summaryrefslogtreecommitdiff
path: root/macros/latex/contrib/resolsysteme/doc/ResolSysteme-exemples.tex
diff options
context:
space:
mode:
Diffstat (limited to 'macros/latex/contrib/resolsysteme/doc/ResolSysteme-exemples.tex')
-rw-r--r--macros/latex/contrib/resolsysteme/doc/ResolSysteme-exemples.tex26
1 files changed, 22 insertions, 4 deletions
diff --git a/macros/latex/contrib/resolsysteme/doc/ResolSysteme-exemples.tex b/macros/latex/contrib/resolsysteme/doc/ResolSysteme-exemples.tex
index 228ca89b5b..9d785b294f 100644
--- a/macros/latex/contrib/resolsysteme/doc/ResolSysteme-exemples.tex
+++ b/macros/latex/contrib/resolsysteme/doc/ResolSysteme-exemples.tex
@@ -2,14 +2,14 @@
% !TeX TXS-program:compile = txs:///pdflatex
\documentclass[french,a4paper,10pt]{article}
-\def\RSver{0.1.4}
+\def\RSver{0.1.5}
\usepackage[margin=1.5cm]{geometry}
\usepackage{ResolSysteme}
\usepackage{systeme}
\usepackage{babel}
\usepackage[most]{tcolorbox}
\sisetup{locale=FR,output-decimal-marker={,}}
-\newtcblisting{ShowCodeTeX}[1][]{colback=white,colframe=red!75!black,listing options={style=tcblatex},#1}
+\newtcblisting{ShowCodeTeX}[1][]{colback=white,colframe=red!75!black,listing options={style=tcblatex,texcsstyle=*\color{red!70!black}},#1}
\begin{document}
@@ -81,7 +81,7 @@ Le dét. de $A=\begin{pNiceMatrix} 1&2&3&4\\5&6&7&0\\1&1&1&1\\2&-3&-5&-6 \end{pN
est $\det(A)=\DetMatrice(1,2,3,4 § 5,6,7,0 § 1,1,1,1 § 2,-3,-5,-6)$.
\end{ShowCodeTeX}
-\section{Inverse d'une matrice, 2x2 ou 3x3}
+\section{Inverse d'une matrice, 2x2 ou 3x3 ou 4x4}
\begin{ShowCodeTeX}
L'inverse de $A=\begin{pNiceMatrix} 1&2 \\ 3&4 \end{pNiceMatrix}$ est
@@ -108,7 +108,12 @@ L'inverse de $A=\begin{pNiceMatrix} 1&2&3\\4&5&6\\7&8&8 \end{pNiceMatrix}$ est
$A^{-1}=\MatriceInverse[n]<cell-space-limits=2pt>(1,2,3 § 4,5,6 § 7,8,8)$.
\end{ShowCodeTeX}
-\section*{Résolution d'un système, 2x2 ou 3x3}
+\begin{ShowCodeTeX}
+L'inverse de $A=\begin{pNiceMatrix} 1&2&3&4\\5&6&7&0\\1&1&1&1\\2&-3&-5&-6 \end{pNiceMatrix}$
+est $A^{-1}=\MatriceInverse[n]<cell-space-limits=2pt>(1,2,3,4 § 5,6,7,0 § 1,1,1,1 § 2,-3,-5,-6)$.
+\end{ShowCodeTeX}
+
+\section*{Résolution d'un système, 2x2 ou 3x3 ou 4x4}
\begin{ShowCodeTeX}
La solution de $\systeme{-9x-8y=-8,3x-6y=-7}$ est $\mathcal{S}=%
@@ -140,6 +145,19 @@ La solution de $\systeme{3x+y-2z=-1,2x-y+z=4,x-y-2z=5}$ est $\mathcal{S}=%
\left\lbrace \SolutionSysteme[d](3,1,-2 § 2,-1,1 § 1,-1,-2)(-1,4,5) \right\rbrace$.
\end{ShowCodeTeX}
+\begin{ShowCodeTeX}
+La solution de $\systeme[xyzt]{y+z+t=1,x+z+t=-1,x+y+t=1,x+y+z=0}$ est $\mathcal{S}=%
+\left\lbrace\SolutionSysteme[d](0,1,1,1 § 1,0,1,1 § 1,1,0,1 § 1,1,1,0)(1,-1,1,0)\right\rbrace$.
+\end{ShowCodeTeX}
+
+\begin{ShowCodeTeX}
+La solution de $\systeme[xyzt]{x+2y+3z+4t=-10,5x+6y+7z=0,x+y+z+t=4,-2x-3y-5z-6t=7}$ est $X=
+\SolutionSysteme
+ [dec]<cell-space-limits=2pt>
+ (1,2,3,4 § 5,6,7,0 § 1,1,1,1 § -2,-3,-5,-6)(-10,0,4,7)
+ [Matrice]$
+\end{ShowCodeTeX}
+
\section{État stable d'une graphe probabiliste, 2x2}
\begin{ShowCodeTeX}