summaryrefslogtreecommitdiff
path: root/macros/latex/contrib/gratzer-color-scheme/example.tex
diff options
context:
space:
mode:
Diffstat (limited to 'macros/latex/contrib/gratzer-color-scheme/example.tex')
-rw-r--r--macros/latex/contrib/gratzer-color-scheme/example.tex51
1 files changed, 51 insertions, 0 deletions
diff --git a/macros/latex/contrib/gratzer-color-scheme/example.tex b/macros/latex/contrib/gratzer-color-scheme/example.tex
new file mode 100644
index 0000000000..7087e69387
--- /dev/null
+++ b/macros/latex/contrib/gratzer-color-scheme/example.tex
@@ -0,0 +1,51 @@
+\documentclass{amsart}
+\usepackage{amssymb,latexsym}
+\usepackage{amsmath}
+\usepackage{graphicx}
+\usepackage{enumerate}
+\usepackage{gensymb}
+\usepackage{Gratzer-Color-Scheme}
+
+
+\begin{document}
+\title{Example file for Gratzer-Color-Scheme}
+
+\author[G.\ Gr\"atzer]{George Gr\"atzer}
+
+\keywords{$\mathcal{C}_1$-diagrams, slim planar semimodular lattice}
+
+\maketitle
+
+\begin{definition}
+%Definition~\ref{D:well}
+A diagram of an SPS lattice $L$ is a
+\emph{${C}_1$-diagram} if the middle edge of any cover-preserving $7$ is steep
+and all other edges are normal.
+\end{definition}
+
+\begin{theorem}\label{T:well}
+%Theorem~\ref{T:well}
+Every slim, planar, semimodular lattice $L$ has a ${C}_1$-diagram.
+\end{theorem}
+
+\begin{corollary}
+The principal ideals are distributive.
+\end{corollary}
+
+\begin{proof}
+Let $K$ be represented.
+\end{proof}
+
+\begin{lemma}
+$K$ is a lattice.
+\end{lemma}
+
+\begin{proof}
+Obvious.
+\end{proof}
+
+\begin{proposition}
+$K$ is not a lattice.
+\end{proposition}
+
+\end{document}