diff options
Diffstat (limited to 'macros/latex/contrib/resolsysteme/doc/ResolSysteme-exemples.tex')
-rw-r--r-- | macros/latex/contrib/resolsysteme/doc/ResolSysteme-exemples.tex | 26 |
1 files changed, 22 insertions, 4 deletions
diff --git a/macros/latex/contrib/resolsysteme/doc/ResolSysteme-exemples.tex b/macros/latex/contrib/resolsysteme/doc/ResolSysteme-exemples.tex index 228ca89b5b..9d785b294f 100644 --- a/macros/latex/contrib/resolsysteme/doc/ResolSysteme-exemples.tex +++ b/macros/latex/contrib/resolsysteme/doc/ResolSysteme-exemples.tex @@ -2,14 +2,14 @@ % !TeX TXS-program:compile = txs:///pdflatex \documentclass[french,a4paper,10pt]{article} -\def\RSver{0.1.4} +\def\RSver{0.1.5} \usepackage[margin=1.5cm]{geometry} \usepackage{ResolSysteme} \usepackage{systeme} \usepackage{babel} \usepackage[most]{tcolorbox} \sisetup{locale=FR,output-decimal-marker={,}} -\newtcblisting{ShowCodeTeX}[1][]{colback=white,colframe=red!75!black,listing options={style=tcblatex},#1} +\newtcblisting{ShowCodeTeX}[1][]{colback=white,colframe=red!75!black,listing options={style=tcblatex,texcsstyle=*\color{red!70!black}},#1} \begin{document} @@ -81,7 +81,7 @@ Le dét. de $A=\begin{pNiceMatrix} 1&2&3&4\\5&6&7&0\\1&1&1&1\\2&-3&-5&-6 \end{pN est $\det(A)=\DetMatrice(1,2,3,4 § 5,6,7,0 § 1,1,1,1 § 2,-3,-5,-6)$. \end{ShowCodeTeX} -\section{Inverse d'une matrice, 2x2 ou 3x3} +\section{Inverse d'une matrice, 2x2 ou 3x3 ou 4x4} \begin{ShowCodeTeX} L'inverse de $A=\begin{pNiceMatrix} 1&2 \\ 3&4 \end{pNiceMatrix}$ est @@ -108,7 +108,12 @@ L'inverse de $A=\begin{pNiceMatrix} 1&2&3\\4&5&6\\7&8&8 \end{pNiceMatrix}$ est $A^{-1}=\MatriceInverse[n]<cell-space-limits=2pt>(1,2,3 § 4,5,6 § 7,8,8)$. \end{ShowCodeTeX} -\section*{Résolution d'un système, 2x2 ou 3x3} +\begin{ShowCodeTeX} +L'inverse de $A=\begin{pNiceMatrix} 1&2&3&4\\5&6&7&0\\1&1&1&1\\2&-3&-5&-6 \end{pNiceMatrix}$ +est $A^{-1}=\MatriceInverse[n]<cell-space-limits=2pt>(1,2,3,4 § 5,6,7,0 § 1,1,1,1 § 2,-3,-5,-6)$. +\end{ShowCodeTeX} + +\section*{Résolution d'un système, 2x2 ou 3x3 ou 4x4} \begin{ShowCodeTeX} La solution de $\systeme{-9x-8y=-8,3x-6y=-7}$ est $\mathcal{S}=% @@ -140,6 +145,19 @@ La solution de $\systeme{3x+y-2z=-1,2x-y+z=4,x-y-2z=5}$ est $\mathcal{S}=% \left\lbrace \SolutionSysteme[d](3,1,-2 § 2,-1,1 § 1,-1,-2)(-1,4,5) \right\rbrace$. \end{ShowCodeTeX} +\begin{ShowCodeTeX} +La solution de $\systeme[xyzt]{y+z+t=1,x+z+t=-1,x+y+t=1,x+y+z=0}$ est $\mathcal{S}=% +\left\lbrace\SolutionSysteme[d](0,1,1,1 § 1,0,1,1 § 1,1,0,1 § 1,1,1,0)(1,-1,1,0)\right\rbrace$. +\end{ShowCodeTeX} + +\begin{ShowCodeTeX} +La solution de $\systeme[xyzt]{x+2y+3z+4t=-10,5x+6y+7z=0,x+y+z+t=4,-2x-3y-5z-6t=7}$ est $X= +\SolutionSysteme + [dec]<cell-space-limits=2pt> + (1,2,3,4 § 5,6,7,0 § 1,1,1,1 § -2,-3,-5,-6)(-10,0,4,7) + [Matrice]$ +\end{ShowCodeTeX} + \section{État stable d'une graphe probabiliste, 2x2} \begin{ShowCodeTeX} |