diff options
Diffstat (limited to 'macros/latex/contrib/gratzer-color-scheme/example.tex')
-rw-r--r-- | macros/latex/contrib/gratzer-color-scheme/example.tex | 51 |
1 files changed, 51 insertions, 0 deletions
diff --git a/macros/latex/contrib/gratzer-color-scheme/example.tex b/macros/latex/contrib/gratzer-color-scheme/example.tex new file mode 100644 index 0000000000..7087e69387 --- /dev/null +++ b/macros/latex/contrib/gratzer-color-scheme/example.tex @@ -0,0 +1,51 @@ +\documentclass{amsart} +\usepackage{amssymb,latexsym} +\usepackage{amsmath} +\usepackage{graphicx} +\usepackage{enumerate} +\usepackage{gensymb} +\usepackage{Gratzer-Color-Scheme} + + +\begin{document} +\title{Example file for Gratzer-Color-Scheme} + +\author[G.\ Gr\"atzer]{George Gr\"atzer} + +\keywords{$\mathcal{C}_1$-diagrams, slim planar semimodular lattice} + +\maketitle + +\begin{definition} +%Definition~\ref{D:well} +A diagram of an SPS lattice $L$ is a +\emph{${C}_1$-diagram} if the middle edge of any cover-preserving $7$ is steep +and all other edges are normal. +\end{definition} + +\begin{theorem}\label{T:well} +%Theorem~\ref{T:well} +Every slim, planar, semimodular lattice $L$ has a ${C}_1$-diagram. +\end{theorem} + +\begin{corollary} +The principal ideals are distributive. +\end{corollary} + +\begin{proof} +Let $K$ be represented. +\end{proof} + +\begin{lemma} +$K$ is a lattice. +\end{lemma} + +\begin{proof} +Obvious. +\end{proof} + +\begin{proposition} +$K$ is not a lattice. +\end{proposition} + +\end{document} |