summaryrefslogtreecommitdiff
path: root/macros/latex/contrib/seu-ml-assign/seu-ml-assign-sample.tex
diff options
context:
space:
mode:
Diffstat (limited to 'macros/latex/contrib/seu-ml-assign/seu-ml-assign-sample.tex')
-rw-r--r--macros/latex/contrib/seu-ml-assign/seu-ml-assign-sample.tex384
1 files changed, 384 insertions, 0 deletions
diff --git a/macros/latex/contrib/seu-ml-assign/seu-ml-assign-sample.tex b/macros/latex/contrib/seu-ml-assign/seu-ml-assign-sample.tex
new file mode 100644
index 0000000000..de5bf5f833
--- /dev/null
+++ b/macros/latex/contrib/seu-ml-assign/seu-ml-assign-sample.tex
@@ -0,0 +1,384 @@
+%! TEX program = pdflatex
+
+\documentclass[solution]{seu-ml-assign}
+
+\title{Assignment}
+\author{Teddy van Jerry}
+\studentID{61520522}
+\instructor{TeX - LaTeX Stack Exchange}
+\date{\today}
+\duedate{20:00 March 21, 2022}
+\assignno{1}
+\semester{SEU --- 2022 Spring}
+
+\begin{document}
+
+\maketitle
+
+% \startsolution[print]
+
+\problem{Basic Vector Operations}
+\subproblem{}
+$\|\mathbf{a}\|_2=\sqrt{1^2+2^2+3^2}=\sqrt{14},\quad \|\mathbf{b}\|_2=\sqrt{(-8)^2+1^2+2^2}=\sqrt{69}$.
+
+\subproblem{}
+$\|\mathbf{a}-\mathbf{b}\|_2=\sqrt{9^2+1^2+1^2}=\sqrt{83}$.
+
+\subproblem{}
+$\mathbf{a}$ and $\mathbf{b}$ are orthogonal.
+\begin{proof}
+The inner product of vectors $\mathbf{a}$ and $\mathbf{b}$ is
+\begin{equation}
+\langle\mathbf{a},\mathbf{b}\rangle=\mathbf{a}^T\mathbf{b}=1\times(-8)+2\times 1+3\times 2=0,
+\end{equation}
+therefore $\mathbf{a}$ and $\mathbf{b}$ are orthogonal.
+\end{proof}
+
+\problem{Basic Matrix Operations}
+According to the consensus, the matrix notation should be the bold upper-case letter like $\mathbf{A}$ or $\bm{A}$, not $A$.
+
+\subproblem{}
+\begin{equation}
+ \begin{aligned}
+ [\mathbf{A}, \mathbf{I}_3]&=
+ \begin{bNiceArray}{rrr:rrr}
+ 1&-3&3&1&0&0\\3&-5&3&0&1&0\\6&-6&4&0&0&1
+ \end{bNiceArray}\sim
+ \begin{bNiceArray}{rrr:rrr}
+ 1&-3&3&1&0&0\\0&4&-6&-3&1&0\\0&12&-14&-6&0&1
+ \end{bNiceArray}\sim
+ \begin{bNiceArray}{rrr:rrr}
+ 1&-3&3&1&0&0\\0&4&-6&-3&1&0\\0&0&4&3&-3&1
+ \end{bNiceArray}\\
+ &\sim
+ \begin{bNiceArray}{rrr:rrr}
+ 1&-3&0&-\frac{5}{4}&\frac{9}{4}&\frac{3}{4}\\[0.3em]0&4&0&\frac{3}{2}&-\frac{7}{2}&-\frac{3}{2}\\[0.3em]0&0&1&\frac{3}{4}&-\frac{3}{4}&\frac{1}{4}
+ \end{bNiceArray}\sim
+ \begin{bNiceArray}{rrr:rrr}
+ 1&0&0&-\frac{1}{8}&-\frac{3}{8}&\frac{3}{8}\\[0.3em]0&1&0&\frac{3}{8}&-\frac{7}{8}&\frac{3}{8}\\[0.3em]0&0&1&\frac{3}{4}&-\frac{3}{4}&\frac{1}{4}
+ \end{bNiceArray},
+ \end{aligned}
+\end{equation}
+where $\mathbf{I}_3$ is the $3\times 3$ identity matrix.
+Therefore we have
+\begin{equation}\label{eq:2-1-inv}
+ \mathbf{A}^{-1}=
+ \begin{bNiceArray}{rrr}
+ -\frac{1}{8}&-\frac{3}{8}&\frac{3}{8}\\[0.3em]\frac{3}{8}&-\frac{7}{8}&\frac{3}{8}\\[0.3em]\frac{3}{4}&-\frac{3}{4}&\frac{1}{4}
+ \end{bNiceArray}.
+\end{equation}
+The determinant of matrix $\mathbf{A}$ can be calculated as
+\begin{equation}\label{eq:2-1-det}
+ \mathrm{det}(\mathbf{A})=1\times\begin{vNiceArray}{rr}
+ -5&3\\-6&4
+ \end{vNiceArray}-(-3)\times\begin{vNiceArray}{rr}
+ 3&3\\6&4
+ \end{vNiceArray}+3\times\begin{vNiceArray}{rr}
+ 3&-5\\6&-6
+ \end{vNiceArray}=1\times(-2)+3\times(-6)+3\times 12=16,
+\end{equation}
+where $|\cdot|$ denotes the determinant.
+
+\subproblem{}
+The rank of matrix $\mathbf{A}$ is $3$ because as is shown in Eq.~\eqref{eq:2-1-inv} the matrix $\mathbf{A}$ is invertible.
+
+\subproblem{}
+The trace of matrix $\mathbf{A}$ is
+\begin{equation}
+ \mathrm{tr}(\mathbf{A})=\sum_{i=1}^{3}a_{ii}=1+(-5)+4=0.
+\end{equation}
+
+\begin{equation}
+ \mathbf{A}+\mathbf{A}^{T}=\begin{bNiceArray}{rrr}
+ 1&-3&3\\3&-5&3\\6&-6&4
+ \end{bNiceArray}+
+ \begin{bNiceArray}{rrr}
+ 1&3&6\\-3&-5&-6\\3&3&4
+ \end{bNiceArray}=
+ \begin{bNiceArray}{rrr}
+ 2&0&9\\0&-10&-3\\9&-3&8
+ \end{bNiceArray}.
+\end{equation}
+
+\subproblem{}
+\begin{equation}
+ \mathbf{A}+\mathbf{A}^{T}=\begin{bNiceArray}{rrr}
+ 1&-3&3\\3&-5&3\\6&-6&4
+ \end{bNiceArray}+
+ \begin{bNiceArray}{rrr}
+ 1&3&6\\-3&-5&-6\\3&3&4
+ \end{bNiceArray}=
+ \begin{bNiceArray}{rrr}
+ 2&0&9\\0&-10&-3\\9&-3&8
+ \end{bNiceArray}.
+\end{equation}
+
+\subproblem{}
+$\mathbf{A}$ is not an orthogonal matrix.
+\begin{proof}
+ Assume $\mathbf{A}$ is an orthogonal matrix,
+ therefore
+ \begin{equation}
+ \mathbf{AA}^{T}=\mathbf{I}_3,
+ \end{equation}
+ Take the determinant at both side, it can be derived that
+ \begin{equation}
+ |\mathrm{det}(\mathbf{A})|=\sqrt{|\mathbf{A}||\mathbf{A}^T|}=|\mathrm{det}(\mathbf{I}_3)|=1,
+ \end{equation}
+ which contradicts with Eq.~\eqref{eq:2-1-det}.
+ Therefore, the assumption is false.
+\end{proof}
+
+\subproblem{}
+Let $f(\lambda)$ be the characteristic function of matrix $\mathbf{A}$ and
+\begin{equation}\label{eq:2-6-f}
+ f(\lambda)=\begin{vNiceArray}{ccc}
+ \lambda-1&3&-3\\-3&\lambda+5&-3\\-6&6&\lambda-4
+ \end{vNiceArray}=(\lambda-4)(\lambda+2)^2,
+\end{equation}
+therefore the eigenvalues are $\lambda_1=4, \lambda_2=\lambda_3=-2$.
+Let the corresponding eigenvectors be $\bm{\alpha}_i$, $i=1,2,3$.
+\begin{equation}
+ (\mathbf{A}-\lambda_i\mathbf{I}_3)\bm{\alpha}_i=\mathbf{0},\quad i=1,2,3,
+\end{equation}
+and the corresponding eigenvectors are
+\begin{equation}
+ \bm{\alpha}_1=\begin{bNiceArray}{ccc}1&1&2\end{bNiceArray}^T,\quad
+ \bm{\alpha}_{2,3}=\begin{bNiceArray}{ccc}1&1+c_{2,3}&c_{2,3}\end{bNiceArray}^T,
+\end{equation}
+where $c_{2,3}\in\mathbb{R}$.
+Without loss of generality, we take $c_2=0$ and $c_3=-1$, and we have $\bm{\alpha}_2=\begin{bNiceArray}{ccc}1&1&0\end{bNiceArray}^T$ and $\bm{\alpha}_2=\begin{bNiceArray}{ccc}1&0&-1\end{bNiceArray}^T$.
+
+\subproblem{}
+Use the result from Eq.~\eqref{eq:2-6-f}, the matrix $\mathbf{A}$ can be diagonalized as
+\begin{equation}
+ \bm{\Lambda}=\begin{bNiceArray}{rrr}
+ 4&0&0\\0&-2&0\\0&0&-2
+ \end{bNiceArray}.
+\end{equation}
+
+\subproblem{}
+The $\ell_{2,1}$ norm of $\mathbf{A}$ is
+\begin{equation}
+ \|\mathbf{A}\|_{2,1}=\sum_{i=1}^3\sqrt{\sum_{j=1}^3a_{ij}^2}=\sqrt{46}+\sqrt{70}+\sqrt{34}\approx 20.98,
+\end{equation}
+and the Frobenius norm of $\mathbf{A}$ is
+\begin{equation}
+ \|\mathbf{A}\|_F=\sqrt{\sum_{i,j=1,\mathrlap{2,3}}a_{ij}^2}=\sqrt{150}=5\sqrt{6}\approx 12.247.
+\end{equation}
+
+\subproblem{}
+The nuclear norm of $\mathbf{A}$ is
+\begin{equation}
+ \|\mathbf{A}\|_*=\mathrm{tr}(\sqrt{\mathbf{A}\mathbf{A^*}})=\sum_{i=1}^3\sigma_i(\mathbf{A})\approx 14.728,
+\end{equation}
+and the spectral norm of $\mathbf{A}$ is
+\begin{equation}
+ \|\mathbf{A}\|_2=\max\sigma_i(\mathbf{A})\approx 12.065.
+\end{equation}
+
+\vspace{2mm}
+\begin{lstlisting}[language=Matlab, title={MATLAB Code for Check}]
+A = [1, -3, 3; 3, -5, 3; 6, -6, 4]; % define the matrix A
+inv(A) % calculate and print the inverse of A
+det(A) % the determinant of A
+rank(A) % the rank of A
+trace(A) % the trace of A
+A + A.' % the sum of A and the transpose of A
+sum(sum(A * A.' ~= eye(3))) % check if A is orthogonal
+[X, D] = eig(A) % the eigenvectors and the corresponding eigenvalues of A
+sum(sqrt(sum(A .^ 2))) % l-2,1 norm of A
+norm(A, 'fro') % Frobenius norm of A
+sum(svd(A)) % nuclear norm of A
+max(svd(A)) % spectral norm of A
+\end{lstlisting}
+
+\problem{Linear Equations}
+\subproblem{}
+It is evident to solve the linear equation
+\begin{equation}\label{eq:3-1}
+ \left\{
+ \begin{aligned}
+ x_1&=-1, \\
+ x_2&=0, \\
+ x_3&=1.
+ \end{aligned}
+ \right.
+\end{equation}
+
+\subproblem{}
+Let
+\begin{equation}
+ \mathbf{A}=\begin{bNiceArray}{rrr}
+ 2&2&3\\1&-1&0\\-1&2&1
+ \end{bNiceArray},\quad
+ \mathbf{b}=
+ \begin{bNiceArray}{r}
+ 1\\-1\\2
+ \end{bNiceArray},
+\end{equation}
+and we have $\mathbf{Ax}=\mathbf{b}$ as
+\begin{equation}
+ \begin{bNiceArray}{rrr}
+ 2&2&3\\1&-1&0\\-1&2&1
+ \end{bNiceArray}
+ \begin{bNiceArray}{r}
+ x_1\\x_2\\x_3
+ \end{bNiceArray}=
+ \begin{bNiceArray}{r}
+ 1\\-1\\2
+ \end{bNiceArray}.
+\end{equation}
+
+\subproblem{}
+Since there is a unique solution shown in Eq.~\eqref{eq:3-1}, we know
+\begin{equation}\label{eq:3-3}
+ \mathrm{rank}(\mathbf{A})=3.
+\end{equation}
+
+\subproblem{}
+\begin{equation}
+ \begin{aligned}
+ [\mathbf{A}, \mathbf{I}_3]&=
+ \begin{bNiceArray}{rrr:rrr}
+ 2&2&3&1&0&0\\1&-1&0&0&1&0\\-1&2&1&0&0&1
+ \end{bNiceArray}\sim
+ \begin{bNiceArray}{rrr:rrr}
+ 2&2&3&1&0&0\\1&-1&0&0&1&0\\0&1&1&0&1&1
+ \end{bNiceArray}\sim
+ \begin{bNiceArray}{rrr:rrr}
+ 1&1&\frac{3}{2}&\frac{1}{2}&0&0\\1&-1&0&0&1&0\\0&1&1&0&1&1
+ \end{bNiceArray}\\
+ &\sim
+ \begin{bNiceArray}{rrr:rrr}
+ 1&1&\frac{3}{2}&\frac{1}{2}&0&0\\[0.3em]0&-2&-\frac{3}{2}&-\frac{1}{2}&1&0\\[0.3em]0&1&1&0&1&1
+ \end{bNiceArray}\sim
+ \begin{bNiceArray}{rrr:rrr}
+ 1&1&\frac{3}{2}&\frac{1}{2}&0&0\\[0.3em]0&-1&-\frac{3}{4}&-\frac{1}{4}&\frac{1}{2}&0\\[0.3em]0&0&\frac{1}{4}&-\frac{1}{4}&\frac{3}{2}&1
+ \end{bNiceArray}\sim
+ \begin{bNiceArray}{rrr:rrr}
+ 1&1&0&2&-9&-6\\[0.3em]0&-1&0&-1&5&3\\[0.3em]0&0&1&-1&6&4
+ \end{bNiceArray}\\
+ &\sim
+ \begin{bNiceArray}{rrr:rrr}
+ 1&0&0&1&-4&-3\\0&1&0&1&-5&-3\\0&0&1&-1&6&4
+ \end{bNiceArray},
+ \end{aligned}
+\end{equation}
+therefore the inverse of $\mathbf{A}$ is
+\begin{equation}\label{eq:3-4-inv}
+ \mathbf{A}^{-1}=\begin{bNiceArray}{rrr}
+ 1&-4&-3\\1&-5&-3\\-1&6&4
+ \end{bNiceArray}.
+\end{equation}
+The determinant of $\mathbf{A}$ can be calculated as
+\begin{equation}
+ \mathrm{det}(\mathbf{A})=2\times\begin{vNiceArray}{rr}
+ -1&0\\2&1
+ \end{vNiceArray}-2\times\begin{vNiceArray}{rr}
+ 1&0\\-1&1
+ \end{vNiceArray}+3\times\begin{vNiceArray}{rr}
+ 1&-1\\-1&2
+ \end{vNiceArray}=2\times(-1)-2\times 1+3\times 1=-1.
+\end{equation}
+
+\subproblem{}
+As is shown in Eq.~\eqref{eq:3-3}, $\mathbf{A}$ is invertible and with the result in Eq.~\eqref{eq:3-4-inv}
+\begin{equation}
+ \mathbf{x}=\mathbf{A}^{-1}\mathbf{b}=
+ \begin{bNiceArray}{rrr}
+ 1&-4&-3\\1&-5&-3\\-1&6&4
+ \end{bNiceArray}
+ \begin{bNiceArray}{r}
+ 1\\-1\\2
+ \end{bNiceArray}=
+ \begin{bNiceArray}{r}
+ -1\\0\\1
+ \end{bNiceArray},
+\end{equation}
+and it is exactly the same result with Eq.~\eqref{eq:3-1}.
+
+\subproblem{}
+The inner product
+\begin{equation}
+ \langle\mathbf{x},\mathbf{b}\rangle=\mathbf{x}^T\mathbf{b}=1\times 1+0\times(-1)+1\times 2=1,
+\end{equation}
+and the outer product is
+\begin{equation}
+ \mathbf{x}\otimes\mathbf{b}=\mathbf{x}\mathbf{b}^T=
+ \begin{bNiceArray}{r}
+ -1\\0\\1
+ \end{bNiceArray}
+ \begin{bNiceArray}{rrr}
+ 1&-1&2
+ \end{bNiceArray}=
+ \begin{bNiceArray}{rrr}
+ -1&1&-2\\0&0&0\\1&-1&2
+ \end{bNiceArray}.
+\end{equation}
+
+\subproblem{}
+$\|\mathbf{b}\|_1=|1|+|-1|+|2|=4,\quad\|\mathbf{b}\|_2=\sqrt{1^2+(-1)^2+2^2}=\sqrt{6},\quad\|\mathbf{b}\|_{\infty}=\max\{|1|,|-1|,|2|\}=2.$
+
+\subproblem{}
+Let $\mathbf{y}=\begin{bNiceArray}{rrr}
+ y_1&y_2&y_3
+\end{bNiceArray}^T$,
+we have
+\begin{equation}
+ \mathbf{y}^T\mathbf{Ay}=
+ \begin{bNiceArray}{rrr}
+ y_1&y_2&y_3
+ \end{bNiceArray}
+ \begin{bNiceArray}{rrr}
+ 2&2&3\\1&-1&0\\-1&2&1
+ \end{bNiceArray}
+ \begin{bNiceArray}{r}
+ y_1\\y_2\\y_3
+ \end{bNiceArray}=2y_1^2-y_2^2+y_3^2+3y_1y_2+2y_2y_3+2y_1y_3,
+\end{equation}
+and
+\begin{equation}
+ \bigtriangledown_{\mathbf{y}}\mathbf{y}^T\mathbf{Ay}=
+ \begin{bNiceArray}{r}
+ \frac{\partial}{\partial y_1}\mathbf{y}^T\mathbf{Ay} \\[.3em]
+ \frac{\partial}{\partial y_2}\mathbf{y}^T\mathbf{Ay} \\[.3em]
+ \frac{\partial}{\partial y_3}\mathbf{y}^T\mathbf{Ay}
+ \end{bNiceArray}=
+ \begin{bNiceArray}{r}
+ 4y_1+3y_2+2y_3 \\
+ 3y_1-2y_2+2y_3 \\
+ 2y_1+2y_2+2y_3
+ \end{bNiceArray}.
+\end{equation}
+
+\subproblem{}
+The equation $\mathbf{A}_1\mathbf{x}=\mathbf{b}_1$ can be represented as
+\begin{equation}
+ \begin{bNiceArray}{rrr}
+ 2&2&3\\1&-1&0\\-1&2&1\\-1&2&1
+ \end{bNiceArray}
+ \begin{bNiceArray}{r}
+ x_1\\x_2\\x_3
+ \end{bNiceArray}=
+ \begin{bNiceArray}{r}
+ 1\\-1\\2\\2
+ \end{bNiceArray}.
+\end{equation}
+
+\subproblem{}
+$\mathrm{rank}(\mathbf{A}_1)=3$.
+\begin{proof}
+ On one hand, $\mathrm{rank}(\mathbf{A}_1)\geq\mathrm{rank}(\mathbf{A})=3$ which is shown in Eq.~\eqref{eq:3-3}.
+ On the other hand, $\mathrm{rank}(\mathbf{A}_1)\leq\min\{3,4\}=3$.
+ Therefore, $\mathrm{rank}(\mathbf{A}_1)=3$.
+ We can also find the first three equations are linearly independent while the last equation is actually the same with the third equation which makes it meaningless.
+\end{proof}
+
+\subproblem{}
+Yes.
+\begin{proof}
+ Since $\mathrm{rank}(\mathbf{A}_1)=\|\mathbf{x}\|_0$, i.e. rank of $\mathbf{A}_1$ is equal to the dimension of $\mathbf{x}$, the formula can be solved with a unique solution the same as Eq.~\eqref{eq:3-1}.
+\end{proof}
+
+\end{document}