinates.
*/
void Bitmap::usesBitmapArea_(const int ulx, const int uly,
const int lrx, const int lry)
{
if (!isExpandable_)
return; // nothing to do
const float magfactor = 1.5;
int tW = W;
if (lrx > W) {
float tWf = tW;
assert (tWf > 0 && magfactor > 1);
while (tWf<lrx && tWf<maxW_)
tWf *= magfactor;
tW = static_cast<int>(STD::ceil(tWf));
if (tW > maxW_)
tW = maxW_;
}
int tH = H;
if (lry > H) {
float tHf = tH;
assert (tHf > 0 && magfactor > 1);
while (tHf<lry && tHf<maxH_)
tHf *= magfactor;
tH = static_cast<int>(STD::ceil(tHf));
if (tH > maxH_)
tH = maxH_;
}
if (tW == maxW_ && tH == maxH_) {
// the bitmap can't be expanded any more after this
if (verbosity_ >= normal)
cerr << "Bitmap has reached maximum size, ("
<< maxW_ << "," << maxH_ << "), no further expansion" << endl;
isExpandable_ = false;
}
if (tW != W || tH != H) {
// We're expanding...
// There are a variety of ways to make this more efficient.
// But there's absolutely no need to bother with them yet.
Byte* oldB = B;
B = new Byte[tW*tH];
STD::memset((void*)B, 0, tW*tH);
for (int row=0; row<H; row++)
STD::memcpy((void*)&B[row*tW], (void*)&oldB[row*W], W);
if (verbosity_ > normal) {
cerr << "Bitmap:: expanded from (" << W << ',' << H << ") to ("
<< tW << ',' << tH << "): max ("
<< maxW_ << ',' << maxH_ << ")" << endl;
}
W = tW;
H = tH;
delete[] oldB;
}
}
/**
* Paint a bitmap onto the master bitmap. The bitmap to be added is
* given in a one-dimensional array <code>b</code>, which is
* <code>w</code> pixels wide and <code>h</code> high. Like the
* master bitmap, the <em>x</em>
* axis runs horizontally and the <em>y</em> axis vertically downwards.
*
* <p>The pixel at position <em>(x,y)</em> on the new bitmap is at position
* <code>b[y*w+x]</code> in the input bitmap array. This new bitmap is
* painted onto the master bitmap with its top left corner pixel
* (namely position <em>(0,0)</em>) occupying pixel <em>(x,y)</em> on
* the master bitmap, and pixel <em>(a,b)</em> occupying pixel
* <em>(x+a,y+b)</em> unless this would be off the master bitmap.
*
* <p>Any parts of the new bitmap falling outside the boundary of the
* master are cropped.
*
* @param x the pixel in the top-left corner of the new bitmap (coordinate
* <em>(0,0)</em>) is located at position <em>(x,y)</em> of the master
* bitmap
* @param y (see parameter <em>x</em>)
* @param w the width of the new bitmap, in pixels
* @param h the height of the new bitmap, in pixels
* @param b the new bitmap, as a one-dimensional array
* @throws BitmapError if this is called after method <code>freeze()</code>
*/
void Bitmap::paint(const int x, const int y, const int w, const int h,
const Byte *b)
throw (BitmapError)
{
// At one time I added a note to the documentation of the 'x'
// parameter: 'XXX NO, should be the reference point!!!'. What
// does that mean -- I seem to have been rather emphatic about it,
// without much explaining it.
// Set to max_colour_ any pixels in the master which are non-zero in the
// new bitmap, and crop any parts of the new bitmap
// falling outside the boundary of the master
// Update bb? as a side-effect.
if (frozen_)
throw BitmapError ("paint() called after freeze()");
usesBitmapArea_(x, y, x+w, y+h);
// Paint [row1,row2-1] and [col1,col2-1] of the new bitmap into
// the master bitmap;
// if the new bitmap is entirely within the master, then
// row1=0, row2=H, col1=0, col2=W. The new bitmap is placed so
// that pixel (a,b) of the new bitmap
// is placed on pixel (x+a,y+b) of the master bitmap, unless this
// would place that pixel outside the boundary of the master.
//
// Note that this does the correct thing when x>W or y>H
// (ie, it makes col2<0, so loop is never started; same for row2).
int col1 = (x>=0 ? 0 : -x);
int col2 = (x+w<=W ? w : W-x);
int row1 = (y>=0 ? 0 : -y);
int row2 = (y+h<=H ? h : H-y);
for (int row=row1; row<row2; row++)
{
Byte *P = &B[(y+row)*W+(x+col1)];
const Byte *p = &b[row*w+col1];
for (int col=col1; col<col2; col++, P++, p++)
if (*p)
*P = max_colour_;
}
// Note that we update the bounding box to the border of the
// newly painted bitmap, rather than the position of the first
// black pixels within the bitmap.
if (x < bbL) bbL = x;
if (x+w > bbR) bbR = x+w;
if (y < bbT) bbT = y;
if (y+h > bbB) bbB = y+h;
if (verbosity_ > debug)
cerr << "Bitmap::paint @ (" << x << ',' << y << "): (0:"
<< w << ",0:" << h << ") -> ("
<< col1 << ':' << col2 << ',' << row1 << ':' << row2
<< "). BB now [" << bbL << ':' << bbR << "), ["
<< bbT << ':' << bbB << ")" << endl;
}
/**
* Draws on the master bitmap a block (a `rule' in TeX terms) of
* height h and width w pixels. The bottom left corner of the rule
* occupies pixel (x,y) on the master bitmap.
*
* @param x the (pixel in the) bottom-left corner of the rule
* is located at position <em>(x,y)</em> of the master bitmap
* @param y (see parameter <em>x</em>)
* @param w the width of the new rule, in pixels
* @param h the height of the new rule, in pixels
* @throws BitmapError if this is called after method <code>freeze()</code>
*/
void Bitmap::rule(const int x, const int y, const int w, const int h)
throw (BitmapError)
{
// Update bb? as a side-effect.
// OR the new pixels into place, and crop any parts of the new bitmap
// falling outside the boundary of the master
if (frozen_)
throw BitmapError ("rule() called after freeze()");
// OR everything in a block between [row1,row2-1] and
// [col1,col2-1], inclusive
int col1 = x;
int col2 = x+w;
int row1 = y+1-h;
int row2 = y+1;
usesBitmapArea_(col1, row1, col2-1, row2-1);
if (col1 < 0) col1 = 0;
if (col2 > W) col2 = W;
if (row1 < 0) row1 = 0;
if (row2 > H) row2 = H;
for (int row=row1; row<row2; row++)
for (int col=col1; col<col2; col++)
B[row*W+col] = max_colour_;
if (col1 < bbL) bbL = col1;
if (col2 > bbR) bbR = col2;
if (row1 < bbT) bbT = row1;
if (row2 > bbB) bbB = row2;
if (verbosity_ > normal)
cerr << "Bitmap::rule @ (" << x << ',' << y << "): ("
<< w << "x" << h << ") -> ("
<< col1 << ':' << col2 << ',' << row1 << ':' << row2
<< "). BB now [" << bbL << ':' << bbR << "), ["
<< bbT << ':' << bbB << ")" << endl;
}
/**
* Draws a `strut' on the master bitmap. This is essentially the same
* as the <code>rule()</code> method, except that it doesn't draw in
* any pixels. Its only effect is to make sure that the boundingbox
* includes at least the <em>x</em>-values <em>[x-l,x+r-1]</em>, and the
* <em>y</em>-values <em>[y-t+1,y+b]</em>. That is, the area
* indicated by the strut is <code>l+r</code> pixels wide by
* <code>t+b</code> pixels deep. The parameters l, r, t, and
* b must all be non-negative. This implies that the call
* <code>rule(x, y, w, h)</code> has the same effect on the bounding
* box as <code>rule(x, y, 0, w, h, 0)</code>.
*
* @param x the x-coordinate of the reference point of the strut
* @param y the y-coordinate of the reference point of the strut
* @param l bounding box must be leftwards of <code>x-l</code>
* @param r bounding box must be rightwards of <code>x+r</code>
* @param t bounding box must be above <code>y-t</code>
* @param b bounding box must be below <code>y+b</code>
* @throws BitmapError if this is called after method
* <code>freeze()</code>, or if one of l, r, t, b is negative
*/
void Bitmap::strut(const int x, const int y,
const int l, const int r,
const int t, const int b)
throw (BitmapError)
{
if (frozen_)
throw BitmapError ("strut() called after freeze()");
if (l < 0 || r < 0 || t < 0 || b < 0)
throw BitmapError
("Bitmap::strut all of l, r, t, b must be non-negative");
if (verbosity_ > normal)
cerr << "Bitmap::strut @ (" << x << ',' << y << "): (x-"
<< l << ",x+" << r << ")/(y-"
<< t << ",y+" << b << "):"
<< "BB was [" << bbL << ':' << bbR << "), ["
<< bbT << ':' << bbB << ")" << endl;
// Mimic logic of rule() method: the pixels with coordinates
// [row1..row2-1] and [col1..col2-1] would be blackened by rule().
int col1 = x-l;
int col2 = x+r;
int row1 = y-t+1;
int row2 = y+b+1;
// the following is identical to rule...
usesBitmapArea_(col1, row1, col2-1, row2-1);
if (col1 < 0) col1 = 0;
if (col2 > W) col2 = W;
if (row1 < 0) row1 = 0;
if (row2 > H) row2 = H;
// ...except that we don't actually draw anything
if (col1 < bbL) bbL = col1;
if (col2 > bbR) bbR = col2;
if (row1 < bbT) bbT = row1;
if (row2 > bbB) bbB = row2;
if (verbosity_ > normal)
cerr << "Bitmap:: ...BB now [" << bbL << ':' << bbR << "), ["
<< bbT << ':' << bbB << ")" << endl;
}
/**
* Marks a particular spot in the bitmap. This spot can be retrieved
* later using {@link #getMark}. The top-left pixel in the bitmap has
* mark coordinates (0,0). The input coordinates are not restricted
* to be on the bitmap.
*
* @param p a {@link DviFilePosition} representing the marked position
*/
void Bitmap::mark(DviFilePosition* p)
{
// Recall that the origin of the bitmap, as well as the origin of
// the DviFilePosition, is in the top-left corner of the
// `page'/bitmap, which is not the same as the DVI origin.
if (mark_ != 0)
delete mark_;
mark_ = p;
if (verbosity_ > normal)
cerr << "Bitmap::mark ("
<< mark_->getX(DviFile::unit_pixels) << ","
<< mark_->getY(DviFile::unit_pixels) << ")px" << endl;
return;
}
/**
* Obtains the mark for this bitmap.
*
* @return a pointer to the mark information, or 0 if no mark has been
* registered. This points to static storage, which should not be
* deleted, and which may be overwritten.
* @see #mark
*/
DviFilePosition* Bitmap::getMark()
{
if (mark_ == 0)
return 0;
static DviFilePosition *reportMark;
if (reportMark != 0)
delete reportMark;
// Report the mark position taking cropping into account
reportMark = mark_->copy();
reportMark->shift(-cropL, -cropT, DviFile::unit_pixels);
return reportMark;
}
/**
* Freeze the bitmap and bounding box. This prevents any further
* changes to the bitmap by the methods <code>paint()</code>,
* <code>rule()</code> and <code>strut()</code>. Other methods in this
* class such as <code>crop()</code> and <code>blur()</code> call
* this method implicitly.
*
* <p>If method <code>boundingBox()</code> is called before this
* method, it is possible for it to report a size larger than the
* bitmap, if rules or bitmaps have been placed so that they overlap
* the bitmap's boundaries. The call to <code>freeze</code>
* normalises the bounding box so that this is no longer the case.
*/
void Bitmap::freeze()
{
// Freeze the bitmap and bounding box, simply by setting the frozen_ flag
// to be true. At the same time, normalise the bounding box by requiring
// that (0 <= bbL < bbR <= W) and (0 <= bbT < bbB <= H). If, however, the
// bitmap is empty (according to empty()), then don't change anything.
// Code following this may therefore take these assertions to be valid
// as long as empty() is false.
//
// Code before this in this file should be called only when the bitmap
// is unfrozen, code afterwards freezes the bitmap if it is not
// frozen already.
if (frozen_)
return; // idempotent
normalizeBB_(bbL, bbR, bbT, bbB);
frozen_ = true;
}
/**
* Normalizes the bounding box, so that it is no bigger than the bitmap.
*/
void Bitmap::normalizeBB_(int& tL, int& tR, int& tT, int& tB)
{
if (!empty()) // do nothing if the bitmap is empty
{
if (verbosity_ > normal)
cerr << "Bitmap::normalizeBB: lr:[" << tL << "," << tR << "); tb:["
<< tT << ',' << tB << ")";
if (tL < 0) tL = 0;
if (tR > W) tR = W;
if (tT < 0) tT = 0;
if (tB > H) tB = H;
if (verbosity_ > normal)
cerr << " --> lr:[" << tL << "," << tR << "); tb:["
<< tT << ',' << tB << ")" << endl;
if ((tL >= tR) || (tT >= tB))
// eh? this is really an assertion failure, I think
throw BitmapError
("Bitmap::normalizeBB_: bitmap not empty, but bounds crossed (have you specified a silly crop?)");
}
}
/**
* Crops the bitmap. This applies the cropping specified in methods
* {@link #crop(Margin,int,bool)} and {@link #cropDefault}.
*
* <p>Freezes the bitmap as a side-effect.
*/
void Bitmap::crop()
{
// Not idempotent, since scaleDown() requires to be able to
// re-call this function after scaling, which will happen only if
// cropped_ is true.
if (scaled_)
throw BitmapError("crop() called after scaleDown()");
if (cropped_)
return;
if (!frozen_)
freeze();
cropL = (cropMarginAbs[Left] ? cropMargin[Left]
: bbL - cropMargin[Left]);
cropR = (cropMarginAbs[Right] ? cropMargin[Right]
: bbR + cropMargin[Right]);
cropT = (cropMarginAbs[Top] ? cropMargin[Top]
: bbT - cropMargin[Top]);
cropB = (cropMarginAbs[Bottom] ? cropMargin[Bottom]
: bbB + cropMargin[Bottom]);
// Ensure that the cropping hasn't pushed the margins out of the bitmap
normalizeBB_(cropL, cropR, cropT, cropB);
if (verbosity_ > normal) {
cerr << "Bitmap::crop width [" << bbL << ',' << bbR
<< "), height [" << bbT << ',' << bbB
<< ") to width [" << cropL << ',' << cropR
<< "), height [" << cropT << ',' << cropB
<< ")" << endl;
}
cropped_ = true;
}
/**
* Specifies a crop. If the <code>absolute</code> flag is true, then
* set up a crop for the margin specified in <code>spec</code>: for
* the left and right margins, the crop in <code>pixels</code> is a
* distance from the <em>left</em> margin; for the top and bottom
* crops, it is from the <em>top</em> margin. If the
* <code>absolute</code> flag is false, then the distance in the
* <code>pixels</code> parameter is the distance `outward' of the
* eventual bounding-box, or at the edge of the bitmap, whichever
* comes first.
*
* <p>Since the implication of this is that a call
* <pre>
* .crop(All, x, true);
* </pre>
* would set the crop box to be zero size, this combination is forbidden.
*
* @param spec the margin the crop is being specified for
* @param pixels the size of the margin, or the position when
* <code>absolute</code> is true
* @param absolute if true, then the margin specified is an absolute
* position relative to the left or top margin as appropriate; if
* false, then it is relative to the eventual size and position of the
* bounding box
* @throws BitmapError if <code>spec=All</code> when
* <code>absolute</code> is true
*/
void Bitmap::crop(Margin spec, int pixels, bool absolute)
throw (BitmapError)
{
if (spec == All)
{
if (absolute)
throw new BitmapError("Bitmap::crop(All,x,true): illegal call");
cropMargin[Left] = pixels;
cropMarginAbs[Left] = absolute;
cropMargin[Right] = pixels;
cropMarginAbs[Right] = absolute;
cropMargin[Top] = pixels;
cropMarginAbs[Top] = absolute;
cropMargin[Bottom] = pixels;
cropMarginAbs[Bottom] = absolute;
}
else
{
assert (spec >= Left && spec <= Bottom);
cropMargin[spec] = pixels;
cropMarginAbs[spec] = absolute;
}
}
/**
* Specifies a default crop. This is exactly the same as {@link
* #crop(Margin,int,bool)}, except that it specifies this for all the
* bitmaps subsequently created by this class.
*
* @param spec the margin the crop is being specified for
* @param pixels the size of the margin, or the position when
* <code>absolute</code> is true
* @param absolute if true, then the margin specified is an absolute
* position relative to the left or top margin as appropriate; if
* false, then it is relative to the eventual size and position of the
* bounding box
* @throws BitmapError if <code>spec=All</code> when
* <code>absolute</code> is true
* @see #crop(Margin,int,bool)
*/
void Bitmap::cropDefault (Margin spec, int pixels, bool absolute)
throw (BitmapError)
{
if (spec == All)
{
if (absolute)
throw new BitmapError
("Bitmap::cropDefault(All,x,true): illegal call");
cropMarginDefault[Left] = pixels;
cropMarginAbsDefault[Left] = absolute;
cropMarginDefault[Right] = pixels;
cropMarginAbsDefault[Right] = absolute;
cropMarginDefault[Top] = pixels;
cropMarginAbsDefault[Top] = absolute;
cropMarginDefault[Bottom] = pixels;
cropMarginAbsDefault[Bottom] = absolute;
}
else
{
assert (spec >= Left && spec <= Bottom);
cropMarginDefault[spec] = pixels;
cropMarginAbsDefault[spec] = absolute;
}
}
/**
* Does the bitmap overlap its canvas? This can only be true before a
* (implicit or explicit) call to {@link #freeze}, since that
* normalizes the bounding box variables.
*
* @return true if the bitmap overlaps its canvas; always false after
* any call to <code>freeze()</code>
*/
bool Bitmap::overlaps ()
const
{
if (verbosity_ > normal) {
bool res = (bbL < 0 || bbR > W || bbT < 0 || bbB > H);
cerr << "Bitmap::overlaps [" << bbL << "," << bbR
<< "," << bbT << "," << bbB
<< "] vs [0," << W << ",0," << H << "] ==> " << res << endl;
return res;
} else {
return (bbL < 0 || bbR > W || bbT < 0 || bbB > H);
}
}
/**
* Obtain a bounding box for the current bitmap. This returns a
* four-element array consisting of, in order,
* <ul>
* <li>[0] = the coordinate of the leftmost blackened pixel,
* <li>[1] = the coordinate of the topmost blackened pixel,
* <li>[2] = one more than the coordinate of the rightmost blackened pixel, and
* <li>[3] = one more than the coordinate of the bottommost blackened pixel.
* </ul>
* Thus <code>[2]-[0]</code> is the number of pixels which the
* blackened area occupies in the horizontal direction. Note that
* `blackened pixels' here includes those notionally blackened by the
* <code>{@link #strut}()</code> method. If the bitmap has been
* cropped, this bounding box reflects the crop margins.
*
* <p>The returned array occupies
* static storage, and is always current as of the last time this
* method was called.
*
* <p>The methods <code>{@link #getWidth}()</code> and <code>{@link
* #getHeight}()</code> return the size of the bitmap irrespective of
* the bounding box and any cropping.
*
* <p>It is possible for the bounding-box to be bigger than the
* bitmap, if rules or bitmaps have been painted on the bitmap in such
* a way that they overlap the boundaries of the bitmap, <em>and</em>
* if it is called before an explicit or implicit call to
* <code>{@link #freeze}()</code>. This can also be detected by a call to
* <code>{@link #overlaps}()</code> before any call to <code>freeze()</code>.
* It is never bigger than the bitmap after the bitmap is frozen.
*
* <p>Note that the order of the four dimensions is <em>not</em> that of
* the Postscript BoundingBox, which is (llx, lly, urx, ury)
* rather than here, effectively, (ulx, uly, lrx, lry). This is
* because the position of the upper-left corner (ulx, uly) is
* the natural TeX reference point.
*
* @return the position of the bitmap bounding-box, in the order
* (ulx, uly, lrx, lry)
*/
int *Bitmap::boundingBox()
{
if (cropped_) {
BB[0] = cropL;
BB[1] = cropT;
BB[2] = cropR;
BB[3] = cropB;
} else {
BB[0]=bbL;
BB[1]=bbT;
BB[2]=bbR;
BB[3]=bbB;
}
return &BB[0];
}
/**
* Makes a very simple-minded attempt to antialias the bitmap by
* blurring it. Opening the DVI file with a magnification setting,
* and then calling {@link #scaleDown} will generally produce a much
* better effect.
*
* <p>Freezes the bitmap as a side-effect.
*/
void Bitmap::blur ()
{
if (!frozen_)
freeze();
if (empty()) // nothing there - nothing to do
return; // ...silently
Byte *newB = new Byte[W*H];
STD::memset ((void*)newB, 0, W*H);
int newbpp = (bpp_ < 2 ? 2 : bpp_);
Byte new_max_colour = static_cast<Byte>((1<<newbpp) - 1);
double scale = (double)((1<<newbpp) - 1)/(double)max_colour_;
// Blur leaving a 1-pixel margin, to avoid edge effects. Do edge later.
// This could be made more efficient, but it doesn't really matter just now
for (int row = bbT+1; row<bbB-1; row++)
for (int col = bbL+1; col<bbR-1; col++)
newB[row*W+col]
/*
= static_cast<int>((B[(row-1)*W+(col-1)] + B[(row-1)*W+(col+1)]
+ B[(row+1)*W+(col-1)] + B[(row+1)*W+(col+1)]
+ B[row*W+col]*4)
/ 8.0 // weighting
* scale
+ 0.5);
*/
= static_cast<Byte>(( B[row*W+col-1] + B[row*W+col+1]
+ B[(row+1)*W+col] + B[(row-1)*W+col]
+ B[row*W+col]*2)
/ 6.0 // weighting
* scale
+ 0.5);
delete[] B;
bpp_ = newbpp;
max_colour_ = new_max_colour;
B = newB;
}
/**
* Scales down the bitmap by a numerical factor. The resulting bitmap
* has a linear dimension smaller than the original by the given
* factor. The pixels in the resulting bitmap are resampled so that
* this gives a basic anti-aliasing effect.
*
* <p>We throw an exception if you try to scale down an empty bitmap,
* simply on the grounds that this is probably an error, and you want
* to know about it.
*
* <p>Freezes the bitmap as a side-effect.
*
* @param factor the scaling factor, in the range 2..8
* @throws BitmapError if the scaling factor is outside the range
* 2..8, or if the bitmap is empty
*/
void Bitmap::scaleDown (const int factor)
throw (BitmapError)
{
if (!frozen_)
freeze();
if (factor < 2 || factor > 8) // shome mistake, shurely
throw BitmapError ("out-of-range scale factor - must be in 2..8");
if (empty()) // nothing there - nothing to do
// Should we instead silently decrease the size of the bitmap?
// No - this is surely an error on the user's part.
throw BitmapError ("attempt to scale an empty bitmap");
// We don't create a new bitmap. Instead, we pack the scaled-down
// bitmap into the small-index corner of the original, and reset
// the bounding-box to respect this. Because of this, we don't
// have to clear the old bitmap surrounding it, since this is now ignored.
//
// The original bounding box may not have been an exact multiple
// of the target one. Take careful account of the `extra' rows
// and columns on the right/bottom.
assert(bbL >= 0 && bbT >= 0);
assert(bbR >= bbL && bbB >= bbT);
// oldX represents the boundaries of the region to be scaled down,
// after cropping; that is, it will typically, but not
// necessarily, be larger than the bounding-box region.
int oldL, oldR, oldT, oldB;
if (cropped_) {
oldL = cropL;
oldR = cropR;
oldT = cropT;
oldB = cropB;
} else {
oldL = 0;
oldR = W;
oldT = 0;
oldB = H;
}
// newX represents the boundaries of the region this will be
// mapped into, which is moved into the top-left corner of the
// bitmap. This maps to a region in the original bitmap which is
// an integer number of factor*factor squares in size. It is no
// smaller than the bb region, but might be up to `factor' pixels
// larger in horizontal and vertical extent. The non-square
// extent of these rightmost and bottommost border regions is
// handled below, in the calculations of rowspan and colspan.
int newL = 0;
int newR = (oldR-oldL + (factor-1))/factor;
int newT = 0;
int newB = (oldB-oldT + (factor-1))/factor;
assert(newL <= newR);
assert(newT <= newB);
// Preserve these new crop sizes
if (cropped_) {
cropL = newL;
cropR = newR;
cropT = newT;
cropB = newB;
}
// Make sure there are at least 6 bits-per-pixel, to accomodate 64
// (=8*8) levels of grey. This is crude, but acceptable as a first-go
// heuristic
int newbpp = (bpp_ < 6 ? 6 : bpp_);
Byte new_max_colour = static_cast<Byte>((1<<newbpp) - 1);
#if SCALEDOWN_COMPLETE_AVERAGE
double scale = (double)new_max_colour
/(double)(factor*factor*max_colour_);
#endif
// The pixel at (row1,col1) is set to the total of the pixels in the
// region X, where X is a square of size factor*factor (except at the
// edges of the original bitmap), with its (0,0) pixel located at a point
// offset from (oldL,oldT) by integer multiples of factor.
//
// We stay within the region
// oldL <= x < oldR
// oldT <= y < oldB
// and hence do not stray outside the original bitmap.
for (int row1=newT; row1<newB; row1++) {
int y = oldT + (row1-newT)*factor;
// rowspan is the vertical extent of the region, starting at
// (x,y) which is to be scaled into pixel (row1,col1).
// rowspan=factor, except when we're processing the incomplete
// edge of the original bitmap
int rowspan = factor;
if (y + rowspan > oldB) {
// we would overlap the edge, so shorten the span
rowspan = oldB - y;
}
for (int col1=newL; col1<newR; col1++) {
int tot = 0;
int x = oldL + (col1-newL)*factor;
#if !SCALEDOWN_COMPLETE_AVERAGE
int count = 0;
#endif
// as for rowspan
int colspan = factor;
if (x + colspan > oldR) {
colspan = oldR - x;
}
assert(oldL <= x && x+colspan <= oldR);
assert(oldT <= y && y+rowspan <= oldB);
for (int row2=y; row2<y+rowspan; row2++)
for (int col2=x; col2<x+colspan; col2++) {
#if !SCALEDOWN_COMPLETE_AVERAGE
count++;
#endif
tot += B[row2*W+col2];
}
#if SCALEDOWN_COMPLETE_AVERAGE
B[row1*W+col1] = static_cast<Byte>(tot*scale);
#else
B[row1*W+col1]
= static_cast<Byte>(tot*new_max_colour
/(double)(count*max_colour_));
#endif
}
}
if (mark_ != 0) {
// Scale the mark position, too. This is easy, since we've
// documented that the top-left pixel has coordinates (0,0)
mark_->shift(-oldL, -oldT, DviFile::unit_pixels);
mark_->scale(1.0/factor);
/*
DviFilePosition fixedPoint
= DviFilePosition(mark_, 0, 0, DviFile::unit_pixels);
mark_->scale(1.0/factor, fixedPoint);
*/
}
bbL = newL + static_cast<int>((bbL-oldL+0.5)/factor);
bbR = newL + static_cast<int>((bbR-oldL+0.5)/factor);
bbT = newT + static_cast<int>((bbT-oldT+0.5)/factor);
bbB = newT + static_cast<int>((bbB-oldT+0.5)/factor);
bpp_ = newbpp;
max_colour_ = new_max_colour;
scaled_ = true;
if (verbosity_ > normal)
cerr << "Bitmap::scaleDown: factor=" << factor
<< ". BB now [" << bbL << ':' << bbR << "), ["
<< bbT << ':' << bbB
<< "); bpp=" << bpp_ << ", max_colour=" << max_colour_
<< endl;
}
/**
* Writes the bitmap out to the specified file. The
* <code>format</code> parameter specifies the format of this file,
* and should be one of the bitmap types listed in the sequence
* starting with {@link BitmapImage#firstBitmapImageFormat}; if this
* is not available, we try writing out in the default format, and if
* that fails in turn (something is clearly badly wrong) we throw an
* error.
*
* <p>Freezes the bitmap as a side-effect.
*
* @param filename the name of the output filename
* @param format one of the format names known to class
* <code>BitmapImage</code>
* @throws BitmapError if we cannot write out a bitmap even in the
* default format
* @see BitmapImage
*/
void Bitmap::write(const string filename, const string format)
throw (BitmapError)
{
if (!frozen_)
freeze();
if (verbosity_ > normal)
cerr << "Bitmap::write: "
<< " cropped=" << cropped_
<< " scaled_=" << scaled_
<< " bbL=" << bbL
<< " bbR=" << bbR
<< " bbT=" << bbT
<< " bbB=" << bbB
<< " cropL=" << cropL
<< " cropR=" << cropR
<< " cropT=" << cropT
<< " cropB=" << cropB
<< " W="<<W<<" H="<<H
<< endl;
if (empty())
throw BitmapError ("attempt to write empty bitmap");
int hsize = (cropped_ ? cropR-cropL : W);
int vsize = (cropped_ ? cropB-cropT : H);
BitmapImage *bi = BitmapImage::newBitmapImage(format, hsize, vsize, bpp_);
if (bi == 0) // invalid format
{
const string& deffmt = BitmapImage::firstBitmapImageFormat();
if (verbosity_ >= normal)
cerr << "Bitmap: can't create image with format "
<< format
<< ". Trying format "
<< deffmt
<< " instead" << endl;
bi = BitmapImage::newBitmapImage(deffmt, hsize, vsize, bpp_);
if (bi == 0)
throw BitmapError("Bitmap: can't create image with default format");
}
if (cropped_) {
// Do a sanity-check on cropL..cropB, to make sure that we won't
// bust the bounds of B[] when writing out.
assert (cropT>=0 && cropB<=H && cropL>=0 && cropL<W);
for (const_iterator it = begin(); it != end(); ++it)
bi->setBitmapRow(*it);
} else {
bi->setBitmap (B);
}
if (verbosity_ > normal)
cerr << "Bitmap: transparent=" << transparent_ << endl;
bi->setTransparent (transparent_);
if (customRGB_)
{
if (verbosity_ > normal)
cerr << "Bitmap: custom RGB: "
<< static_cast<int>(fg_.red) << ','
<< static_cast<int>(fg_.green) << ','
<< static_cast<int>(fg_.blue) << '/'
<< static_cast<int>(bg_.red) << ','
<< static_cast<int>(bg_.green) << ','
<< static_cast<int>(bg_.blue) << endl;
bi->setRGB (true, &fg_);
bi->setRGB (false, &bg_);
}
string fileext = bi->fileExtension();
string outfilename = filename;
if (fileext.length() != 0)
{
size_t extlen = fileext.length();
if (extlen > outfilename.length() ||
outfilename.substr(outfilename.length()-extlen, extlen) != fileext)
outfilename += '.' + fileext;
}
bi->write (outfilename);
if (logBitmapPrefix_ != 0) {
cout << logBitmapPrefix_ << outfilename
<< ' ' << hsize << ' ' << vsize;
DviFilePosition *m = getMark();
if (m != 0) {
// We add one to the reported y-coordinate of the mark. This
// appears ill-motivated, but it's ultimately caused by
// the observation that, though the underlying coordinate
// system has the y-axis pointing downwards, things like
// characters and rules (and to some extent struts) are
// positioned with reference to their bottom-left corner,
// rather than their top-left, and what's actually
// positioned at the specified position is the _centre_ of the
// bottom-left pixel, rather than, really, the corner.
// This has the effect that everything ends up one pixel
// down from where one feels it ought to be. However,
// this doesn't matter, since we don't really much care
// about the absolute position on the bitmap. This
// apparently gratuitous +1 is the clearest
// manifestation of the asymmetry, but adding it means
// that if, for example, you have a page with only a 10x10
// rule on it, and the mark immediately afterwards, the
// mark is reported as being at (x=10,y=10), rather than (10,9).
// The point of this mark mechanism is more to give a
// consistent and intelligible reference point, than that
// it be tied to any particular DVI structure.
//
// Having said that, it might be worth taking a close look
// at the DVI standard, and at least noting where rules are
// positioned according to that.
cout << ' ' << static_cast<int>(m->getX(DviFile::unit_pixels)+0.5)
<< ' ' << static_cast<int>(m->getY(DviFile::unit_pixels)+1.5);
}
cout << endl;
}
delete bi;
}
/**
* Sets the foreground or background colour.
*
* @param fg if true, sets the foreground colour; if false, the background
* @param rgb the colour the ground is set to
*/
void Bitmap::setRGB (const bool fg, const BitmapColour* rgb) {
if (verbosity_ > normal)
cerr << "Bitmap::setRGB: "
<< " fg=" << fg
<< " RGB="
<< static_cast<int>(rgb->red) << ','
<< static_cast<int>(rgb->green) << ','
<< static_cast<int>(rgb->blue) << endl;
if (fg)
{
fg_.red = rgb->red;
fg_.green = rgb->green;
fg_.blue = rgb->blue;
} else {
bg_.red = rgb->red;
bg_.green = rgb->green;
bg_.blue = rgb->blue;
}
customRGB_ = true;
}
/**
* Sets the default foreground or background colours.
* This is just like <code>setRGB</code>, except that it applies to
* all bitmaps subsequently created by this class.
*
* @param fg if true, sets the foreground colour; if false, the background
* @param rgb the colour the ground is set to
*/
void Bitmap::setDefaultRGB (const bool fg, const BitmapColour* rgb) {
if (verbosity_ > normal)
cerr << "Bitmap::setDefaultRGB: "
<< " fg=" << fg
<< " RGB="
<< static_cast<int>(rgb->red) << ','
<< static_cast<int>(rgb->green) << ','
<< static_cast<int>(rgb->blue) << endl;
if (fg)
{
def_fg_.red = rgb->red;
def_fg_.green = rgb->green;
def_fg_.blue = rgb->blue;
} else {
def_bg_.red = rgb->red;
def_bg_.green = rgb->green;
def_bg_.blue = rgb->blue;
}
def_customRGB_ = true;
}
/**
* Returns the beginning of a sequence of bitmap rows.
* <p>Freezes the bitmap as a side-effect.
*/
Bitmap::const_iterator Bitmap::begin()
{
if (!frozen_)
freeze();
runningIterator_.init(B,
(cropped_ ? cropL : 0),
(cropped_ ? cropT : 0),
W,
(cropped_ ? cropB-cropT : H));
return runningIterator_;
}
/**
* Returns the end of a sequence of bitmap rows.
*/
Bitmap::const_iterator Bitmap::end()
const
{
if (Bitmap::endIterator_.rowNumber_ == 0) // initialisation
Bitmap::endIterator_.rowNumber_ = -1;
return Bitmap::endIterator_;
}
Bitmap::const_iterator::const_iterator()
{
// empty
}
Bitmap::const_iterator::~const_iterator()
{
// empty
}
void Bitmap::const_iterator::init(Byte* b,
int startx, int starty,
int width, int nrows)
{
b_ = b;
rowNumber_ = starty;
lastRow_ = starty + nrows;
rowLength_ = width;
startColumn_ = startx;
}
/**
* Returns the current member of the set of rows returned by the
* iterator. This returns a pointer to an array of
* <code>Byte</code>, with elements <code>[0..W-1]</code> being
* guaranteed to be valid, where <code>W</code> is the width of the
* bitmap. If the bitmap is uncropped, this is the total width of the
* bitmap as returned by method {@link #getWidth}; if cropped, the
* width is the difference of the [2] and [0] elements of the array
* returned by {@link #boundingBox}.
*
* @return pointer to an array of <code>Byte</code>
* @throws DviError if the iterator is dereferenced after it has come
* to the end
*/
Byte* Bitmap::const_iterator::operator*()
throw (DviError)
{
if (rowNumber_ < 0 || rowNumber_ >= lastRow_) {
throw new DviError("Out-of-range dereference of const_iterator");
}
return &b_[rowNumber_ * rowLength_ + startColumn_];
}
/**
* Increments the iterator. If the bitmap is uncropped, all the rows
* in the bitmap will eventually be iterator over, namely the number
* of rows returned by method {@link #getHeight}; if it is cropped,
* the number of rows returned will be the difference between the [3]
* and [1] elements of the {@link #boundingBox} array.
*
* @return the iterator
* @throws DviError if the iterator is incremented after it has come
* to the end
*/
Bitmap::const_iterator& Bitmap::const_iterator::operator++()
throw (DviError)
{
if (rowNumber_ < 0 || rowNumber_ >= lastRow_) {
throw new DviError("Out-of-range increment of const_iterator");
}
++rowNumber_;
if (rowNumber_ == lastRow_)
rowNumber_ = -1; // matches endIterator_
return *this;
}
bool Bitmap::const_iterator::operator==(const Bitmap::const_iterator& it)
const
{
return (rowNumber_ == it.rowNumber_);
}
bool Bitmap::const_iterator::operator!=(const Bitmap::const_iterator& it)
const
{
return rowNumber_ != it.rowNumber_;
}
|